1
|
Hassani M, Shaon PH, Mallon CJ, Shi T, Monzy JN, Fenlon EE, Leitner DM, Tucker MJ. Modulating vibrational energy redistribution in highly conjugated systems. J Chem Phys 2025; 162:154201. [PMID: 40237185 PMCID: PMC12008776 DOI: 10.1063/5.0263013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Elucidating the nature of intramolecular vibrational energy redistribution (IVR) can guide the design of molecular wires. The ability to steer these processes through a mechanistic understanding of IVR is assessed by utilizing two-dimensional infrared (2D IR) spectroscopy. 2D IR spectroscopy allows for the direct investigation of timescales of energy transfer within three aromatic molecular scaffolds: 4'-azido-[1,1'-biphenyl]-4-carbonitrile (PAB), 2'-azido-[1,1'-biphenyl]-4-carbonitrile (OAB), and 4'-(azidomethyl)-[1,1'-biphenyl]-4-carbonitrile (PAMB). Energy transfer pathways between azido (N3)- and cyano (CN)-vibrational reporters uncover the importance of Fermi resonances, anharmonic coupling, and specific structural components in directing energy flow. Among these systems, PAB exhibits the fastest energy transfer (22 ps), facilitated by its co-planar biphenyl structure, enabling strong π-π stacking interactions to optimize vibrational coupling. In contrast, OAB demonstrates a moderate IVR timescale (38 ps) due to an orthogonal molecular plane and steric hindrance, which disrupts coupling pathways. PAMB, with a para-methylene group, introduces a structural bottleneck that significantly impedes energy flow, slowing down the energy transfer to 84 ps. The observed IVR rates align with computational predictions, highlighting intermediate ring modes in PAB as efficient energy transfer bridges, a mechanism that is less pronounced in OAB and PAMB. This study demonstrates that IVR is dictated not only by anharmonic coupling strengths but also by the extended alignment of vibrational modes across molecular planes and their delocalization within aromatic scaffolds. By modulating structural features, such as steric constraints and π-π interactions, we provide a framework for tailoring energy flow in conjugated molecular systems. These findings offer new insights into IVR dynamics for applications in molecular electronics.
Collapse
Affiliation(s)
- Majid Hassani
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, USA
| | | | | | - Tianjiao Shi
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Judith N. Monzy
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Edward E. Fenlon
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, USA
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, USA
| |
Collapse
|
2
|
He J, Lin M, Gao Y, Ma Z, Cao H, Bian H. Correlating Viscosity Trends and Ultrafast Structural Dynamics in TMSO-Water and SFL-Water Binary Mixtures. J Phys Chem Lett 2025; 16:3544-3552. [PMID: 40163593 DOI: 10.1021/acs.jpclett.5c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The hydrogen bonding dynamics in tetramethylene sulfoxide (TMSO)-water and sulfolane (SFL)-water binary mixtures were investigated by using FTIR spectroscopy, ultrafast IR spectroscopy, and molecular dynamics (MD) simulations. Despite TMSO and SFL sharing a similar cyclic backbone, markedly different viscosity behaviors were observed. By employing SCN- as a local probe, its distinct reorientational dynamics was observed that directly correlates with the contrasting viscosity trends in the two systems. In TMSO-water solutions, strong solute-water hydrogen bonding dominates water-water interactions, leading to a viscosity maximum at intermediate concentrations. Conversely, the dynamics of water molecules in SFL-water solutions is decoupled from bulk viscosity trends due to the weaker solute-water interactions. MD simulations further elucidate how the interplay between solute-water and water-water hydrogen bonding governs the viscosity trends. This work advances our understanding of hydrogen bonding in complex aqueous environments and provides a systematic approach for connecting molecular-level interactions to macroscopic fluid properties.
