1
|
Temur N, Dadi S, Dogan AN, Nisari M, Avan I, Ocsoy I. Benefiting from Both Ethanol Oxidation and Bidentate Thiol Groups of DHLA Ligands under Photoirradiation for Synthesis of Au Nanoparticles With Their Catalytic and Peroxidase Like Activity. ACS OMEGA 2025; 10:15484-15492. [PMID: 40290903 PMCID: PMC12019526 DOI: 10.1021/acsomega.5c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/23/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025]
Abstract
In this work, we rationally synthesized quite stable gold nanoparticles (AuNPs) using dihydrolipoic acid (DHLA) and DHLA-aspartame (DHLA-Asptm) as both reducing and stabilizing agents in a mixture of water/ethanol at RT under photoirradiation in 10 min. The novelty of this work is that benefiting from both the oxidation of ethanol to ethanal and having the bidentate thiol groups of DHLA, stable DHLA@AuNPs and DHLA-Asptm@AuNPs were successfully and rapidly formed without additional reducing reagents. We systematically examined the formation of DHLA@AuNPs and DHLA-Asptm@AuNPs under different pH values and reaction temperatures. Furthermore, the salt tolerance of DHLA@AuNPs and DHLA-Asptm@AuNPs was tested in a series of sodium chloride solutions. We showed the catalytic and peroxidase-like activities of DHLA@AuNPs against 4-nitrophenol and 3,3',5,5'-tetramethylbenzidine. The AuNPs were characterized by UV-vis spectrophotometry, scanning transmission electron microscopy, zeta potential, and dynamic light scattering.
Collapse
Affiliation(s)
- Nimet Temur
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Seyma Dadi
- Department
of Materials Science and Nanotechnology Engineering, Abdullah Gül University, Kayseri 38080, Turkey
| | - Ayse Nur Dogan
- Department
of Restorative Dentistry, Faculty of Dentistry, Erciyes University, Kayseri 38039, Turkey
| | - Mustafa Nisari
- Department
of Medical Biochemistry, Faculty of Dentistry, University of Nuh Naci Yazgan, Kayseri 38090, Turkey
| | - Ilker Avan
- Department
of Chemistry, Faculty of Science, Eskişehir
Technical University, Eskişehir 26470, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
2
|
Kuroda R, Nakamura T, Ina H, Shibata S. Effect of additives on the synthesis efficiency of nanoparticles by laser-induced reduction. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:464-472. [PMID: 40166477 PMCID: PMC11956077 DOI: 10.3762/bjnano.16.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Laser-induced reduction in liquid (LRL) is a physicochemical technique for synthesizing nanoparticles by irradiating a solution containing metal ions with a high-intensity laser. It is simple and environmentally friendly, as it does not require reducing agents or high-temperature, high-pressure environments. In this method, nanoparticles are synthesized by reducing metal ions with short-lived radical species produced by the breakdown of solvent molecules in a high-intensity reaction field near the focus of the laser. This unique reaction has the characteristic of being able to synthesize non-equilibrium solid-solution alloy nanoparticles. On the other hand, it is necessary to improve the synthesis efficiency of nanoparticles in large quantities for practical use. In this study, we investigated improvements of the synthesis efficiency of nanoparticles in LRL by adding scavengers, such as isopropyl alcohol (IPA) and glycerin, for oxidative radicals formed by laser irradiation to the solution and converting the oxidative radicals into reducing species. Based on the evaluation of the synthesis efficiency of Au nanoparticles, it was confirmed that the addition of IPA increased the synthesis efficiency of nanoparticles by about five times, and the addition of glycerin increased it by about nine times. Furthermore, by adding these oxidizing radical scavengers, it became possible to synthesize nanoparticles even when the concentration of metal ions in the solution was increased. And as a result, the synthesis efficiency of nanoparticles increased by more than 18 times. This means that it is possible to synthesize 160 mg/h of Au nanoparticles in the current system. It was also shown that non-equilibrium solid-solution alloy nanoparticles could be synthesized even when a radical scavenger was added. Furthermore, the addition of a radical scavenger also made it possible to synthesize base metal nanoparticles, which have been difficult to synthesize using the LRL. In addition, the efficiency of nanoparticle synthesis has been dramatically improved, and the variety of materials that can be produced has increased. This expands the potential of nanoparticles synthesized by LRL to be used in industrial applications.
Collapse
Affiliation(s)
- Rikuto Kuroda
- illuminus Inc., 307 Wako Riken Incubation Plaza, 2–3–13, Minami, Wako, Saitama, 351–0104, Japan
| | - Takahiro Nakamura
- illuminus Inc., 307 Wako Riken Incubation Plaza, 2–3–13, Minami, Wako, Saitama, 351–0104, Japan
| | - Hideki Ina
- illuminus Inc., 307 Wako Riken Incubation Plaza, 2–3–13, Minami, Wako, Saitama, 351–0104, Japan
| | - Shuhei Shibata
- illuminus Inc., 307 Wako Riken Incubation Plaza, 2–3–13, Minami, Wako, Saitama, 351–0104, Japan
| |
Collapse
|
3
|
Sakakibara N, Ito T, Hakuta Y, Shimizu Y, Terashima K, Miura E. Picosecond imaging of dynamics of solvated electrons during femtosecond laser-induced plasma generation in water. J Chem Phys 2025; 162:084302. [PMID: 39991999 DOI: 10.1063/5.0249324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
The dynamics of solvated electrons were visualized using absorption imaging with sub-picosecond time resolution based on a pump-probe measurement during the early stages of femtosecond laser-induced plasma generation in water. The solvated electrons were generated by the propagation of a femtosecond laser pump pulse. In the area with a pump laser intensity over 2 × 1013 W/cm2, where a high density of free electrons was produced, solvated electrons exhibited an additional rapid increase in optical density (OD) at 800 nm, 7-9 ps after the pump pulse excitation. In contrast, no two-step increase in OD was observed when probed at 400 nm, suggesting that the absorption coefficient of the solvated electrons rapidly changed around 800 nm after femtosecond laser excitation for a few picoseconds. This observation might indicate the structural and electronic modulation of solvated electrons owing to the high density of free electrons in water, accompanied by femtosecond-laser-induced plasma generation.
