1
|
Merabti A, Roger M, Nguyen C, Nocentini A, Gerbier P, Richeter S, Gary‐Bobo M, Supuran CT, Clément S, Winum J. Carbonic Anhydrase Inhibitors Featuring a Porphyrin Scaffold: Synthesis, Optical and Biological Properties. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Amina Merabti
- IBMM Univ Montpellier CNRS ENSCM Montpellier France
- ICGM Univ Montpellier CNRS ENSCM Montpellier France
| | - Maxime Roger
- ICGM Univ Montpellier CNRS ENSCM Montpellier France
| | | | - Alessio Nocentini
- Neurofarba Department Sezione Di Chimica Farmaceutica E Nutraceutica Università Degli Studi Di Firenze Via U. Schiff 6 50019, Sesto Fiorentino Firenze Italy
| | | | | | | | - Claudiu T. Supuran
- Neurofarba Department Sezione Di Chimica Farmaceutica E Nutraceutica Università Degli Studi Di Firenze Via U. Schiff 6 50019, Sesto Fiorentino Firenze Italy
| | | | | |
Collapse
|
2
|
Walter EH, Ge Y, Mason JC, Boyle JJ, Long NJ. A Coumarin-Porphyrin FRET Break-Apart Probe for Heme Oxygenase-1. J Am Chem Soc 2021; 143:6460-6469. [PMID: 33845576 PMCID: PMC8154531 DOI: 10.1021/jacs.0c12864] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Heme oxygenase-1 (HO-1) is a vital enzyme in humans that primarily regulates free heme concentrations. The overexpression of HO-1 is commonly associated with cardiovascular and neurodegenerative diseases including atherosclerosis and ischemic stroke. Currently, there are no known chemical probes to detect HO-1 activity, limiting its potential as an early diagnostic/prognostic marker in these serious diseases. Reported here are the design, synthesis, and photophysical and biological characterization of a coumarin-porphyrin FRET break-apart probe to detect HO-1 activity, Fe-L1. We designed Fe-L1 to "break-apart" upon HO-1-catalyzed porphyrin degradation, perturbing the efficient FRET mechanism from a coumarin donor to a porphyrin acceptor fluorophore. Analysis of HO-1 activity using Escherichia coli lysates overexpressing hHO-1 found that a 6-fold increase in emission intensity at 383 nm was observed following incubation with NADPH. The identities of the degradation products following catabolism were confirmed by MALDI-MS and LC-MS, showing that porphyrin catabolism was regioselective at the α-position. Finally, through the analysis of Fe-L2, we have shown that close structural analogues of heme are required to maintain HO-1 activity. It is anticipated that this work will act as a foundation to design and develop new probes for HO-1 activity in the future, moving toward applications of live fluorescent imaging.
Collapse
Affiliation(s)
- Edward
R. H. Walter
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
- National
Lung and Heart Institute, Imperial College London, Du Cane Road, London W12 0NN, U.K.
| | - Ying Ge
- National
Lung and Heart Institute, Imperial College London, Du Cane Road, London W12 0NN, U.K.
| | - Justin C. Mason
- National
Lung and Heart Institute, Imperial College London, Du Cane Road, London W12 0NN, U.K.
| | - Joseph J. Boyle
- National
Lung and Heart Institute, Imperial College London, Du Cane Road, London W12 0NN, U.K.
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
3
|
Taniguchi M, Lindsey JS, Bocian DF, Holten D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Sabuzi F, Coletti A, Conte V, Floris B, Galloni P. Zinc porphyrin-anthraquinonylimidazole supramolecular dyads. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, the synthesis and spectroscopic characterization of new zinc porphyrin-anthraquinone dyads is proposed. In particular, electron donor units based on zinc meso-tetraphenylporphyrin (ZnTPP) and zinc octaethylporphyrin (ZnOEP) have been coupled with differently substituted anthraquinones as acceptors. The quinone moiety was properly functionalized with imidazole, thus ensuring porphyrin complexation through zinc ion coordination. Accordingly, absorption and emission measurements demonstrated that the coordination occurred, and calculated binding constants were in the range 6.6 [Formula: see text] 10[Formula: see text]–3.9 [Formula: see text] 10[Formula: see text] M[Formula: see text]. Transient absorption spectroscopy for ZnTPP and ZnOEP dyads demonstrated that the electron transfer occurred, with the formation of the corresponding charge separated state, ZnTPP[Formula: see text]-AQ. Moreover, in ZnOEP complexes, a strong correlation between the chain length and flexibility with the charge separated state lifetime was observed.