Collapse
Affiliation(s)
- Jiman He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory of New Concept Sensors and Molecular Materials; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Min Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuting Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory of New Concept Sensors and Molecular Materials; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zishu Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory of New Concept Sensors and Molecular Materials; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haishan Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory of New Concept Sensors and Molecular Materials; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
3
|
Pan J, Charnay AP, Zheng W, Fayer MD. Revealing Lithium Ion Transport Mechanisms and Solvation Structures in Carbonate Electrolytes. J Am Chem Soc 2024; 146:35329-35338. [PMID: 39661749 DOI: 10.1021/jacs.4c13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Optimizing lithium-ion battery (LIB) electrolytes is essential for high-current applications such as electric vehicles, yet experimental techniques to characterize the complex structural dynamics responsible for the lithium transport within these electrolytes are limited. In this study, we used ultrafast infrared spectroscopy to measure chemical exchange, spectral diffusion, and solvation structures across a wide range of lithium concentrations in propylene carbonate-based LiTFSI (lithium bis(trifluoromethanesulfonimide) electrolytes, with the CN stretch of phenyl selenocyanate as the long-lived vibrational probe. Phenyl selenocyanate is shown to be an excellent dynamical surrogate for propylene carbonate in Li+ solvation clusters. A strong correlation between exchange times and ionic conductivity was observed. This correlation and other observations suggest structural diffusion as the primary transport mechanism rather than vehicular diffusion. Additionally, spectral diffusion observables measured by the probe were directly linked to the desolvation dynamics of the Li+ clusters, as supported by density functional theory and molecular dynamics simulations. These findings provide detailed molecular-level insights into LIB electrolytes' transport dynamics and solvation structures, offering rational design pathways to advanced electrolytes for next-generation LIBs.
Collapse
Affiliation(s)
- Junkun Pan
- Department of Chemistry, Stanford University, Stanford 94305, United States
| | - Aaron P Charnay
- Department of Chemistry, Stanford University, Stanford 94305, United States
| | - Weizhong Zheng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford 94305, United States
| |
Collapse
|
4
|
Shipp JD, Fernández-Terán RJ, Auty AJ, Carson H, Sadler AJ, Towrie M, Sazanovich IV, Donaldson PM, Meijer AJHM, Weinstein JA. Two-Dimensional Infrared Spectroscopy Resolves the Vibrational Landscape in Donor-Bridge-Acceptor Complexes with Site-Specific Isotopic Labeling. ACS PHYSICAL CHEMISTRY AU 2024; 4:761-772. [PMID: 39634644 PMCID: PMC11613348 DOI: 10.1021/acsphyschemau.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a trans-Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective 13C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center. Decoupling of the D-acetylide- from the A-acetylide- enables site-specific investigation of vibrational energy transfer (VET) rates, dynamic anharmonicities, and spectral diffusion. Surprisingly, the asymmetrically labeled D-B-A still undergoes intramolecular IVR between acetylide groups even though they are decoupled and positioned across a heavy atom usually perceived as a "vibrational bottleneck". Further, the rate of population transfer from the bridge to the acceptor was both site-specific and distance dependent. We show that vibrational excitation of the acetylide modes is transferred to ligand-centered modes on a subpicosecond time scale, followed by VET to solvent modes on the time scale of a few picoseconds. We also show that isotopic substitution does not affect the rate of spectral diffusion, indicating that changes in the vibrational dynamics are not a result of differences in local environment around the acetylides. Oscillations imprinted on the decay of the vibrationally excited acceptor-localized carbonyl modes show they enter a coherent superposition of states after excitation that dephases over 1-2 ps, and thus cannot be treated as independent in the 2D-IR spectra. These findings elucidate the vibrational landscape governing IR-mediated electron transfer and illustrate the power of isotopic labeling combined with multidimensional IR spectroscopy to disentangle vibrational energy propagation pathways in complex systems.
Collapse
Affiliation(s)
- James D. Shipp
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Ricardo J. Fernández-Terán
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
- Department
of Physical Chemistry, University of Geneva, CH-1205 Geneva, Switzerland
| | - Alexander J. Auty
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Heather Carson
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Andrew J. Sadler
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Michael Towrie
- STFC
Central Laser Facility, Research Complex at Harwell, Research Complex
at Harwell, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K.
| | - Igor V. Sazanovich
- STFC
Central Laser Facility, Research Complex at Harwell, Research Complex
at Harwell, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K.
| | - Paul M. Donaldson
- STFC
Central Laser Facility, Research Complex at Harwell, Research Complex
at Harwell, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K.