Collapse
Affiliation(s)
- Noritaka Sakakibara
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8589, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Tsuyohito Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yukiya Hakuta
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8589, Japan
| | - Yoshiki Shimizu
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8589, Japan
| | - Kazuo Terashima
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8589, Japan
| | - Eisuke Miura
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8589, Japan
| |
Collapse
|
4
|
Tahir, Concas GC, Gisbert M, Cremona M, Lazaro F, Maia da Costa MEH, De Barros SDT, Aucélio RQ, Pierre TS, Godoy JM, Mendes D, Mariotto G, Daldosso N, Enrichi F, Cuin A, Ferreira AF, de Azevedo WM, Perez G, SantAnna C, Archanjo BS, Fonseca YEL, Rossi AL, Deepak FL, Khan R, Zaman Q, Reichenberger S, Fromme T, Margheri G, Sabino JR, Fibbi G, Del Rosso M, Chillà A, Margheri F, Laurenzana A, Del Rosso T. Pulsed-Laser-Driven CO 2 Reduction Reaction for the Control of the Photoluminescence Quantum Yield of Organometallic Gold Nanocomposites. SMALL SCIENCE 2024; 4:2300328. [PMID: 40212113 PMCID: PMC11935044 DOI: 10.1002/smsc.202300328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/03/2024] [Indexed: 04/13/2025] Open
Abstract
Over the last decade, the CO2 reduction reaction (CO2RR) has been increasingly exploited for the synthesis of high-value raw materials in gaseous or liquid form, although no examples of CO2 fixation in nanoparticle systems have been demonstrated. Herein, CO2 fixation into solid nanomaterials by laser synthesis and processing of gold colloids in water, traditionally considered a green approach leading to ligand-free nanoparticles without the formation of by-products, is reported. If carbon monoxide-rich gold nanoparticles are observable even after synthesis in deionized water, the presence of CO2 derivatives in alkaline water environment leads to C 2 and C 3 coupling with the production of carboxylic acids as a typical CO2RR fingerprint. While laser processing of preformed gold colloids is selective for C 2 coupling, both C 2 and C 3 coupling to lactic acid are observed during pulsed laser ablation of a gold target. In the latter case, it is demonstrated that it is possible to synthesize photoluminescent organometallic nanocomposites in the blue spectral region with a quantum yield of about 20% under adequate experimental conditions. In this research, new pathways are offered to be explored in energetics, photonics, catalysis, and synthesis at the nanoscale.
Collapse
|
5
|
Fromme T, Reichenberger S, Tibbetts KM, Barcikowski S. Laser synthesis of nanoparticles in organic solvents - products, reactions, and perspectives. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:638-663. [PMID: 38887526 PMCID: PMC11181208 DOI: 10.3762/bjnano.15.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Laser synthesis and processing of colloids (LSPC) is an established method for producing functional and durable nanomaterials and catalysts in virtually any liquid of choice. While the redox reactions during laser synthesis in water are fairly well understood, the corresponding reactions in organic liquids remain elusive, particularly because of the much greater complexity of carbon chemistry. To this end, this article first reviews the knowledge base of chemical reactions during LSPC and then deduces identifiable reaction pathways and mechanisms. This review also includes findings that are specific to the LSPC method variants laser ablation (LAL), fragmentation (LFL), melting (LML), and reduction (LRL) in organic liquids. A particular focus will be set on permanent gases, liquid hydrocarbons, and solid, carbonaceous species generated, including the formation of doped, compounded, and encapsulated nanoparticles. It will be shown how the choice of solvent, synthesis method, and laser parameters influence the nanostructure formation as well as the amount and chain length of the generated polyyne by-products. Finally, theoretical approaches to address the mechanisms of organic liquid decomposition and carbon shell formation are highlighted and discussed regarding current challenges and future perspectives of LSPC using organic liquids instead of water.
Collapse
Affiliation(s)
- Theo Fromme
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Katharine M Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| |
Collapse
|
6
|
Feijoo S, Baluchová S, Kamali M, Buijnsters JG, Dewil R. A combined experimental and computational approach to unravel degradation mechanisms in electrochemical wastewater treatment. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:652-667. [PMID: 38434174 PMCID: PMC10905665 DOI: 10.1039/d3ew00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Electrochemical wastewater treatment is a promising technique to remove recalcitrant pollutants from wastewater. However, the complexity of elucidating the underlying degradation mechanisms hinders its optimisation not only from a techno-economic perspective, as it is desirable to maximise removal efficiencies at low energy and chemical requirements, but also in environmental terms, as the generation of toxic by-products is an ongoing challenge. In this work, we propose a novel combined experimental and computational approach to (i) estimate the contribution of radical and non-radical mechanisms as well as their synergistic effects during electrochemical oxidation and (ii) identify the optimal conditions that promote specific degradation pathways. As a case study, the distribution of the degradation mechanisms involved in the removal of benzoic acid (BA) via boron-doped diamond (BDD) anodes was elucidated and analysed as a function of several operating parameters, i.e., the initial sulfate and nitrate content of the wastewater and the current applied. Subsequently, a multivariate optimisation study was conducted, where the influence of the electrode nature was investigated for two commercial BDD electrodes and a customised silver-decorated BDD electrode. Optimal conditions were identified for each degradation mechanism as well as for the overall BA degradation rate constant. BDD selection was found to be the most influential factor favouring any mechanism (i.e., 52-85% contribution), given that properties such as its boron doping and the presence of electrodeposited silver could dramatically affect the reactions taking place. In particular, decorating the BDD surface with silver microparticles significantly enhanced BA degradation via sulfate radicals, whereas direct oxidation, reactive oxygen species and radical synergistic effects were promoted when using a commercial BDD material with higher boron content and on a silicon substrate. Consequently, by simplifying the identification and quantification of underlying mechanisms, our approach facilitates the elucidation of the most suitable degradation route for a given electrochemical wastewater treatment together with its optimal operating conditions.
