1
|
Ling J, Du Y, Wuelfing WP, Buist N, Krishnamachari Y, Xi H, Templeton AC, Su Y. Molecular mechanisms for stabilizing biologics in the solid state. J Pharm Sci 2025; 114:736-765. [PMID: 39617053 DOI: 10.1016/j.xphs.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Protein drugs exhibit challenges of biophysical and biochemical instability due to their structural complexity and rich dynamics. Solid-state biologics aim to enhance stability by increasing molecular rigidity within the formulation matrix, representing a primary category of drug products alongside sterile liquid formulations. Understanding the molecular mechanisms behind the stabilization and destabilization of protein drugs, influenced by formulation composition and drying processes, provides scientific rationale for drug product design. This review aims to elaborate on the two primary models of water-to-sugar substitution and matrix vitrification, respectively, via thermodynamic and kinetic stabilization. It offers an up-to-date review of experimental investigations into these hypotheses, specifically elucidating protein structure and protein-excipient interactions at the molecular level, molecular dynamics across a broad range of motion regimes, and microscopic attributes such as protein-sugar and protein-salt miscibility and microenvironmental acidity, in relevant liquid, frozen, and solid states, using advanced biophysical techniques for solid-state analysis. Moreover, we discuss how these mechanistic understandings facilitate the investigation and prediction of critical stability behaviors and enables the design of solid biological drug products.
Collapse
Affiliation(s)
- Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - W Peter Wuelfing
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Nicole Buist
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yogita Krishnamachari
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Hanmi Xi
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA; Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
2
|
Zografi G, Newman A, Shalaev E. Structural features of the glassy state and their impact on the solid-state properties of organic molecules in pharmaceutical systems. J Pharm Sci 2025; 114:40-69. [PMID: 38768756 DOI: 10.1016/j.xphs.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
This paper reviews the structure and properties of amorphous active pharmaceutical ingredients (APIs), including small molecules and proteins, in the glassy state (below the glass transition temperature, Tg). Amorphous materials in the neat state and formulated with excipients as miscible amorphous mixtures are included, and the role of absorbed water in affecting glass structure and stability has also been considered. We defined the term "structure" to indicate the way the various molecules in a glass interact with each other and form distinctive molecular arrangements as regions or domains of varying number of molecules, molecular packing, and density. Evidence is presented to suggest that such systems generally exist as heterogeneous structures made up of high-density domains surrounded by a lower density arrangement of molecules, termed the microstructure. It has been shown that the method of preparation and the time frame for handling and storage can give rise to variable glass structures and varying physical properties. Throughout this paper, examples are given of theoretical, computer simulation, and experimental studies which focus on the nature of intermolecular interactions, the size of heterogeneous higher density domains, and the impact of such systems on the relative physical and chemical stability of pharmaceutical systems.
Collapse
Affiliation(s)
- George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann Newman
- Seventh Street Development Group LLC, Kure Beach, NC, United States.
| | | |
Collapse
|
3
|
Reid KM, Poudel H, Leitner DM. Dynamics of Hydrogen Bonds between Water and Intrinsically Disordered and Structured Regions of Proteins. J Phys Chem B 2023; 127:7839-7847. [PMID: 37672685 DOI: 10.1021/acs.jpcb.3c03102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Recent studies indicate more restricted dynamics of water around intrinsically disordered proteins (IDPs) than structured proteins. We examine here the dynamics of hydrogen bonds between water molecules and two proteins, small ubiquitin-related modifier-1 (SUMO-1) and ubiquitin-conjugating enzyme E2I (UBC9), which we compare around intrinsically disordered regions (IDRs) and structured regions of these proteins. It has been recognized since some time that excluded volume effects, which influence access of water molecules to hydrogen-bonding sites, and the strength of hydrogen bonds between water and protein affect hydrogen bond lifetimes. While we find those two properties to mediate lifetimes of hydrogen bonds between water and protein residues in this study, we also find that the lifetimes are affected by the concentration of charged groups on other nearby residues. These factors are more important in determining the hydrogen bond lifetimes than whether a residue hydrogen bonding with water belongs to an IDR or to a structured region.
Collapse
Affiliation(s)
- Korey M Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
4
|
Ryan HP, Fishman ZS, Pawlik JT, Grommet A, Musial M, Rizzuto F, Booth JC, Long CJ, Schwarz K, Orloff ND, Nitschke JR, Stelson AC. Quantifying the Effect of Guest Binding on Host Environment. J Am Chem Soc 2023; 145:19533-19541. [PMID: 37642307 PMCID: PMC10510717 DOI: 10.1021/jacs.3c01409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Indexed: 08/31/2023]
Abstract
The environment around a host-guest complex is defined by intermolecular interactions between the complex, solvent molecules, and counterions. These interactions govern both the solubility of these complexes and the rates of reactions occurring within the host molecules and can be critical to catalytic and separation applications of host-guest systems. However, these interactions are challenging to detect using standard analytical chemistry techniques. Here, we quantify the hydration and ion pairing of a FeII4L4 coordination cage with a set of guest molecules having widely varying physicochemical properties. The impact of guest properties on host ion pairing and hydration was determined through microwave microfluidic measurements paired with principal component analysis (PCA). This analysis showed that introducing guest molecules into solution displaced counterions that were bound to the cage, and that the solvent solubility of the guest has the greatest impact on the solvent and ion-pairing dynamics surrounding the host. Specifically, we found that when we performed PCA of the measured equivalent circuit parameters and the solubility and dipole moment, we observed a high (>90%) explained variance for the first two principal components for each circuit parameter. We also observed that cage-counterion pairing is well-described by a single ion-pairing type, with a one-step reaction model independent of the type of cargo, and that the ion-pairing association constant is reduced for cargo with higher water solubility. Quantifying hydration and cage-counterion interactions is a critical step to building the next generation of design criteria for host-guest chemistries.