| | | | - Julia A. Weinstein
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| |
Collapse
|
5
|
Hung ST, Roget SA, Fayer MD. Effects of Nanoconfinement on Dynamics in Concentrated Aqueous Magnesium Chloride Solutions. J Phys Chem B 2024; 128:5513-5527. [PMID: 38787935 DOI: 10.1021/acs.jpcb.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Water behavior in various natural and manufactured settings is influenced by confinement in organic or inorganic frameworks and the presence of solutes. Here, the effects on dynamics from both confinement and the addition of solutes are examined. Specifically, water and ion dynamics in concentrated (2.5-4.2 m) aqueous magnesium chloride solutions confined in mesoporous silica (2.8 nm pore diameter) were investigated using polarization selective pump-probe and 2D infrared spectroscopies. Fitting the rotational and spectral diffusion dynamics measured by the vibrational probe, selenocyanate, with a previously developed two-state model revealed distinct behaviors at the interior of the silica pores (core state) and near the wall of the confining framework (shell state). The shell dynamics are noticeably slower than the bulk, or core, dynamics. The concentration-dependent slowing of the dynamics aligns with behavior in the bulk solutions, but the spectrally separated water-associated and Mg2+-associated forms of the selenocyanate probe exhibit different responses to confinement. The disparity in the complete reorientation times is larger upon confinement, but the spectral diffusion dynamics become more similar near the silica surface. The length scales that characterize the transition from surface-influenced to bulk-like behavior for the salt solutions in the pores are discussed and compared to those of pure water and an organic solvent confined in the same pores. These comparisons offer insights into how confinement modulates the properties of different liquids.
Collapse
Affiliation(s)
- Samantha T Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sean A Roget
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Felsted RG, Graham TR, Zhao Y, Bazak JD, Nienhuis ET, Pauzauskie PJ, Joly AG, Pearce CI, Wang Z, Rosso KM. Anionic Effects on Concentrated Aqueous Lithium Ion Dynamics. J Phys Chem Lett 2024:5076-5087. [PMID: 38708887 DOI: 10.1021/acs.jpclett.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The dynamics, orientational anisotropy, diffusivity, viscosity, and density were measured for concentrated lithium salt solutions, including lithium chloride (LiCl), lithium bromide (LiBr), lithium nitrite (LiNO2), and lithium nitrate (LiNO3), with methyl thiocyanate as an infrared vibrational probe molecule, using two-dimensional infrared spectroscopy (2D IR), nuclear magnetic resonance (NMR) spectroscopy, and viscometry. The 2D IR, NMR, and viscosity results show that LiNO2 exhibits longer correlation times, lower diffusivity, and nearly 4 times greater viscosity compared to those of the other lithium salt solutions of the same concentration, suggesting that nitrite anions may strongly facilitate structure formation via strengthening water-ion network interactions, directly impacting bulk solution properties at sufficiently high concentrations. Additionally, the LiNO2 and LiNO3 solutions show significantly weakened chemical interactions between the lithium cations and the methyl thiocyanate when compared with those of the lithium halide salts.
Collapse
Affiliation(s)
- Robert G Felsted
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Trent R Graham
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yatong Zhao
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - J David Bazak
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Emily T Nienhuis
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Peter J Pauzauskie
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195, United States
| | - Alan G Joly
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Zheming Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Kacenauskaite L, Van Wyck SJ, Moncada Cohen M, Fayer MD. Water-in-Salt: Fast Dynamics, Structure, Thermodynamics, and Bulk Properties. J Phys Chem B 2024; 128:291-302. [PMID: 38118403 DOI: 10.1021/acs.jpcb.3c07711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
We present concentration-dependent dynamics of highly concentrated LiBr solutions and LiCl temperature-dependent dynamics for two high concentrations and compare the results to those of prior LiCl concentration-dependent data. The dynamical data are obtained using ultrafast optical heterodyne-detected optical Kerr effect (OHD-OKE). The OHD-OKE decays are composed of two pairs of biexponentials, i.e., tetra-exponentials. The fastest decay (t1) is the same as pure water's at all concentrations within error, while the second component (t2) slows slightly with concentration. The slower components (t3 and t4), not present in pure water, slow substantially, and their contributions to the decays increase significantly with increasing concentration, similar to LiCl solutions. Simulations of LiCl solutions from the literature show that the slow components arise from large ion/water clusters, while the fast components are from ion/water structures that are not part of large clusters. Temperature-dependent studies (15-95 °C) of two high LiCl concentrations show that decreasing the temperature is equivalent to increasing the room temperature concentration. The LiBr and LiCl concentration dependences and the two LiCl concentrations' temperature dependences all have bulk viscosities that are linearly dependent on τcslow, the correlation time of the slow dynamics (weighted averages of t3 and t4). Remarkably, all four viscosity vs 1/τCslow plots fall on the same line. Application of transition state theory to the temperature-dependent data yields the activation enthalpies and entropies for the dynamics of the large ion/water clusters, which underpin the bulk viscosity.