Collapse
Affiliation(s)
- Sara Feijoo
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab Jan Pieter de Nayerlaan 5 2860 Sint-Katelijne-Waver Belgium
| | - Simona Baluchová
- Delft University of Technology, Department of Precision and Microsystems Engineering Mekelweg 2 2628 CD Delft The Netherlands
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab Jan Pieter de Nayerlaan 5 2860 Sint-Katelijne-Waver Belgium
| | - Josephus G Buijnsters
- Delft University of Technology, Department of Precision and Microsystems Engineering Mekelweg 2 2628 CD Delft The Netherlands
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab Jan Pieter de Nayerlaan 5 2860 Sint-Katelijne-Waver Belgium
- University of Oxford, Department of Engineering Science Parks Road Oxford OX1 3PJ UK
| |
Collapse
|
7
|
Simpson NG, Broadhead EJ, Casto AM, Tibbetts KM. Enhancement of Metal Nanostructure Deposition on Silicon Laser-Induced Periodic Surface Structures by Galvanic Replacement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:241-250. [PMID: 38113511 DOI: 10.1021/acs.langmuir.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We report a chemically motivated, single-step method to enhance metal deposition onto silicon laser-induced periodic surface structures (LIPSSs) using reactive laser ablation in liquid (RLAL). Galvanic replacement (GR) reactions were used in conjunction with RLAL (GR-RLAL) to promote the deposition of Au and Cu nanostructures onto a Si LIPSS. To increase the deposition of Au, sacrificial metals Cu, Fe, and Zn were used; Fe and Zn also enhanced the deposition of Cu. We show that the deposited metal content, surface morphology, and metal crystallite size can be tuned based on the difference in electrochemical potentials of the deposited and sacrificial metal. Compared to the Au and Cu reference samples, GR more than doubled the metal content on the LIPSS and reduced metal crystallite sizes by up to 20%. The ability to tune the metal content and crystalline domain size simultaneously makes GR-RLAL a potentially useful approach in the manufacturing of functional metal-LIPSS materials such as surface-enhanced Raman spectroscopy substrates.
Collapse
Affiliation(s)
- Nicholas G Simpson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Eric J Broadhead
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Addison M Casto
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
8
|
Zhang Z, Zhou B, Jia M, Wu C, Niu T, Feng C, Wang H, Liu Y, Lu J, Zhang Z, Shen J, Du A. Einstein's tea leaf paradox induced localized aggregation of nanoparticles and their conversion to gold aerogels. SCIENCE ADVANCES 2023; 9:eadi9108. [PMID: 37713481 PMCID: PMC10881048 DOI: 10.1126/sciadv.adi9108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Normally, stirring is regarded as a technology to disperse the substances in liquid evenly. However, Einstein's tea leaf paradox (ETLP) describes the phenomenon that tea leaves concentrate in a "doughnut" shape via a secondary flow effect while stirring. Herein, to demonstrate ETLP-induced concentration in nanofluid, we simulated the nanoparticle trajectory under stirring and made a grayscale analysis of SiO2 nanofluids during stirring and standing processes. Unexpectedly, a localized concentration effect in the layer flow was found beside the macroscopic ETLP effect. Subsequently, the localized concentration was applied to achieve the ultrafast aggregation of Au nanoparticles to form gold aerogels (GAs). The skeleton size of GAs was adjusted from about 10 to 200 nm by only adjusting the temperature of HAuCl4 solution. The fabricated GAs had extremely high purity and crystallinity, revealing potential applications in photocatalysis and surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Zehui Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Zhou
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingtao Jia
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410012, China
| | - Chengbin Wu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tingting Niu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Feng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongqiang Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanfeng Liu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jialu Lu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhihua Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun Shen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ai Du
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Guo Y, Walter V, Vanuytsel S, Parperis C, Sengel JT, Weatherill EE, Wallace MI. Real-Time Monitoring and Control of Nanoparticle Formation. J Am Chem Soc 2023; 145:15809-15815. [PMID: 37458572 PMCID: PMC10375529 DOI: 10.1021/jacs.3c02484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Methods capable of controlling synthesis at the level of an individual nanoparticle are a key step toward improved reproducibility and scalability in engineering complex nanomaterials. To address this, we combine the spatially patterned activation of the photoreductant sodium pyruvate with interferometric scattering microscopy to achieve fast, label-free monitoring and control of hundreds of gold nanoparticles in real time. Individual particle growth kinetics are well-described by a two-step nucleation-autocatalysis model but with a distribution of individual rate constants that change with reaction conditions.