Collapse
Affiliation(s)
- Hugh P. Ryan
- Cambridge
University Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Zachary S. Fishman
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Jacob T. Pawlik
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Angela Grommet
- Cambridge
University Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Malgorzata Musial
- National
Institute of Standards and Technology Material Measurement Laboratory, 100 Bureau Dr., Gaithersburg, Maryland 20899, United States
| | - Felix Rizzuto
- Cambridge
University Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - James C. Booth
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Christian J. Long
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Kathleen Schwarz
- National
Institute of Standards and Technology Material Measurement Laboratory, 100 Bureau Dr., Gaithersburg, Maryland 20899, United States
| | - Nathan D. Orloff
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Jonathan R. Nitschke
- Cambridge
University Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Angela C. Stelson
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| |
Collapse
|
5
|
Hishida M, Kaneko A, Yamamura Y, Saito K. Contrasting Changes in Strongly and Weakly Bound Hydration Water of a Protein upon Denaturation. J Phys Chem B 2023; 127:6296-6305. [PMID: 37417885 PMCID: PMC10364084 DOI: 10.1021/acs.jpcb.3c02970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Water is considered integral for the stabilization and function of proteins, which has recently attracted significant attention. However, the microscopic aspects of water ranging up to the second hydration shell, including strongly and weakly bound water at the sub-nanometer scale, are not yet well understood. Here, we combined terahertz spectroscopy, thermal measurements, and infrared spectroscopy to clarify how the strongly and weakly bound hydration water changes upon protein denaturation. With denaturation, that is, the exposure of hydrophobic groups in water and entanglement of hydrophilic groups, the number of strongly bound hydration water decreased, while the number of weakly bound hydration water increased. Even though the constraint of water due to hydrophobic hydration is weak, it extends to the second hydration shell as it is caused by the strengthening of hydrogen bonds between water molecules, which is likely the key microscopic mechanism for the destabilization of the native state due to hydration.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Ayumi Kaneko
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
6
|
Zang Z, Li Z, Wang J, Lu X, Lyu Q, Tang M, Cui HL, Yan S. Terahertz spectroscopic monitoring and analysis of citrus leaf water status under low temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:52-59. [PMID: 36375327 DOI: 10.1016/j.plaphy.2022.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Low temperature stress, in the form of chilling and freezing, is one of the major environmental factors impacting on citrus yield, which changes plant's water state and results in the crops' sub-health or injury. The innovative terahertz (THz) spectroscopy and imaging based sensing technology has been shown to be a suitable tool for plant leaf water status determination, due to THz radiation's innate sensitivity to hydrogen bond vibration in aqueous solutions, which is usually related to plant phenotype change. We demonstrate experimentally that the THz absorption coefficient of leaf could be used for distinguishing plant's physiological stress status, exhibiting clear decreasing or increasing trend under chilling or freezing stress respectively. The underlying rationale might be that membrane damage shows a diverse pattern, changing the intra- or extra-cellular liquid environments, likely being linked to the various THz spectral characteristics. There were different adaptations in leaf morphology, leading to different leaf density, which in turn affects the water volume fraction. Moreover, different patterns of the dynamic equilibrium state of free water and bound water under chilling and freezing treatment were revealed by THz spectroscopy. Here, THz spectroscopic monitoring has shown unique potential for judging citrus's low temperature stress state through bio-water detection and discrimination.
Collapse
Affiliation(s)
- Ziyi Zang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Zaoxia Li
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Jie Wang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Xingxing Lu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Qiang Lyu
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hong-Liang Cui
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China.
| | - Shihan Yan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
7
|
Kistenev YV, Das A, Mazumder N, Cherkasova OP, Knyazkova AI, Shkurinov AP, Tuchin VV, Lednev IK. Label-free laser spectroscopy for respiratory virus detection: A review. JOURNAL OF BIOPHOTONICS 2022; 15:e202200100. [PMID: 35866572 DOI: 10.1002/jbio.202200100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Infectious diseases are among the most severe threats to modern society. Current methods of virus infection detection based on genome tests need reagents and specialized laboratories. The desired characteristics of new virus detection methods are noninvasiveness, simplicity of implementation, real-time, low cost and label-free detection. There are two groups of methods for molecular biomarkers' detection and analysis: (i) a sample physical separation into individual molecular components and their identification, and (ii) sample content analysis by laser spectroscopy. Variations in the spectral data are typically minor. It requires the use of sophisticated analytical methods like machine learning. This review examines the current technological level of laser spectroscopy and machine learning methods in applications for virus infection detection.
Collapse
Affiliation(s)
- Yury V Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Anubhab Das
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Olga P Cherkasova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Institute of Laser Physics, Siberian Branch of the RAS, Novosibirsk, Russia
| | - Anastasia I Knyazkova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Alexander P Shkurinov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Institute on Laser and Information Technologies, Branch of the Federal Scientific Research Centre "Crystallography and Photonics" of RAS, Shatura, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Valery V Tuchin
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the RAS, Saratov, Russia
| | - Igor K Lednev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Department of Chemistry, University at Albany, SUNY, Albany, NY, USA
| |
Collapse
|
8
|
Singh A, Doan LC, Lou D, Wen C, Vinh NQ. Interfacial Layers between Ion and Water Detected by Terahertz Spectroscopy. J Chem Phys 2022; 157:054501. [DOI: 10.1063/5.0095932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dynamic fluctuations in hydrogen-bond network of water occur from femto- to nano-second timescale and provides insights into structural/dynamical aspects of water at ion-water interfaces. Employing terahertz spectroscopy assisted with molecular dynamics simulations, we study aqueous chloride solutions of five monovalent cations, namely, Li, Na, K, Rb and Cs. We show that ions modify the behavior of surrounding water molecules and form interfacial layers of water around them with physical properties distinct from that of bulk water. Small cations with high charge densities influence the kinetics of water well beyond the first solvation shell. At terahertz frequencies, we observe an emergence of fast relaxation processes of water with their magnitude following the ionic order Cs>Rb>K>Na>Li, revealing an enhanced population density of weakly coordinated water at ion-water interface. The results shed light on the structure breaking tendency of monovalent cations and provide insights into the properties of ionic solutions at the molecular level.