Collapse
Affiliation(s)
- Laura Kacenauskaite
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Stephen J Van Wyck
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Max Moncada Cohen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Xu C, Fracassi A, Baryiames CP, Bhattacharya A, Devaraj NK, Baiz CR. Sponge-phase Lipid Droplets as Synthetic Organelles: An Ultrafast Study of Hydrogen Bonding and Interfacial Environments. Chemphyschem 2023; 24:e202300404. [PMID: 37486881 DOI: 10.1002/cphc.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Bottom-up design of biomimetic organelles has gained recent attention as a route towards understanding the transition between non-living matter and life. Despite various artificial lipid membranes being developed, the specific relations between lipid structure, composition, interfacial properties, and morphology are not currently understood. Sponge-phase droplets contain dense, nonlamellar lipid bilayer networks that capture the complexities of the endoplasmic reticulum (ER), making them ideal artificial models of such organelles. Here, we combine ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations to investigate the interfacial H-bond networks in sponge-phase droplets composed of glycolipid and nonionic detergents. In the sponge phase, the interfacial environments are more hydrated and water molecules confined to the nanometer-scale aqueous channels in the sponge phase exhibit dynamics that are significantly slower compared to bulk water. Surfactant configurations and microscopic phase separation play a dominant role in determining membrane curvature and slow dynamics observed in the sponge phase. The studies suggest that H-bond networks within the nanometer-scale channels are disrupted not only by confinement but also by the interactions of surfactants, which extend 1-2 nm from the bilayer surface. The results provide a molecular-level description for controlling phase and morphology in the design of synthetic lipid organelles.
Collapse
Affiliation(s)
- Cong Xu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, 78712-1224, Austin, TX, USA
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, 92093, La Jolla, CA, USA
| | - Christopher P Baryiames
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, 78712-1224, Austin, TX, USA
| | - Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, 92093, La Jolla, CA, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, 92093, La Jolla, CA, USA
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, 78712-1224, Austin, TX, USA
| |
Collapse
|
9
|
Zhang M, Gao Y, Fu L, Bai Y, Mukherjee S, Chen CL, Liu J, Bian H, Fang Y. Chain-like Structures Facilitate Li + Transport in Concentrated Aqueous Electrolytes: Insights from Ultrafast Infrared Spectroscopy and Molecular Dynamics Simulations. J Phys Chem Lett 2023; 14:6968-6976. [PMID: 37506173 DOI: 10.1021/acs.jpclett.3c01494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Highly concentrated aqueous electrolytes have attracted attention due to their unique applications in lithium ion batteries (LIBs). However, the solvation structure and transport mechanism of Li+ cations at concentrated concentrations remain largely unexplored. To address this gap in knowledge, we employ ultrafast infrared spectroscopy and molecular dynamics (MD) simulations to reveal the dynamic and spatial structural heterogeneity in aqueous lithium chloride (LiCl) solutions. The coupling between the reorientation dynamics of the extrinsic probe and the macroscopic viscosity in aqueous LiCl solutions was analyzed using the Stokes-Einstein-Debye (SED) equations. MD simulations reveal that the Cl- and Li+ form chain-like structures through electrostatic interactions, supporting the vehicular migration of Li+ through the chain-like structure. The concentration dependent conductivity of the LiCl solution is well reproduced, where Li(H2O)2+ and Li(H2O)3+ are the dominant species that contribute to the conduction of Li+. This study is expected to establish correlations between ion pair structures and macroscopic properties.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuting Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lanya Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yimin Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Somnath Mukherjee
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Cheng-Lung Chen
- Department of Chemistry, National Sunyat-sen University, Kaohsiung, 80424, China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
10
|
Gross N, Kuhs CT, Ostovar B, Chiang WY, Wilson KS, Volek TS, Faitz ZM, Carlin CC, Dionne JA, Zanni MT, Gruebele M, Roberts ST, Link S, Landes CF. Progress and Prospects in Optical Ultrafast Microscopy in the Visible Spectral Region: Transient Absorption and Two-Dimensional Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14557-14586. [PMID: 37554548 PMCID: PMC10406104 DOI: 10.1021/acs.jpcc.3c02091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Indexed: 08/10/2023]
Abstract
Ultrafast optical microscopy, generally employed by incorporating ultrafast laser pulses into microscopes, can provide spatially resolved mechanistic insight into scientific problems ranging from hot carrier dynamics to biological imaging. This Review discusses the progress in different ultrafast microscopy techniques, with a focus on transient absorption and two-dimensional microscopy. We review the underlying principles of these techniques and discuss their respective advantages and applicability to different scientific questions. We also examine in detail how instrument parameters such as sensitivity, laser power, and temporal and spatial resolution must be addressed. Finally, we comment on future developments and emerging opportunities in the field of ultrafast microscopy.