Collapse
Affiliation(s)
- Yujie Guo
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Vivien Walter
- Department of Engineering, King's College London, London WC2R 2LS, U.K
| | - Steven Vanuytsel
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Christopher Parperis
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Jason T Sengel
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Eve E Weatherill
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Mark I Wallace
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
10
|
Gianvittorio S, Tonelli D, Lesch A. Print-Light-Synthesis for Single-Step Metal Nanoparticle Synthesis and Patterned Electrode Production. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1915. [PMID: 37446431 DOI: 10.3390/nano13131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
The fabrication of thin-film electrodes, which contain metal nanoparticles and nanostructures for applications in electrochemical sensing as well as energy conversion and storage, is often based on multi-step procedures that include two main passages: (i) the synthesis and purification of nanomaterials and (ii) the fabrication of thin films by coating electrode supports with these nanomaterials. The patterning and miniaturization of thin film electrodes generally require masks or advanced patterning instrumentation. In recent years, various approaches have been presented to integrate the spatially resolved deposition of metal precursor solutions and the rapid conversion of the precursors into metal nanoparticles. To achieve the latter, high intensity light irradiation has, in particular, become suitable as it enables the photochemical, photocatalytical, and photothermal conversion of the precursors during or slightly after the precursor deposition. The conversion of the metal precursors directly on the target substrates can make the use of capping and stabilizing agents obsolete. This review focuses on hybrid platforms that comprise digital metal precursor ink printing and high intensity light irradiation for inducing metal precursor conversions into patterned metal and alloy nanoparticles. The combination of the two methods has recently been named Print-Light-Synthesis by a group of collaborators and is characterized by its sustainability in terms of low material consumption, low material waste, and reduced synthesis steps. It provides high control of precursor loading and light irradiation, both affecting and improving the fabrication of thin film electrodes.
Collapse
Affiliation(s)
- Stefano Gianvittorio
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Center for Chemical Catalysis-C3, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Domenica Tonelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Center for Chemical Catalysis-C3, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Center for Chemical Catalysis-C3, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
11
|
Raeisi A, Najafi Chermahini A, Momeni MM. Fabrication of g-C3N4 decorated BiVO4 composites and their application in photoelectrocatalytic and electrocatalytic oxidative desulfurization of dibenzothiophene under visible light irradiation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Mansur AAP, Carvalho SM, Oliveira LCA, Souza-Fagundes EM, Lobato ZIP, Leite MF, Mansur HS. Bioengineered Carboxymethylcellulose-Peptide Hybrid Nanozyme Cascade for Targeted Intracellular Biocatalytic-Magnetothermal Therapy of Brain Cancer Cells. Pharmaceutics 2022; 14:2223. [PMID: 36297660 PMCID: PMC9611945 DOI: 10.3390/pharmaceutics14102223] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2023] Open
Abstract
Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy. These nanoassemblies were produced through a green aqueous process under mild conditions and chemically biofunctionalized with integrin-targeting peptide (iRDG), creating bioengineered nanocarriers. The results demonstrated that the oxidase-like nanozyme (AuNP) was produced with a crystalline face-centered cubic nanostructure, spherical morphology (diameter = 16 ± 3 nm), zeta potential (ZP) of -50 ± 5 mV, and hydrodynamic diameter (DH) of 15 ± 1 nm. The peroxide-like nanostructure (POD, Co-MION@CMC) contained an inorganic crystalline core of magnetite and had a uniform spherical shape (2R = 7 ± 1 nm) which, summed to the contribution of the CMC shell, rendered a hydrodynamic diameter of 45 ± 4 nm and a negative surface charge (ZP = -41 ± 5 mV). Upon coupling both nanozymes, water-dispersible colloidal supramolecular vesicle-like organic-inorganic nanostructures were produced (AuNP//Co-MION@CMC, ZP = -45 ± 4 mV and DH = 28 ± 3 nm). They confirmed dual-nanozyme cascade biocatalytic activity targeted by polymer-peptide conjugates (AuNP//Co-MION@CMC_iRGD, ZP = -29 ± 3 mV and DH = 60 ± 4 nm) to kill brain cancer cells (i.e., bioenergy "starvation" by glucose deprivation and oxidative stress through reactive oxygen species generation), which was boosted by the magneto-hyperthermotherapy effect when submitted to the alternating magnetic field (i.e., induced local thermal stress by "nanoheaters"). This groundwork offers a wide avenue of opportunities to develop innovative theranostic nanoplatforms with multiple integrated functionalities for fighting cancer and reducing the harsh side effects of conventional chemotherapy.
Collapse
Affiliation(s)
- Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Luiz Carlos A. Oliveira
- Departament of Chemistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Elaine Maria Souza-Fagundes
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Zelia I. P. Lobato
- Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Maria F. Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
13
|
Putri KY, Fadli AL, Umaroh FA, Herbani Y, Imawan C, Djuhana D. Femtosecond laser-induced photochemical synthesis of gold nanoparticles in nitrate solution. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Liu X, Zhang X, Khakhulin D, Su P, Wulff M, Baudelet F, Weng TC, Kong Q, Sun Y. Deciphering Photochemical Reaction Pathways of Aqueous Tetrachloroauric Acid by X-ray Transient Absorption Spectroscopy. J Phys Chem Lett 2022; 13:8921-8927. [PMID: 36130195 DOI: 10.1021/acs.jpclett.2c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photolysis reaction pathways of [Au(III)Cl4]- in aqueous solution have been investigated by time-resolved X-ray absorption spectroscopy. Ultraviolet excitation directly breaks the Au-Cl bond in [Au(III)Cl4]- to form [Au(II)Cl3]- that becomes highly reactive within 79 ps. Disproportionation of [Au(II)Cl3]- generates [Au(I)Cl2]-, which is stable for ≤10 μs. In contrast, intense near-infrared lasers photolyze water to generate hydrated electrons, which then reduce [Au(III)Cl4]- to [Au(II)Cl3]- at 5 ns. Hydrated electrons further induce a chain reaction from [Au(II)Cl3]- to [Au(0)Cl]- by successively removing one Cl-. The zero-valency Au anions quickly polymerize and condense to form Au nanoparticles, which become the dominating product after 400 s. Our results reveal that the condensation of zero-valency Au starts with dimerization of gold clusters coordinated with chloride ions rather than direct condensation of pristine Au atoms.