Collapse
Affiliation(s)
- Abhishek Singh
- Physics, Virginia Polytechnic Institute and State University, United States of America
| | - Luan C Doan
- Virginia Polytechnic Institute and State University, United States of America
| | - Djamila Lou
- Virginia Polytechnic Institute and State University, United States of America
| | - Chengyuan Wen
- Virginia Polytechnic Institute and State University - National Capital Region, United States of America
| | - Nguyen Q Vinh
- Department of Physics, Virginia Polytechnic Institute and State University, United States of America
| |
Collapse
|
9
|
D'Antuono R, Bowen JW. Towards super-resolved terahertz microscopy for cellular imaging. J Microsc 2022; 288:207-217. [PMID: 35792534 PMCID: PMC10084438 DOI: 10.1111/jmi.13132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 12/28/2022]
Abstract
Biomedical imaging includes the use of a variety of techniques to study organs and tissues. Some of the possible imaging modalities are more spread at clinical level (CT, MRI, PET), while others, such as light and electron microscopy are preferred in life sciences research. The choice of the imaging modalities can be based on the capability to study functional aspects of an organism, the delivered radiation dose to the patient, and the achievable resolution. In the last few decades, spectroscopists and imaging scientists have been interested in the use of terahertz (THz) frequencies (30 μm to 3 mm wavelength) due to the low photon energy associated (E∼1 meV, not causing breaking of the molecular bonds but still interacting with some vibrational modes) and the high penetration depth that is achievable. THz has been already adopted in security, quality control and material sciences. However, the adoption of THz frequencies for biological and clinical imaging means to face, as a major limitation, the very scarce resolution associated with the use of such long wavelengths. To address this aspect and reconcile the benefit of minimal harmfulness for bioimaging with the achievable resolving power, many attempts have been made. This review summarises the state-of-the-art of THz imaging applications aimed at achieving super-resolution, describing how practical aspects of optics and quasi-optics may be treated to efficaciously implement the use of THz as a new low-dose and versatile modality in biomedical imaging and clinical research.
Collapse
Affiliation(s)
- Rocco D'Antuono
- Crick Advanced Light Microscopy STP, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.,Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, UK
| | - John W Bowen
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
10
|
Tang C, Wang Y, Cheng J, Chang C, Hu J, Lü J. Probing terahertz dynamics of multidomain protein in cell-like confinement. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121173. [PMID: 35334430 DOI: 10.1016/j.saa.2022.121173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The development of meaningful descriptions of multidomain proteins exhibiting complex inter-domain dynamics modes is a key challenge for understanding their roles in molecular recognition and signalling processes. Here we developed a generally applicable approach for probing the low frequency collective hydration dynamics of multidomain proteins that uses terahertz spectroscopy of a protein molecule confined in a phospholipid reverse micelles environment (named Droplet THz). With the combination of normal mode analysis, we demonstrated the binding of calcium ions modulates the local inter-domain motion of the human coagulant factor VIII protein in a concentration-dependent manner. These findings highlight the Droplet THz as a valuable tool for dissecting the ultrafast dynamics of domain motion in the multidomain proteins and suggest a modulating mechanism of calcium ions on the structural flexibility and function of human coagulant proteins.
Collapse
Affiliation(s)
- Chao Tang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yadi Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jie Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chao Chang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Jun Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Junhong Lü
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; College of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
11
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
12
|
Doan LC, Dahanayake JN, Mitchell-Koch KR, Singh AK, Vinh NQ. Probing Adaptation of Hydration and Protein Dynamics to Temperature. ACS OMEGA 2022; 7:22020-22031. [PMID: 35785325 PMCID: PMC9245114 DOI: 10.1021/acsomega.2c02843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Protein dynamics is strongly influenced by the surrounding environment and physiological conditions. Here we employ broadband megahertz-to-terahertz spectroscopy to explore the dynamics of water and myoglobin protein on an extended time scale from femto- to nanosecond. The dielectric spectra reveal several relaxations corresponding to the orientational polarization mechanism, including the dynamics of loosely bound, tightly bound, and bulk water, as well as collective vibrational modes of protein in an aqueous environment. The dynamics of loosely bound and bulk water follow non-Arrhenius behavior; however, the dynamics of water molecules in the tightly bound layer obeys the Arrhenius-type relation. Combining molecular simulations and effective-medium approximation, we have determined the number of water molecules in the tightly bound hydration layer and studied the dynamics of protein as a function of temperature. The results provide the important impact of water on the biochemical functions of proteins.
Collapse
Affiliation(s)
- Luan C. Doan
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jayangika N. Dahanayake
- Department
of Chemistry, Faculty of Science, University
of Kelaniya, Kelaniya 11600, Sri Lanka
| | | | - Abhishek K. Singh
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nguyen Q. Vinh
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
13
|
Hu K, Matsuura H, Shirakashi R. Stochastic Analysis of Molecular Dynamics Reveals the Rotation Dynamics Distribution of Water around Lysozyme. J Phys Chem B 2022; 126:4520-4530. [PMID: 35675630 DOI: 10.1021/acs.jpcb.2c00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water dynamics is essential to biochemical processes by mediating all such reactions, including biomolecular degeneration in solutions. To disentangle the molecular-scale distribution of water dynamics around a solute biomolecule, we investigated here the rotational dynamics of water around lysozyme by combining molecular dynamics (MD) simulations and broadband dielectric spectroscopy (BDS). A statistical analysis using the relaxation times and trajectories of every single water molecule was proposed, and the two-dimensional probability distribution of water at a distance from the lysozyme surface with a rotational relaxation time was given. For the observed lysozyme solutions of 34-284 mg/mL, we discovered that the dielectric relaxation time obtained from this distribution agrees well with the measured γ relaxation time, which suggests that rotational self-correlation of water molecules underlies the gigahertz domain of the dielectric spectra. Regardless of protein concentration, water rotational relaxation time versus the distance from the lysozyme surface revealed that the water rotation is severely retarded within 3 Å from the lysozyme surface and is nearly comparable to pure water when farther than 10 Å. The dimension of the first hydration layer was subsequently identified in terms of the relationship between the acceleration of water rotation and the distance from the protein surface.
Collapse
Affiliation(s)
- Kang Hu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Matsuura
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan
| |
Collapse
|
14
|
Marracino P, Paffi A, d'Inzeo G. A rationale for non-linear responses to strong electric fields in molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:11654-11661. [PMID: 35536147 DOI: 10.1039/d1cp04466d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many approaches for calculation of the field-dependent electric properties of water solutions rely on the Onsager and Kirkwood theories of polar dielectrics. Such basic theories implicitly consider the electric field intensity to fulfill the so-called 'weak field conditions', i.e. to produce a linear response in the system. In this work we made use of molecular dynamics simulations to investigate possible non-linear effects induced by high intensity electric fields, specifically continuous wave bursts with nanosecond duration, comparing them with the ones predicted by the theory. We found that field intensities above 0.15 V nm-1 produce remarkable nonlinear responses in the whole 100 MHz-100 GHz frequency window considered, with the onset of higher order polarization signals, which are the clear fingerprint of harmonic distorsions. That non-linear response turned out to depend on the considered frequency. We finally show that MD outcomes are consistent with a modelization based on an extended formulation of the Langevin function including a frequency-dependent parameter.