Collapse
Affiliation(s)
- Niklas Gross
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T. Kuhs
- Army
Research Laboratory-South, U.S. Army DEVCOM, Houston, Texas 77005, United States
| | - Behnaz Ostovar
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei-Yi Chiang
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Kelly S. Wilson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tanner S. Volek
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary M. Faitz
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Claire C. Carlin
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Martin Gruebele
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sean T. Roberts
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Hassani M, Mallon CJ, Monzy JN, Schmitz AJ, Brewer SH, Fenlon EE, Tucker MJ. Inhibition of vibrational energy flow within an aromatic scaffold via heavy atom effect. J Chem Phys 2023; 158:224201. [PMID: 37309893 PMCID: PMC10275622 DOI: 10.1063/5.0153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
The regulation of intramolecular vibrational energy redistribution (IVR) to influence energy flow within molecular scaffolds provides a way to steer fundamental processes of chemistry, such as chemical reactivity in proteins and design of molecular diodes. Using two-dimensional infrared (2D IR) spectroscopy, changes in the intensity of vibrational cross-peaks are often used to evaluate different energy transfer pathways present in small molecules. Previous 2D IR studies of para-azidobenzonitrile (PAB) demonstrated that several possible energy pathways from the N3 to the cyano-vibrational reporters were modulated by Fermi resonance, followed by energy relaxation into the solvent [Schmitz et al., J. Phys. Chem. A 123, 10571 (2019)]. In this work, the mechanisms of IVR were hindered via the introduction of a heavy atom, selenium, into the molecular scaffold. This effectively eliminated the energy transfer pathway and resulted in the dissipation of the energy into the bath and direct dipole-dipole coupling between the two vibrational reporters. Several structural variations of the aforementioned molecular scaffold were employed to assess how each interrupted the energy transfer pathways, and the evolution of 2D IR cross-peaks was measured to assess the changes in the energy flow. By eliminating the energy transfer pathways through isolation of specific vibrational transitions, through-space vibrational coupling between an azido (N3) and a selenocyanato (SeCN) probe is facilitated and observed for the first time. Thus, the rectification of this molecular circuitry is accomplished through the inhibition of energy flow using heavy atoms to suppress the anharmonic coupling and, instead, favor a vibrational coupling pathway.