Collapse
Affiliation(s)
- Xuan Liu
- Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60349, United States
| | | | - Peiyuan Su
- Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Michael Wulff
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | | | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
15
|
Mansur AA, Leonel AG, Krambrock K, Mansur HS. Bifunctional oxidase-peroxidase inorganic nanozyme catalytic cascade for wastewater remediation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Kay KE, Batista LMF, Tibbetts KM, Ferri JK. Stability of Uncapped Gold Nanoparticles Produced Via Laser Synthesis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Gudkov SV, Astashev ME, Baimler IV, Uvarov OV, Voronov VV, Simakin AV. Laser-Induced Optical Breakdown of an Aqueous Colloidal Solution Containing Terbium Nanoparticles: The Effect of Oxidation of Nanoparticles. J Phys Chem B 2022; 126:5678-5688. [PMID: 35878998 DOI: 10.1021/acs.jpcb.2c02089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of the number of oxidized terbium nanoparticles on the intensity of physicochemical processes occurring during optical breakdown in aqueous colloidal solutions of nanoparticles has been studied. It is shown that the effect of the number of oxidized terbium nanoparticles on the physicochemical processes occurring during optical breakdown depends significantly on the fluence of laser radiation. At a fluence of less than 100-110 J/cm2, plasma formation processes occur more intensively on less-oxidized (metal) nanoparticles. At a fluence of more than 100-110 J/cm2, the processes of plasma formation during optical breakdown occur much more intensively on more-oxidized nanoparticles. It has been established that the dependence of the rate of laser-induced decomposition of water on the concentration of nanoparticles is two-phase. The rate of generation of water decomposition products increases with an increase in the concentration of nanoparticles up to 109 NP/mL. With a further increase in the concentration of nanoparticles, the rate of generation of water decomposition products decreases. In this case, more than 99% of the decomposition products of water are formed due to the action of plasma, and the share of ultraviolet and ultrasound formed during optical breakdown is approximately 0.5% on each.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, Moscow 119991, Russia
| | - Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, Moscow 119991, Russia
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, Moscow 119991, Russia
| | - Oleg V Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, Moscow 119991, Russia
| | - Valery V Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, Moscow 119991, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, Moscow 119991, Russia
| |
Collapse
|
18
|
Schwartz‐Duval AS, Sokolov KV. Prospecting Cellular Gold Nanoparticle Biomineralization as a Viable Alternative to Prefabricated Gold Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105957. [PMID: 35508715 PMCID: PMC9284136 DOI: 10.1002/advs.202105957] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Gold nanoparticles (GNPs) have shown considerable potential in a vast number of biomedical applications. However, currently there are no clinically approved injectable GNP formulations. Conversely, gold salts have been used in the clinic for nearly a century. Further, there is evidence of GNP formation in patients treated with gold salts (i.e., chrysiasis). Recent reports evaluating this phenomenon in human cells and in murine models indicate that the use of gold ions for in situ formation of theranostic GNPs could greatly improve the delivery within dense biological tissues, increase efficiency of intracellular gold uptake, and specificity of GNP formation within cancer cells. These attributes in combination with safe clinical application of gold salts make this process a viable strategy for clinical translation. Here, the first summary of the current knowledge related to GNP biomineralization in mammalian cells is provided along with critical assessment of potential biomedical applications of this newly emergent field.