Collapse
Affiliation(s)
- Paolo Marracino
- Rise Technology S. R. L., L. Re Paolo Toscanelli 170, 00121 Rome, Italy.
| | - Alessandra Paffi
- University of Rome "La Sapienza", DIET, Rome, Italy.,Centre on the Interactions between Electromagnetic Fields and Biosystems (ICEmB), University of Genoa, Genoa, Italy
| | - Guglielmo d'Inzeo
- University of Rome "La Sapienza", DIET, Rome, Italy.,Centre on the Interactions between Electromagnetic Fields and Biosystems (ICEmB), University of Genoa, Genoa, Italy
| |
Collapse
|
15
|
Reid KM, Leitner DM. Enhanced Mobility during Diels-Alder Reaction: Results of Molecular Simulations. J Phys Chem Lett 2022; 13:3763-3769. [PMID: 35446035 DOI: 10.1021/acs.jpclett.2c00886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent measurements indicate enhanced mobility of solvent molecules during Diels-Alder (DA) and other common chemical reactions. We present results of molecular dynamics simulations of the last stages of the DA cycloaddition reaction, from the transition state configuration to product, of furfurylamine and maleimide in acetonitrile at reactant concentrations studied experimentally. We find enhanced mobility of solvent and reactant molecules up to at least a nanometer from the DA product over hundreds of picoseconds. Local heating is ruled out as a factor in the enhanced mobility observed in the simulations, which is instead found to be due to solvent relaxation following the formation of the DA product.
Collapse
Affiliation(s)
- Korey M Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
16
|
Komandin GA, Zaytsev KI, Dolganova IN, Nozdrin VS, Chuchupal SV, Anzin VB, Spektor IE. Quantification of solid-phase chemical reactions using the temperature-dependent terahertz pulsed spectroscopy, sum rule, and Arrhenius theory: thermal decomposition of α-lactose monohydrate. OPTICS EXPRESS 2022; 30:9208-9221. [PMID: 35299355 DOI: 10.1364/oe.453528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Transformations of the low-energy vibrational spectra are associated with structural changes in an analyte and closely related to the instability of weak chemical bounds. Terahertz (THz)/far-infrared optical spectroscopy is commonly used to probe such transformation, aimed at characterization of the underlying solid-phase chemical reactions in organic compounds. However, such studies usually provide quite qualitative information about the temperature- and time-dependent parameters of absorption peaks in dielectric spectra of an analyte. In this paper, an approach for quantitative analyses of the solid-phased chemical reactions based on the THz pulsed spectroscopy was developed. It involves studying an evolution of the sample optical properties, as a function of the analyte temperature and reaction time, and relies on the classical oscillator model, the sum rule, and the Arrhenius theory. The method allows one to determine the temperature-dependent reaction rate V1(T) and activation energy Ea. To demonstrate the practical utility of this method, it was applied to study α-lactose monohydrate during its temperature-induced molecular decomposition. Analysis of the measured THz spectra revealed the increase of the reaction rate in the range of V1 ≃ ~9 × 10-4-10-2 min-1, when the analyte temperature rises from 313 to 393 K, while the Arrhenius activation energy is Ea ≃ ~45.4 kJ/mol. Thanks to a large number of obtained physical and chemical parameters, the developed approach expands capabilities of THz spectroscopy in chemical physics, analytical chemistry, and pharmaceutical industry.
Collapse
|
17
|
Reid KM, Singh AK, Bikash CR, Wei J, Tal-Gan Y, Vinh NQ, Leitner DM. The origin and impact of bound water around intrinsically disordered proteins. Biophys J 2022; 121:540-551. [PMID: 35074392 PMCID: PMC8874019 DOI: 10.1016/j.bpj.2022.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Proteins and water couple dynamically over a wide range of time scales. Motivated by their central role in protein function, protein-water dynamics and thermodynamics have been extensively studied for structured proteins, where correspondence to structural features has been made. However, properties controlling intrinsically disordered protein (IDP)-water dynamics are not yet known. We report results of megahertz-to-terahertz dielectric spectroscopy and molecular dynamics simulations of a group of IDPs with varying charge content along with structured proteins of similar size. Hydration water around IDPs is found to exhibit more heterogeneous rotational and translational dynamics compared with water around structured proteins of similar size, yielding on average more restricted dynamics around individual residues of IDPs, charged or neutral, compared with structured proteins. The on-average slower water dynamics is found to arise from excess tightly bound water in the first hydration layer, which is related to greater exposure to charged groups. The more tightly bound water to IDPs correlates with the smaller hydration shell found experimentally, and affects entropy associated with protein-water interactions, the contribution of which we estimate based on the dielectric measurements and simulations. Water-IDP dynamic coupling at terahertz frequencies is characterized by the dielectric measurements and simulations.
Collapse
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Abhishek K. Singh
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia
| | | | - Jessica Wei
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Nguyen Q. Vinh
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia,Corresponding author
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada,Corresponding author
| |
Collapse
|
18
|
Steinert RM, Kasireddy C, Heikes ME, Mitchell-Koch KR. Newly identified C–H⋯O hydrogen bond in histidine. Phys Chem Chem Phys 2022; 24:19233-19251. [DOI: 10.1039/d2cp02048c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histidine C–H bonds observed in protein structures include (clockwise from top left): myoglobin, β-lactamase, and photoactive yellow protein; calculations indicate that tautomeric/protonation state influences H-bonding ability (bottom left).