Collapse
Affiliation(s)
- Majid Hassani
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | | | - Judith N. Monzy
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Andrew J. Schmitz
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Edward E. Fenlon
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
12
|
Van Wyck SJ, Fayer MD. Dynamics of Concentrated Aqueous Lithium Chloride Solutions Investigated with Optical Kerr Effect Experiments. J Phys Chem B 2023; 127:3488-3495. [PMID: 37018545 DOI: 10.1021/acs.jpcb.3c01702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
We report the dynamics of concentrated lithium chloride aqueous solutions over a range of moderate to high concentrations. Concentrations (1-29 to 1-3.3 LiCl-water) were studied in which, at the highest concentrations, there are far too few water molecules to solvate the ions. The measurements were made with optically heterodyne-detected optical Kerr effect experiments, a non-resonant technique able to observe dynamics over a wide range of time scales and signal amplitudes. While the pure water decay is a biexponential, the LiCl-water decays are tetra-exponentials at all concentrations. The faster two decays arise from water dynamics, while the slower two decays reflect the dynamics of the ion-water network. The fastest decay (t1) is the same as pure water at all concentrations. The second decay (t2) is also the same as that of pure water at the lower concentrations, and then, it slows with increasing concentration. The slower dynamics (t3 and t4), which do not have counterparts in pure water, arise from ion-water complexes and, at the highest concentrations, an extended ion-water network. Comparisons are made between the concentration dependence of the observed dynamics and simulations of structural changes from the literature, which enable the assignment of dynamics to specific ion-water structures. The concentration dependences of the bulk viscosity and the ion-water network dynamics are directly correlated. The correlation provides an atomistic-level understanding of the viscosity.
Collapse
Affiliation(s)
- Stephen J Van Wyck
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Solvation structure and dynamics of a small ion in an organic electrolyte. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
14
|
Van Wyck SJ, Fayer MD. Dynamics of Acrylamide Hydrogels, Polymers, and Monomers in Water Measured with Optical Heterodyne-Detected Optical Kerr Effect Spectroscopy. J Phys Chem B 2023; 127:1276-1286. [PMID: 36706351 DOI: 10.1021/acs.jpcb.2c08164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ultrafast dynamics of acrylamide monomers (AAm), polyacrylamide (PAAm), and polyacrylamide hydrogels (PAAm-HG) in water were studied using optical heterodyne-detected optical Kerr effect (OHD-OKE) spectroscopy. Previous ultrafast infrared (IR) measurements of the water dynamics showed that at the same concentration of the acrylamide moiety, AAm, PAAm, and PAAm-HG exhibited identical water dynamics and that these dynamics slowed with increasing concentration. In contrast to the IR measurements, OHD-OKE experiments measure the dynamics of both the water and the acrylamide species, which occur on different time scales. In this study, the dynamics of all the acrylamide systems slowed with increasing concentration. We found that AAm exhibits tetraexponential decays, the longest component of which followed Debye-Stokes-Einstein behavior except for the highest concentration, 40% (w/v). Low concentrations of PAAm followed a single power law decay, while high concentrations of PAAm and all concentrations of PAAm-HG decayed with two power laws. The highest concentrations, 25% and 40%, of PAAm and PAAm-HG showed nearly identical dynamics. We interpreted this result as reflecting a similar extent of chain-chain interactions. At low concentrations, PAAm displays non-Markovian, single-chain dynamics (single power law), but PAAm displays entangled chain-chain interactions at high concentrations (two power laws). PAAm-HG has chain-chain interactions at all concentrations that arise from the cross-linking. At high concentrations, the dynamics of the entangled of PAAm become identical within error as those of the cross-linked PAAm-HG.
Collapse
Affiliation(s)
- Stephen J Van Wyck
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| |
Collapse
|
15
|
Chatterjee S, Deshmukh SH, Bagchi S. Does Viscosity Drive the Dynamics in an Alcohol-Based Deep Eutectic Solvent? J Phys Chem B 2022; 126:8331-8337. [PMID: 36200737 DOI: 10.1021/acs.jpcb.2c06521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deep eutectic solvents, consisting of heterogeneous nanodomains of hydrogen-bonded networks, have evolved into a range of viscous fluids that find applications in several fields. As viscosity is known to influence the dynamics of other neoteric solvents like ionic liquids, understanding the effect of viscosity on deep eutectic solvents is crucial to realize their full potential. Herein, we combine polarization-selective pump-probe spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations to elucidate the impact of viscosity on the dynamics of an alcohol-based deep eutectic solvent, ethaline. We compare the solvent fluctuation and solute reorientation time scales in ethaline with those in ethylene glycol, an ethaline constituent. Interestingly, we find that the solute's reorientation apparently scales the bulk viscosity of the solvent, but the same is not valid for the overall solvation dynamics. Using the variations in the estimated intercomponent hydrogen bond lifetimes, we show that a dissolved solute does not sense the bulk viscosity of the deep eutectic solvent; instead, it senses domain-specific local viscosity determined by the making and breaking of the hydrogen bond network. Our results indicate that understanding the domain-specific local environment experienced by the dissolved solute is of utmost importance in deep eutectic solvents.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Samadhan H Deshmukh