Collapse
Affiliation(s)
- Aaron S. Schwartz‐Duval
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
| | - Konstantin V. Sokolov
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences6767 Bertner AveHoustonTX77030USA
- Department of BioengineeringRice University6100 Main St.HoustonTX77030USA
- Department of Biomedical EngineeringThe University of Texas at Austin107 W Dean Keeton St.AustinTX78712USA
| |
Collapse
|
19
|
Green synthesized CeO2 nanowires immobilized with alginate-ascorbic acid biopolymer for advance oxidative degradation of crystal violet. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Zhou K, Liu XP, Guo H, Li HQ, Yang P. CoAl-LDHs@Fe3O4 decorated with cobalt nanowires and cobalt nanoparticles for a heterogeneous electro-Fenton process to degrade 1-hydroxyethane-1,1-diphosphonic acid and glyphosate. RSC Adv 2022; 12:2623-2631. [PMID: 35425334 PMCID: PMC8979163 DOI: 10.1039/d1ra08493c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Heterogeneous electro-Fenton is one of the promising technologies to degrade refractory organic phosphonates. In this work, CoNWs@CoAl-LDHs/Fe3O4 and CoNPs@CoAl-LDHs/Fe3O4 were successfully synthesized by a co-precipitation method and applied to degrade 1-hydroxyethane-1,1-diphosphonic acid (HEDP) and glyphosate (PMG) via an electro-Fenton process. The results indicated that the removal rate of HEDP (100 mg L−1) and PMG (100 mg L−1) by CoNWs@CoAl-LDHs/Fe3O4 increased from 62.09% and 95.31% to 82.45% and 100%, respectively. The CoNPs@CoAl-LDHs/Fe3O4 electro-Fenton system could remove 70.03% of HEDP and nearly 100% of PMG within 2 hours at a pH of 3. Moreover, we compared the SEM, EDS, XRD and BET results of CoNWs@CoAl-LDHs/Fe3O4 with those of CoNPs@CoAl-LDHs/Fe3O4. The effects of initial pH, CoNW dosage and reaction time on the degradation of HEDP and PMG were discussed. CoNWs@CoAl-LDHs@Fe3O4 could even remove 71.03% of HEDP at a neutral pH. After four cycles of repeated use at a pH of 3, the removal rate of HEDP by CoNWs@CoAl-LDHs/Fe3O4 was still higher than 70%. Radical quenching experiments revealed that ˙OH is the dominant active species participating in the heterogeneous electro-Fenton process. Finally, we would talk about the mechanism of the CoNWs@CoAl-LDHs/Fe3O4-based electro-Fenton system. Cobalt nanowires and cobalt particles are introduced into CoAl-LDHs@Fe3O4, and the effect of the former is better in the application of electro-Fenton process.![]()
Collapse
Affiliation(s)
- Kexin Zhou
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xing-peng Liu
- College of Communication Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Hongyun Guo
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Hui-qiang Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
Zhang L, Zheng H, Gan Y, Wu B, Chen Z, Wei S, Zhang G, Zhang S, Pan B, Chen C. An all-in-one approach for synthesis and functionalization of nano colloidal gold with acetylacetone. NANOTECHNOLOGY 2021; 33:075605. [PMID: 34763330 DOI: 10.1088/1361-6528/ac38e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Controllable synthesis, proper dispersion, and feasible functionalization are crucial requirements for the application of nanomaterials in many scenarios. Here, we report an all-in-one approach for the synthesis and functionalization of gold nanoparticles (AuNPs) with the simplestβ-diketone, acetylacetone (AcAc). With this approach, the particle size of the resultant AuNPs was tunable by simply adjusting the light intensity or AcAc dosage. Moreover, owing to the capping role of AcAc, the resultant AuNPs could be stably dispersed in water for a year without obvious change in morphology and photochemical property. Formation of ligand to metal charge transfer complexes was found to play an important role in the redox conversion of Au with AcAc. Meanwhile, the moderate complexation ability enables the surface AcAc on the AuNPs to undergo ligand exchange reactions (LER). With the aid of Ag+, the AuNPs underwent LER with glutathione and exhibited enhanced photoluminescence (PL) with a maximum of 22-fold increase in PL intensity. The PL response was linear to the concentration of glutathione in the range of 0-500μM. Such a LER makes the obtained AuNPs being good imaging probes. To the best of our knowledge, this is the first work on illustrating the roles of AcAc as a multifunctional ligand in fabrication of NPs, which sheds new light on the surface modulation in synthesis of nanomaterials.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yonghai Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Shuangshuang Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
22
|
Zhang L, Gan Y, Wu B, Chen Z, Ren J, Zhang C, Zhang S, Chen C, Pan B. Photochemical Synthesis of Selenium Nanospheres of Tunable Size and Colloidal Stability with Simple Diketones. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9793-9801. [PMID: 34351154 DOI: 10.1021/acs.langmuir.1c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Temporal and spatial segregations are two fundamental requirements for the successful synthesis of nanoparticles (NPs). To obtain colloidally stable selenium nanospheres (SeNSs), surfactants or polymers are generally needed as structure-directing agents or stabilizers in the reduction approaches for SeNP synthesis. The addition of such chemicals sacrifices the purity of the obtained SeNPs and, therefore, is detrimental to the applications. Here, for the first time, we report that low-molecular weight (less than six carbons) diketones are excellent photoreductants for green and tunable synthesis of SeNPs, owing to their merits in temporal and spatial control. With simple diketones as the photoreductants, the resultant SeNPs were pure and colloidally stable with nice photoelectronic properties. This finding not only provides a useful strategy for the synthesis of SeNPs but also might be a milestone in the development of ketone photochemistry.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yonghai Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jie Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Forsythe RC, Cox CP, Wilsey MK, Müller AM. Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chem Rev 2021; 121:7568-7637. [PMID: 34077177 DOI: 10.1021/acs.chemrev.0c01069] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalysis is essential to modern life and has a huge economic impact. The development of new catalysts critically depends on synthetic methods that enable the preparation of tailored nanomaterials. Pulsed laser in liquids synthesis can produce uniform, multicomponent, nonequilibrium nanomaterials with independently and precisely controlled properties, such as size, composition, morphology, defect density, and atomistic structure within the nanoparticle and at its surface. We cover the fundamentals, unique advantages, challenges, and experimental solutions of this powerful technique and review the state-of-the-art of laser-made electrocatalysts for water oxidation, oxygen reduction, hydrogen evolution, nitrogen reduction, carbon dioxide reduction, and organic oxidations, followed by laser-made nanomaterials for light-driven catalytic processes and heterogeneous catalysis of thermochemical processes. We also highlight laser-synthesized nanomaterials for which proposed catalytic applications exist. This review provides a practical guide to how the catalysis community can capitalize on pulsed laser in liquids synthesis to advance catalyst development, by leveraging the synergies of two fields of intensive research.