Collapse
Affiliation(s)
- Ryan M. Steinert
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, USA
| | - Chandana Kasireddy
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, USA
| | - Micah E. Heikes
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, USA
| | - Katie R. Mitchell-Koch
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, USA
| |
Collapse
|
19
|
Singh AK, Wen C, Cheng S, Vinh NQ. Long-range DNA-water interactions. Biophys J 2021; 120:4966-4979. [PMID: 34687717 DOI: 10.1016/j.bpj.2021.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
DNA functions only in aqueous environments and adopts different conformations depending on the hydration level. The dynamics of hydration water and hydrated DNA leads to rotating and oscillating dipoles that, in turn, give rise to a strong megahertz to terahertz absorption. Investigating the impact of hydration on DNA dynamics and the spectral features of water molecules influenced by DNA, however, is extremely challenging because of the strong absorption of water in the megahertz to terahertz frequency range. In response, we have employed a high-precision megahertz to terahertz dielectric spectrometer, assisted by molecular dynamics simulations, to investigate the dynamics of water molecules within the hydration shells of DNA as well as the collective vibrational motions of hydrated DNA, which are vital to DNA conformation and functionality. Our results reveal that the dynamics of water molecules in a DNA solution is heterogeneous, exhibiting a hierarchy of four distinct relaxation times ranging from ∼8 ps to 1 ns, and the hydration structure of a DNA chain can extend to as far as ∼18 Å from its surface. The low-frequency collective vibrational modes of hydrated DNA have been identified and found to be sensitive to environmental conditions including temperature and hydration level. The results reveal critical information on hydrated DNA dynamics and DNA-water interfaces, which impact the biochemical functions and reactivity of DNA.
Collapse
Affiliation(s)
- Abhishek K Singh
- Department of Physics and Center for Soft Matter and Biological Physics, Blacksburg, Virginia
| | - Chengyuan Wen
- Department of Physics and Center for Soft Matter and Biological Physics, Blacksburg, Virginia
| | - Shengfeng Cheng
- Department of Physics and Center for Soft Matter and Biological Physics, Blacksburg, Virginia; Macromolecules Innovation Institute, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia
| | - Nguyen Q Vinh
- Department of Physics and Center for Soft Matter and Biological Physics, Blacksburg, Virginia; Macromolecules Innovation Institute, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
20
|
George DK, Chen JY, He Y, Knab JR, Markelz AG. Functional-State Dependence of Picosecond Protein Dynamics. J Phys Chem B 2021; 125:11134-11140. [PMID: 34606257 DOI: 10.1021/acs.jpcb.1c05018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examine temperature-dependent picosecond dynamics of two benchmarking proteins lysozyme and cytochrome c using temperature-dependent terahertz permittivity measurements. We find that a double Arrhenius temperature dependence with activation energies E1 ∼ 0.1 kJ/mol and E2 ∼ 10 kJ/mol fits the folded and ligand-free state response. The higher activation energy is consistent with the so-called protein dynamical transition associated with beta relaxations at the solvent-protein interface. The lower activation energy is consistent with correlated structural motions. When the structure is removed by denaturing, the lower-activation-energy process is no longer present. Additionally, the lower-activation-energy process is diminished with ligand binding but not for changes in the internal oxidation state. We suggest that the lower-energy activation process is associated with collective structural motions that are no longer accessible with denaturing or binding.
Collapse
Affiliation(s)
- D K George
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - J Y Chen
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - Yunfen He
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - J R Knab
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - A G Markelz
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| |
Collapse
|
21
|
Liu H, Xiang S, Zhu H, Li L. The Structural and Dynamical Properties of the Hydration of SNase Based on a Molecular Dynamics Simulation. Molecules 2021; 26:molecules26175403. [PMID: 34500836 PMCID: PMC8434405 DOI: 10.3390/molecules26175403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/01/2022] Open
Abstract
The dynamics of protein–water fluctuations are of biological significance. Molecular dynamics simulations were performed in order to explore the hydration dynamics of staphylococcal nuclease (SNase) at different temperatures and mutation levels. A dynamical transition in hydration water (at ~210 K) can trigger larger-amplitude fluctuations of protein. The protein–water hydrogen bonds lost about 40% in the total change from 150 K to 210 K, while the Mean Square Displacement increased by little. The protein was activated when the hydration water in local had a comparable trend in making hydrogen bonds with protein– and other waters. The mutations changed the local chemical properties and the hydration exhibited a biphasic distribution, with two time scales. Hydrogen bonding relaxation governed the local protein fluctuations on the picosecond time scale, with the fastest time (24.9 ps) at the hydrophobic site and slowest time (40.4 ps) in the charged environment. The protein dynamic was related to the water’s translational diffusion via the relaxation of the protein–water’s H-bonding. The structural and dynamical properties of protein–water at the molecular level are fundamental to the physiological and functional mechanisms of SNase.
Collapse
Affiliation(s)
- Hangxin Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023, China; (H.L.); (S.X.)
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Shuqing Xiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023, China; (H.L.); (S.X.)
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Haomiao Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023, China; (H.L.); (S.X.)
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| | - Li Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023, China; (H.L.); (S.X.)
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| |
Collapse
|
22
|
Zheng X, Gevart T, Gallot G. High precision dual-modulation differential terahertz ATR sensor for liquid measurements. OPTICS LETTERS 2021; 46:4045-4048. [PMID: 34388807 DOI: 10.1364/ol.430324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
We describe a highly sensitive and stable quantum-cascade-laser-based attenuated total reflection (ATR) terahertz sensor for the detection of very low concentration solutions, using a dual-modulation differential approach and ATR geometry. This sensor offers a very high dynamic range and a long-term stability of 40 dB, which extends the potential of terahertz radiation for the analysis of liquid and biological samples. The performance is illustrated by measurements on standard solutions of ions, sugars, and proteins, for concentrations down to 1 µM.