Collapse
Affiliation(s)
- Federica Sabuzi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Alessia Coletti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Valeria Conte
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Barbara Floris
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Pierluca Galloni
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| |
Collapse
|
5
|
Albino de Souza G, de Castro Bezerra F, Martins TD. Photophysical Properties of Fluorescent Self-Assembled Peptide Nanostructures for Singlet Oxygen Generation. ACS OMEGA 2020; 5:8804-8815. [PMID: 32337442 PMCID: PMC7178805 DOI: 10.1021/acsomega.0c00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In this work, a drug delivery system for perillyl alcohol based on the peptide self-assembly containing 3-(2-benzothiazolyl)-7-(diethylamino)coumarin (C6) as a fluorescent additive is obtained, and its photophysical characteristics as well as its release dynamics were studied by steady-state and time-resolved fluorescence spectroscopy. Results proved the dynamics of drug release from the peptide nanostructures and showed that the system formed by the self-assembled peptide and C6, along with perillyl alcohol, presents unique photophysical properties that can be exploited to generate singlet oxygen (1O2) upon irradiation, which is not achieved by the sole components. Through epifluorescence microscopy combined with time-correlated single photon counting fluorescence spectroscopy, the release mechanism was proven to occur upon peptide structure interconversion, which is controlled by environmental changes.
Collapse
Affiliation(s)
- Geovany Albino de Souza
- Chemistry Institute, Federal University of Goiás, Av. Esperança, s/n, Vila Itatiaia, BR 74690900 Goiânia, Goiás, Brazil
| | | | - Tatiana Duque Martins
- Chemistry Institute, Federal University of Goiás, Av. Esperança, s/n, Vila Itatiaia, BR 74690900 Goiânia, Goiás, Brazil
| |
Collapse
|
6
|
Tian G, Zhang Z, Li H, Li D, Wang X, Qin C. Design, Synthesis and Application in Analytical Chemistry of Photo-Sensitive Probes Based on Coumarin. Crit Rev Anal Chem 2020; 51:565-581. [DOI: 10.1080/10408347.2020.1753163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Guang Tian
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Zixin Zhang
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Haidi Li
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Dongsheng Li
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Xinrui Wang
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Chuanguang Qin
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| |
Collapse
|
7
|
Wierzchowski M, Łażewski D, Tardowski T, Grochocka M, Czajkowski R, Sobiak S, Sobotta L. Nanomolar photodynamic activity of porphyrins bearing 1,4,7-trioxanonyl and 2-methyl-5-nitroimidazole moieties against cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111703. [PMID: 31810036 DOI: 10.1016/j.jphotobiol.2019.111703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 02/02/2023]
Abstract
Despite the continuous development of medicine, there is still a lack of effective and fully safe protocols for the treatment of neoplastic diseases. The drug-drug conjugates approach seems to give a chance to obtain more efficient molecules. New alkoxy and metronidazole substituted porphyrins were synthesized. Novel porphyrins were purified by flash column chromatography and characterized using NMR, MS, UV-Vis and HPLC. The Nuclear Magnetic Resonance study was performed to annotate experimentally observed 1H NMR and 13C NMR signals of new compounds. The 2D NMR techniques such as 1H-1H COSY (Correlation Spectroscopy), 1H-13C HSQC (Heteronuclear Single Quantum Correlation) and 1H-13C HMBC (Heteronuclear Multiple Bond Correlation) were used for the structure elucidation of the new compounds. In the range of 250-450 nm of the absorption spectra, the Soret band was observed, whereas the Q band was noted in the range of 500-650 nm. Compounds revealed a fluorescence quantum yield in the range 0.03-0.12. Singlet oxygen generation quantum yields up to 0.54 were determined. Electrochemical properties has also been studied. It has been noticed electropolymerization of compound bearing 5-nitroimidazole substituents. The photodynamic activity of the studied porphyrins against A549 and HEK001/HPV16 cancer cells were examined. The most active against A549 and HEK 001/HPV16 was light-excited trioxanonylporphyrin with the values of IC50 equal to 0.49 μM and 50 nM respectively.
Collapse
Affiliation(s)
- Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Dawid Łażewski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Tadeusz Tardowski
- Sexually Transmitted Diseases and Immunodermatology, Collegium Medicum of Nicolaus Copernicus University in Toruń, Curie Skłodowska 9, 85-094 Bydgoszcz, Poland
| | - Małgorzata Grochocka
- Sexually Transmitted Diseases and Immunodermatology, Collegium Medicum of Nicolaus Copernicus University in Toruń, Curie Skłodowska 9, 85-094 Bydgoszcz, Poland
| | - Rafal Czajkowski
- Sexually Transmitted Diseases and Immunodermatology, Collegium Medicum of Nicolaus Copernicus University in Toruń, Curie Skłodowska 9, 85-094 Bydgoszcz, Poland
| | - Stanislaw Sobiak
- Department of Inorganic and Analytical Chemistry, Collegium Medicum of Nicolaus Copernicus University in Toruń, A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|