Collapse
Affiliation(s)
- Ryland C Forsythe
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Connor P Cox
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Astrid M Müller
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
24
|
Kasperkowiak M, Durnik M, Jankowski W, Hoffmann M, Gierczyk B, Frański R. Gas-phase generation of dinuclear Au(I)-Au(II) complexes by laser desorption ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:101-106. [PMID: 34187348 DOI: 10.1177/14690667211028785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alkali metal chloroaurates(III) were analysed by laser desorption ionization mass spectrometry. Among a number of generated gas-phase ionic clusters, the unusual ions [MAu2Cl5]- (were M stands for Na, K, Rb, Cs) were detected. The spectra of metastable ions and quantum mechanics calculations show the presence of unprecedented Au(I)-Au(II) interactions in the clusters.
Collapse
Affiliation(s)
| | - Michalina Durnik
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | | | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
25
|
Broadhead EJ, Monroe A, Tibbetts KM. Deposition of Cubic Copper Nanoparticles on Silicon Laser-Induced Periodic Surface Structures via Reactive Laser Ablation in Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3740-3750. [PMID: 33740377 DOI: 10.1021/acs.langmuir.1c00238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the deposition of cubic copper nanoparticles (Cu NPs) of varying size and particle density on silicon laser-induced periodic surface structures via reactive laser ablation in liquid (RLAL) using intense femtosecond laser pulses. Two syntheses were compared: (1) simultaneous deposition, wherein a silicon wafer was laser-processed in aqueous Cu(NO3)2 solution and (2) sequential deposition, wherein the silicon wafer was laser-processed in water and then exposed to aqueous Cu(NO3)2. Only simultaneous deposition resulted in high Cu loading and cubic Cu NPs deposited on the surface. The solution pH, Cu(NO3)2 concentration, and sample translation rate were varied to determine their effects on the size, morphology, and density of Cu NPs. Solution pH near ∼6.8 maximized Cu deposition. The Cu(NO3)2 concentration affected the Cu NP morphology but not the size or Cu loading. The sample translation rate most significantly affected the Cu loading, particle size, and particle density. The observed synthesis parameter dependence of these Cu NP properties resembles results by electrodeposition to grow Cu NPs on silicon surfaces, which suggests that Cu NP deposition by RLAL follows a mechanism similar to electrodeposition.
Collapse
Affiliation(s)
- Eric J Broadhead
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Avery Monroe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
26
|
Nag A, Frias Batista LM, Tibbetts KM. Synthesis of Air-Stable Cu Nanoparticles Using Laser Reduction in Liquid. NANOMATERIALS 2021; 11:nano11030814. [PMID: 33806729 PMCID: PMC8005032 DOI: 10.3390/nano11030814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 11/16/2022]
Abstract
We report the synthesis of air-stable Cu nanoparticles (NPs) using the bottom-up laser reduction in liquid method. Precursor solutions of copper acetlyacetonate in a mixture of methanol and isopropyl alcohol were irradiated with femtosecond laser pulses to produce Cu NPs. The Cu NPs were left at ambient conditions and analyzed at different ages up to seven days. TEM analysis indicates a broad size distribution of spherical NPs surrounded by a carbon matrix, with the majority of the NPs less than 10 nm and small numbers of large particles up to ∼100 nm in diameter. XRD collected over seven days confirmed the presence of fcc-Cu NPs, with some amorphous Cu2O, indicating the stability of the zero-valent Cu phase. Raman, FTIR, and XPS data for oxygen and carbon regions put together indicated the presence of a graphite oxide-like carbon matrix with oxygen functional groups that developed within the first 24 h after synthesis. The Cu NPs were highly active towards the model catalytic reaction of para-nitrophenol reduction in the presence of NaBH4.
Collapse
|
27
|
Nguyen CM, Frias Batista LM, John MG, Rodrigues CJ, Tibbetts KM. Mechanism of Gold-Silver Alloy Nanoparticle Formation by Laser Coreduction of Gold and Silver Ions in Solution. J Phys Chem B 2021; 125:907-917. [PMID: 33439650 DOI: 10.1021/acs.jpcb.0c10096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical reduction of aqueous Ag+ and [AuCl4]- into alloy Au-Ag nanoparticles (Au-Ag NPs) with intense laser pulses is a green synthesis approach that requires no toxic chemical reducing agents or stabilizers; however size control without capping agents still remains a challenge. Hydrated electrons produced in the laser plasma can reduce both [AuCl4]- and Ag+ to form NPs, but hydroxyl radicals (OH·) in the plasma inhibit Ag NP formation by promoting the back-oxidation of Ag0 into Ag+. In this work, femtosecond laser reduction is used to synthesize Au-Ag NPs with controlled compositions by adding the OH· scavenger isopropyl alcohol (IPA) to precursor solutions containing KAuCl4 and AgClO4. With sufficient IPA concentration, varying the precursor ratio enabled control over the Au-Ag NP composition and produced alloy NPs with average sizes less than 10 nm and homogeneous molar compositions of Au and Ag. By investigating the kinetics of Ag+ and [AuCl4]- coreduction, we find that the reduction of [AuCl4]- into Au-Ag NPs occurs before most of the Ag+ is incorporated, giving us insight into the mechanism of Au-Ag NP formation.