Collapse
|
23
|
Vondrasek B, Wen C, Cheng S, Riffle JS, Lesko JJ. On the Nature of Freezing/Melting Water in Ionic Polysulfones. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Britannia Vondrasek
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Chengyuan Wen
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Shengfeng Cheng
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Judy S. Riffle
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - John J. Lesko
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
24
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Kuznetsov SA, Popik VM, Peltek SE. Fluorescent bacterial biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz radiation. BIOMEDICAL OPTICS EXPRESS 2021; 12:705-721. [PMID: 33680537 PMCID: PMC7901329 DOI: 10.1364/boe.412074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/05/2023]
Abstract
A fluorescent biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz (THz) radiation was developed via transformation of Escherichia coli (E. coli) cells with plasmid, in which the promotor of the tdcR gene controls the expression of yellow fluorescent protein TurboYFP. The biosensor was exposed to THz radiation in various vessels and nutrient media. The threshold and dynamics of fluorescence were found to depend on irradiation conditions. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensor is applicable to studying influence of THz radiation on the activity of tdcR promotor that is involved in the transport and metabolism of threonine and serine in E. coli.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department of Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Technological Design Institute of Applied Microelectronics — Novosibirsk Branch of Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| |
Collapse
|
25
|
Xu C, Suo H, Xue Y, Qin J, Chen H, Hu Y. Experimental and theoretical evidence of enhanced catalytic performance of lipase B from Candida antarctica acquired by the chemical modification with amino acid ionic liquids. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Friesen S, Fedotova MV, Kruchinin SE, Buchner R. Hydration and dynamics of L-glutamate ion in aqueous solution. Phys Chem Chem Phys 2021; 23:1590-1600. [PMID: 33409510 DOI: 10.1039/d0cp05489e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aqueous solutions of sodium l-glutamate (NaGlu) in the concentration range 0 < c/M ≤ 1.90 at 25 °C were investigated by dielectric relaxation spectroscopy (DRS) and statistical mechanics (1D-RISM and 3D-RISM calculations) to study the hydration and dynamics of the l-glutamate (Glu-) anion. Although at c → 0 water molecules beyond the first hydration shell are dynamically affected, Glu- hydration is rather fragile and for c ⪆ 0.3 M apparently restricted to H2O molecules hydrogen bonding to the carboxylate groups. These hydrating dipoles are roughly parallel to the anion moment, leading to a significantly enhanced effective dipole moment of Glu-. However, l-glutamate dynamics is determined by the rotational diffusion of individual anions under hydrodynamic slip boundary conditions. Thus, the lifetime of the hydrate complexes, as well as of possibly formed [Na+Glu-]0 ionpairs and l-glutamate aggregates, cannot exceed the characteristic timescale for Glu- rotation.
Collapse
Affiliation(s)
- Sergej Friesen
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Marina V Fedotova
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation.
| | - Sergey E Kruchinin
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation.
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
27
|
Abstract
This review examines low-frequency vibrational modes of proteins and their coupling to enzyme catalytic sites. That protein motions are critical to enzyme function is clear, but the kinds of motions present in proteins and how they are involved in function remain unclear. Several models of enzyme-catalyzed reaction suggest that protein dynamics may be involved in the chemical step of the catalyzed reaction, but the evidence in support of such models is indirect. Spectroscopic studies of low-frequency protein vibrations consistently show that there are underdamped modes of the protein with frequencies in the tens of wavenumbers where overdamped behavior would be expected. Recent studies even show that such underdamped vibrations modulate enzyme active sites. These observations suggest that increasingly sophisticated spectroscopic methods will be able to unravel the link between low-frequency protein vibrations and enzyme function.
Collapse
|
28
|
Cortes-Huerto R, Praprotnik M, Kremer K, Delle Site L. From adaptive resolution to molecular dynamics of open systems. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:189. [PMID: 34720711 PMCID: PMC8547219 DOI: 10.1140/epjb/s10051-021-00193-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 05/14/2023]
Abstract
ABSTRACT We provide an overview of the Adaptive Resolution Simulation method (AdResS) based on discussing its basic principles and presenting its current numerical and theoretical developments. Examples of applications to systems of interest to soft matter, chemical physics, and condensed matter illustrate the method's advantages and limitations in its practical use and thus settle the challenge for further future numerical and theoretical developments.
Collapse
Affiliation(s)
| | - Matej Praprotnik
- Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Luigi Delle Site
- Department of Mathematics and Computer Science, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
29
|
Vondrasek B, Wen C, Cheng S, Riffle JS, Lesko JJ. Hydration, Ion Distribution, and Ionic Network Formation in Sulfonated Poly(arylene ether sulfones). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Britannia Vondrasek
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Chengyuan Wen
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Shengfeng Cheng
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Judy S. Riffle
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - John J. Lesko
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
30
|
Cao C, Serita K, Kitagishi K, Murakami H, Zhang ZH, Tonouchi M. Terahertz Spectroscopy Tracks Proteolysis by a Joint Analysis of Absorptance and Debye Model. Biophys J 2020; 119:2469-2482. [PMID: 33189688 DOI: 10.1016/j.bpj.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 01/06/2023] Open
Abstract
Terahertz waves have attracted great attention in biomolecule research because of the fact that they cover the range of energy levels of weak interactions, skeleton vibrations, and dipole rotations during inter- and intramolecular interactions in biomacromolecules. In this study, we validated the feasibility of employing terahertz time-domain spectroscopy (THz-TDS) for the nondestructive and label-free monitoring of protein digestion. The acid protease, pepsin, was used at its optimal pH to hydrolyze bovine serum albumin. Correspondingly, the control group experiment was also conducted by adjusting the pH value to inactivate pepsin. The progress of these two experiments was tracked by a compact commercial THz-TDS for 1 h. On one hand, the reaction-time-dependent absorption coefficient was calculated, and a direct absorption coefficient analysis was completed. The results indicate that protein hydrolysis can be easily monitored over time by focusing on the variation tendency of the absorption coefficient from a macroscopic perspective. On the other hand, we explored the use of the Debye model to analyze the dielectric properties of the solution during protein hydrolysis. The results of the Debye analysis prove that it is possible to investigate in detail the microscopic dynamics of biomacromolecule solutions at the molecular level by THz-TDS. Our research examined the process of protein hydrolysis by a combination of absorption spectra and Debye analysis and demonstrated that terahertz spectroscopy is a powerful technology for the investigation of biomolecular reactions, with potential applications in variety of fields.
Collapse
Affiliation(s)
- Can Cao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China; Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
| | - Kazunori Serita
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
| | - Keiko Kitagishi
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
| | - Hironaru Murakami
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
| | - Zhao-Hui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | | |
Collapse
|
31
|
Tachizaki T, Sakaguchi R, Terada S, Kamei KI, Hirori H. Terahertz pulse-altered gene networks in human induced pluripotent stem cells. OPTICS LETTERS 2020; 45:6078-6081. [PMID: 33137073 DOI: 10.1364/ol.402815] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/22/2020] [Indexed: 05/20/2023]
Abstract
Terahertz (THz) irradiation has been exploited in biomedical applications involving non-invasive manipulation of living cells. We developed an apparatus for studying the effects of THz pulse irradiation on living human induced pluripotent stem cells. The THz pulse of the maximum electric field reached 0.5 MV/cm and was applied for one hour with 1 kHz repetition to the entire cell-culture area, a diameter of 1 mm. RNA sequencing of global gene-expression revealed that many THz-regulated genes were driven by zinc-finger transcription factors. Combined with a consideration of the interactions of metal ions and a THz electric field, these results imply that the local intracellular concentration of metal ions, such as Zn2+, was changed by the effective electrical force of our THz pulse.
Collapse
|
32
|
Wu W, Yang Y, Wang B, Rong L, Xu H, Sui X, Zhong Y, Zhang L, Chen Z, Feng X, Mao Z. The effect of the degree of substitution on the solubility of cellulose acetoacetates in water: A molecular dynamics simulation and density functional theory study. Carbohydr Res 2020; 496:108134. [PMID: 32858483 DOI: 10.1016/j.carres.2020.108134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022]
Abstract
The effect of the degree of substitution (DS) on the aqueous solubility of cellulose acetoacetates (CAA) was investigated by molecular dynamics simulations and density functional theory calculations. Using average non-covalent interaction and the electrostatic potential analyses done on cellobiose as the model, it was showed both polar and non-polar areas of the system increased as the more hydroxyls were replaced by acetoacetate groups. Analyses of the solvation free energies of a celludecose (glucan containing 10 monosaccharide sugar units) at constant pressure and temperature showed the polar solvation free energies and the number of decose-water hydrogen bonds increased as DS was varied from 0.3 to 0.8, which contributes to higher solubility in water. When the DS of CAA increased from 0.8 to 1.5, it became insoluble again because the plateaued increase in solvation free energy could no longer compensate for the decreasing CAA-water hydrogen bonding interactions. The growing van der Waals interactions among CAA molecules as the molecule grows bigger with each attached AA group also contributes to the decreasing water solubility.
Collapse
Affiliation(s)
- Wei Wu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Yang Yang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Liduo Rong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Zhize Chen
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
33
|
Xu D, Feng S, Wang JQ, Wang LM, Richert R. Entropic Nature of the Debye Relaxation in Glass-Forming Monoalcohols. J Phys Chem Lett 2020; 11:5792-5797. [PMID: 32608239 DOI: 10.1021/acs.jpclett.0c01499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics and thermodynamics of the Debye and structural (α) relaxations in isomeric monoalcohols near the glass transition temperature Tg are explored using dielectric and calorimetric techniques. The α relaxation strength at Tg is found to correlate with the heat capacity increment, but no thermal signals can be detected to link to the Debye relaxation. We also observed that the activation energy of the Debye relaxation in monoalcohols is quantitatively correlated with that of the α relaxation at the kinetic Tg, sharing the dynamic behavior of the Rouse modes found in polymers. The experimental results together with the analogy to the Rouse modes in polymers suggest that the Debye process in monoalcohols is an entropic process manifested by the total dipole fluctuation of the supramolecular structures, which is triggered and driven by the α relaxation.
Collapse
Affiliation(s)
- Di Xu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shidong Feng
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - R Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
34
|
Leitner DM, Hyeon C, Reid KM. Water-mediated biomolecular dynamics and allostery. J Chem Phys 2020; 152:240901. [DOI: 10.1063/5.0011392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
35
|
Biswas AD, Barone V, Amadei A, Daidone I. Length-scale dependence of protein hydration-shell density. Phys Chem Chem Phys 2020; 22:7340-7347. [PMID: 32211621 DOI: 10.1039/c9cp06214a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we present a computational approach based on molecular dynamics (MD) simulation to study the dependence of the protein hydration-shell density on the size of the protein molecule. The hydration-shell density of eighteen different proteins, differing in size, shape and function (eight of them are antifreeze proteins), is calculated. The results obtained show that an increase in the hydration-shell density, relative to that of the bulk, is observed (in the range of 4-14%) for all studied proteins and that this increment strongly correlates with the protein size. In particular, a decrease in the density increment is observed for decreasing protein size. A simple model is proposed in which the basic idea is to approximate the protein molecule as an effective ellipsoid and to partition the relevant parameters, i.e. the solvent-accessible volume and the corresponding solvent density, into two regions: inside and outside the effective protein ellipsoid. It is found that, within the model developed here, almost all of the hydration-density increase is located inside the protein ellipsoid, basically corresponding to pockets within, or at the surface of the protein molecule. The observed decrease in the density increment is caused by the protein size only and no difference is found between antifreeze and non-antifreeze proteins.
Collapse
Affiliation(s)
- Akash Deep Biswas
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010 L'Aquila, Italy.
| | | | | | | |
Collapse
|
36
|
Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S, Robinson-Brown D, Webber T, Crumlin EJ, Han S, Shell MS. Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annu Rev Chem Biomol Eng 2020; 11:523-557. [PMID: 32169001 DOI: 10.1146/annurev-chembioeng-120919-114657] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.
Collapse
Affiliation(s)
- Jacob Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Dennis Robinson-Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
37
|
Non-invasive macroscopic and molecular quantification of water in Nafion® and SPEEK Proton Exchange Membranes using terahertz spectroscopy. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Charkhesht A, Lou D, Sindle B, Wen C, Cheng S, Vinh NQ. Insights into Hydration Dynamics and Cooperative Interactions in Glycerol–Water Mixtures by Terahertz Dielectric Spectroscopy. J Phys Chem B 2019; 123:8791-8799. [DOI: 10.1021/acs.jpcb.9b07021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Morales-Hernández JA, Singh AK, Villanueva-Rodriguez SJ, Castro-Camus E. Hydration shells of carbohydrate polymers studied by calorimetry and terahertz spectroscopy. Food Chem 2019; 291:94-100. [DOI: 10.1016/j.foodchem.2019.03.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/15/2022]
|
40
|
Sheu SY, Liu YC, Zhou JK, Schlag EW, Yang DY. Surface Topography Effects of Globular Biomolecules on Hydration Water. J Phys Chem B 2019; 123:6917-6932. [PMID: 31282162 DOI: 10.1021/acs.jpcb.9b03734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydration water serves as a microscopic manifestation of structural stability and functions of biomolecules. To develop bio-nanomaterials in applications, it is important to study how the surface topography and heterogeneity of biomolecules result in their diversity of the hydration dynamics and energetics. We here performed molecular dynamics simulations combined with the steered molecular dynamics and umbrella sampling to investigate the dynamics and escape process associated with the free energy change of water molecules close to a globular biomolecule, i.e., hemoglobin (Hb) and G-quadruplex DNA (GDNA). The residence time, power of long-time tail, and dipole relaxation time were found to display drastic changes within the averaged hydration shell of 3.0-5.0 Å. Compared with bulk water, in the inner hydration shell, the water dipole moment displays a slower relaxation process and is more oriented toward GDNA than toward Hb, forming a hedgehog-like structure when it surrounds GDNA. In particular, a spine water structure is observed in the GDNA narrow groove. The water isotope effect not only prolongs the dynamic time scales of libration motion in the inner hydration shell and the dipole relaxation processes in the bulk but also strengthens the DNA spine water structure. The potential of the mean force profile reflects the integrity of the hydration shell structure and enables us to obtain detailed insights into the structures formed by water, such as the caged H-bond network and the edge bridge structures; it also reveals that local hydration shell free energy (LHSFE) depends on H-bond rupture processes and ranges from 0.2 to 4.2 kcal/mol. Our results demonstrate that the surface topography of a biomolecule influences the integrity of the hydration shell structure and LHSFE. Our studies are able to identify various further applications in the areas of microfluid devices and nano-dewetting on bioinspired surfaces.