Collapse
Affiliation(s)
- Christopher M Nguyen
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Laysa M Frias Batista
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mallory G John
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Collin J Rodrigues
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
28
|
Korpanty J, Parent LR, Gianneschi NC. Enhancing and Mitigating Radiolytic Damage to Soft Matter in Aqueous Phase Liquid-Cell Transmission Electron Microscopy in the Presence of Gold Nanoparticle Sensitizers or Isopropanol Scavengers. NANO LETTERS 2021; 21:1141-1149. [PMID: 33448858 DOI: 10.1021/acs.nanolett.0c04636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we describe the radiolytic environment experienced by a polymer in water during liquid-cell transmission electron microscopy (LCTEM). We examined the radiolytic environment of aqueous solutions of poly(ethylene glycol) (PEG, 2400 g/mol) in the presence of sensitizing gold nanoparticles (GNPs, 100 nm) or radical scavenging isopropanol (IPA). To quantify polymer damage, we employed post-mortem analysis via matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). This approach confirms IPA (1-10% w/v) can significantly mitigate radiolysis-induced damage to polymers in water, while GNPs significantly enhance damage. We couple LCTEM experiments with simulations to provide a generalizable strategy for assessing radiolysis mitigation or enhancement. This study highlights the caution required for LCTEM experiments on inorganic nanoparticles where solution phase properties of surrounding organic materials or the solvent itself are under investigation. Furthermore, we anticipate an increased use of scavengers for LCTEM studies of all kinds.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas R Parent
- Innovation Partnership Building, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Sakakibara N, Ito T, Terashima K, Hakuta Y, Miura E. Dynamics of solvated electrons during femtosecond laser-induced plasma generation in water. Phys Rev E 2020; 102:053207. [PMID: 33327104 DOI: 10.1103/physreve.102.053207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/16/2020] [Indexed: 11/07/2022]
Abstract
We studied the dynamics of solvated electrons in the early stage of plasma generation in water induced with an intense femtosecond laser pulse. According to the decay kinetics of solvated electrons, a fast recombination process of solvated electrons (geminate recombination) occurred with a more prolonged lifetime (500 ps to 1 ns) than that observed in previous pulse photolysis studies (10-100 ps). This unusually longer lifetime is attributed to additional production of solvated electrons due to abundant free electrons generated with the laser-induced plasma, implying significant influence of free electrons on the dynamics of solvated electrons.
Collapse
Affiliation(s)
- Noritaka Sakakibara
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8589, Japan
| | - Tsuyohito Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8589, Japan
| | - Kazuo Terashima
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8589, Japan
| | - Yukiya Hakuta
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8589, Japan
| | - Eisuke Miura
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8589, Japan
| |
Collapse
|
30
|
Broadhead EJ, Tibbetts KM. Fabrication of Gold-Silicon Nanostructured Surfaces with Reactive Laser Ablation in Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10120-10129. [PMID: 32787031 DOI: 10.1021/acs.langmuir.0c01581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces for various applications. However, little is known about the chemical composition of these laser-processed surfaces, and the reaction mechanisms leading to their formation are poorly understood. In this work, we report the formation of gold-silicon nanostructured surfaces through reactive laser ablation in liquid. Silicon wafers were immersed in pH-controlled solutions of KAuCl4 and processed with ultrashort laser pulses. Gold deposition on the silicon wafers was found to depend on the pH of the precursor solution: neutral solutions (pH ∼6.3) resulted in much higher gold deposition than acidic or basic solutions. Laser processing of silicon wafers in water followed by immersion in the KAuCl4 solution resulted in lower gold deposition. X-ray photoelectron spectroscopy and depth profiling showed the existence of both gold (Au0) and gold-silicide (AuxSi) phases on the surfaces. Under both types of processing conditions, the gold atomic fraction and gold-silicide content increased with depth to at least 150 nm into the surface of the silicon wafer, although significantly more gold and gold-silicide were formed when the silicon was ablated in KAuCl4 solution as compared to immersion in KAuCl4 after ablation in water. Based on these data and existing literature on laser processing of silicon, we propose mechanisms that explain the observed gold penetration depth and its deposition dependence on solution pH. The mechanistic understanding gained in this work may be useful for synthesizing a variety of metal-silicon composite surfaces through laser processing to prepare functional materials such as catalysts and surface-enhanced Raman spectroscopy substrates.
Collapse
Affiliation(s)
- Eric J Broadhead
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
31
|
Bobb JA, Rodrigues CJ, El-Shall MS, Tibbetts KM. Laser-assisted synthesis of gold-graphene oxide nanocomposites: effect of pulse duration. Phys Chem Chem Phys 2020; 22:18294-18303. [PMID: 32785346 DOI: 10.1039/d0cp02953j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Laser photoreduction of metal ions onto graphene oxide (GO) is a facile, environmentally friendly method to produce functional metal-GO nanocomposites for a variety of applications. This work compares Au-GO nanocomposites prepared by photoreduction of [AuCl4]- in aqueous GO solution using laser pulses of nanosecond (ns) and femtosecond (fs) duration. The presence of GO significantly accelerates the [AuCl4]- photoreduction rate, with a more pronounced effect using ns laser pulses. This difference is rationalized in terms of the stronger interaction of the 532 nm laser wavelength and long pulse duration with the GO. Both the ns and fs lasers produce significant yields of sub-4 nm Au nanoparticles attached to GO, albeit with different size distributions: a broad 5.8 ± 1.9 nm distribution for the ns laser and two distinct distributions of 3.5 ± 0.8 and 10.1 ± 1.4 nm for the fs laser. Despite these differences, both Au-GO nanocomposites had the same high catalytic activity towards p-nitrophenol reduction as compared to unsupported 4-5 nm Au nanoparticles. These results point to the key role of GO photoexcitation in catalyzing metal ion reduction and indicate that both ns and fs lasers are suitable for producing functional metal-GO nanocomposites.
Collapse
Affiliation(s)
- Julian A Bobb
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | | | |
Collapse
|
32
|
Horikawa Y, Okamoto T, Nakamura T, Tahara YO, Miyata M, Ikeda S, Sakota K, Yatsuhashi T. Synthesis of iron-based nanoparticles from ferrocene by femtosecond laser irradiation: Suppression of the particle growth in a mixture of water and hexane. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|