Collapse
Affiliation(s)
- Sheh-Yi Sheu
- Department of Life Sciences and Institute of Genome Sciences , National Yang-Ming University , Taipei 112 , Taiwan.,Institute of Biomedical Informatics , National Yang-Ming University , Taipei 112 , Taiwan
| | - Yu-Cheng Liu
- Institute of Biomedical Informatics , National Yang-Ming University , Taipei 112 , Taiwan
| | - Jia-Kai Zhou
- Department of Life Sciences and Institute of Genome Sciences , National Yang-Ming University , Taipei 112 , Taiwan
| | - Edward W Schlag
- Institut für Physikalische und Theoretische Chemie , TU-München , Lichtenbergstr. 4 , 85748 Garching , Germany
| | - Dah-Yen Yang
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| |
Collapse
|
41
|
Dahanayake JN, Shahryari E, Roberts KM, Heikes ME, Kasireddy C, Mitchell-Koch KR. Protein Solvent Shell Structure Provides Rapid Analysis of Hydration Dynamics. J Chem Inf Model 2019; 59:2407-2422. [PMID: 30865440 DOI: 10.1021/acs.jcim.9b00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The solvation layer surrounding a protein is clearly an intrinsic part of protein structure-dynamics-function, and our understanding of how the hydration dynamics influences protein function is emerging. We have recently reported simulations indicating a correlation between regional hydration dynamics and the structure of the solvation layer around different regions of the enzyme Candida antarctica lipase B, wherein the radial distribution function (RDF) was used to calculate the pairwise entropy, providing a link between dynamics (diffusion) and thermodynamics (excess entropy) known as Rosenfeld scaling. Regions with higher RDF values/peaks in the hydration layer (the first peak, within 6 Å of the protein surface) have faster diffusion in the hydration layer. The finding thus hinted at a handle for rapid evaluation of hydration dynamics at different regions on the protein surface in molecular dynamics simulations. Such an approach may move the analysis of hydration dynamics from a specialized venture to routine analysis, enabling an informatics approach to evaluate the role of hydration dynamics in biomolecular function. This paper first confirms that the correlation between regional diffusive dynamics and hydration layer structure (via water center of mass around protein side-chain atom RDF) is observed as a general relationship across a set of proteins. Second, it seeks to devise an approach for rapid analysis of hydration dynamics, determining the minimum amount of information and computational effort required to get a reliable value of hydration dynamics from structural data in MD simulations based on the protein-water RDF. A linear regression model using the integral of the hydration layer in the water-protein RDF was found to provide statistically equivalent apparent diffusion coefficients at the 95% confidence level for a set of 92 regions within five different proteins. In summary, RDF analysis of 10 ns of data after simulation convergence is sufficient to accurately map regions of fast and slow hydration dynamics around a protein surface. Additionally, it is anticipated that a quick look at protein-water RDFs, comparing peak heights, will be useful to provide a qualitative ranking of regions of faster and slower hydration dynamics at the protein surface for rapid analysis when investigating the role of solvent dynamics in protein function.
Collapse
Affiliation(s)
- Jayangika N Dahanayake
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Elaheh Shahryari
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Kirsten M Roberts
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Micah E Heikes
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Chandana Kasireddy
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Katie R Mitchell-Koch
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| |
Collapse
|
42
|
Affiliation(s)
- Salman S. Seyedi
- Department of Physics, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| | - Dmitry V. Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
43
|
Dahanayake JN, Mitchell-Koch KR. How Does Solvation Layer Mobility Affect Protein Structural Dynamics? Front Mol Biosci 2018; 5:65. [PMID: 30057902 PMCID: PMC6053501 DOI: 10.3389/fmolb.2018.00065] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
Solvation is critical for protein structural dynamics. Spectroscopic studies have indicated relationships between protein and solvent dynamics, and rates of gas binding to heme proteins in aqueous solution were previously observed to depend inversely on solution viscosity. In this work, the solvent-compatible enzyme Candida antarctica lipase B, which functions in aqueous and organic solvents, was modeled using molecular dynamics simulations. Data was obtained for the enzyme in acetonitrile, cyclohexane, n-butanol, and tert-butanol, in addition to water. Protein dynamics and solvation shell dynamics are characterized regionally: for each α-helix, β-sheet, and loop or connector region. Correlations are seen between solvent mobility and protein flexibility. So, does local viscosity explain the relationship between protein structural dynamics and solvation layer dynamics? Halle and Davidovic presented a cogent analysis of data describing the global hydrodynamics of a protein (tumbling in solution) that fits a model in which the protein's interfacial viscosity is higher than that of bulk water's, due to retarded water dynamics in the hydration layer (measured in NMR τ2 reorientation times). Numerous experiments have shown coupling between protein and solvation layer dynamics in site-specific measurements. Our data provides spatially-resolved characterization of solvent shell dynamics, showing correlations between regional solvation layer dynamics and protein dynamics in both aqueous and organic solvents. Correlations between protein flexibility and inverse solvent viscosity (1/η) are considered across several protein regions and for a rather disparate collection of solvents. It is seen that the correlation is consistently higher when local solvent shell dynamics are considered, rather than bulk viscosity. Protein flexibility is seen to correlate best with either the local interfacial viscosity or the ratio of the mobility of an organic solvent in a regional solvation layer relative to hydration dynamics around the same region. Results provide insight into the function of aqueous proteins, while also suggesting a framework for interpreting and predicting enzyme structural dynamics in non-aqueous solvents, based on the mobility of solvents within the solvation layer. We suggest that Kramers' theory may be used in future work to model protein conformational transitions in different solvents by incorporating local viscosity effects.
Collapse
|