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
16
|
Jung KA, Markland TE. 2D spectroscopies from condensed phase dynamics: Accessing third-order response properties from equilibrium multi-time correlation functions. J Chem Phys 2022; 157:094111. [DOI: 10.1063/5.0107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The third-order response lies at the heart of simulating and interpreting nonlinear spectroscopies ranging from two dimensional infrared (2D-IR) to 2D electronic (2D-ES), and 2D sum frequency generation (2D-SFG). The extra time and frequency dimensions in these spectroscopies provides access to rich information on the electronic and vibrational states present, the coupling between them, and the resulting rates at which they exchange energy that are obscured in linear spectroscopy, particularly for condensed phase systems that usually contain many overlapping features. While the exact quantum expression for the third-order response is well established it is incompatible with the methods that are practical for calculating the atomistic dynamics of large condensed phase systems. These methods, which include both classical mechanics and quantum dynamics methods that retain quantum statistical properties while obeying the symmetries of classical dynamics, such as LSC-IVR, Centroid Molecular Dynamics (CMD) and Ring Polymer Molecular Dynamics (RPMD) naturally provide short-time approximations to the multi-time symmetrized Kubo transformed correlation function. Here, we show how the third-order response can be formulated in terms of equilibrium symmetrized Kubo transformed correlation functions. We demonstrate the utility and accuracy of our approach by showing how it can be used to obtain the third-order response of a series of model systems using both classical dynamics and RPMD. In particular, we show that this approach captures features such as anharmonically induced vertical splittings and peak shifts while providing a physically transparent framework for understanding multidimensional spectroscopies.
Collapse
|
17
|
Dereka B, Lewis NHC, Zhang Y, Hahn NT, Keim JH, Snyder SA, Maginn EJ, Tokmakoff A. Exchange-Mediated Transport in Battery Electrolytes: Ultrafast or Ultraslow? J Am Chem Soc 2022; 144:8591-8604. [PMID: 35470669 DOI: 10.1021/jacs.2c00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the mechanisms of charge transport in batteries is important for the rational design of new electrolyte formulations. Persistent questions about ion transport mechanisms in battery electrolytes are often framed in terms of vehicular diffusion by persistent ion-solvent complexes versus structural diffusion through the breaking and reformation of ion-solvent contacts, i.e., solvent exchange events. Ultrafast two-dimensional (2D) IR spectroscopy can probe exchange processes directly via the evolution of the cross-peaks on picosecond time scales. However, vibrational energy transfer in the absence of solvent exchange gives rise to the same spectral signatures, hiding the desired processes. We employ 2D IR on solvent resonances of a mixture of acetonitrile isotopologues to differentiate chemical exchange and energy-transfer dynamics in a comprehensive series of Li+, Mg2+, Zn2+, Ca2+, and Ba2+ bis(trifluoromethylsulfonyl)imide electrolytes from the dilute to the superconcentrated regime. No exchange phenomena occur within at least 100 ps, regardless of the ion identity, salt concentration, and presence of water. All of the observed spectral dynamics originate from the intermolecular energy transfer. These results place the lower experimental boundary on the ion-solvent residence times to several hundred picoseconds, much slower than previously suggested. With the help of MD simulations and conductivity measurements on the Li+ and Zn2+ systems, we discuss these results as a continuum of vehicular and structural modalities that vary with concentration and emphasize the importance of collective electrolyte motions to ion transport. These results hold broadly applicable to many battery-relevant ions and solvents.
Collapse
Affiliation(s)
- Bogdan Dereka
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicholas H C Lewis
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yong Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nathan T Hahn
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jonathan H Keim
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Edward J Maginn
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andrei Tokmakoff
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
18
|
Roget SA, Carter-Fenk KA, Fayer MD. Water Dynamics and Structure of Highly Concentrated LiCl Solutions Investigated Using Ultrafast Infrared Spectroscopy. J Am Chem Soc 2022; 144:4233-4243. [PMID: 35226487 DOI: 10.1021/jacs.2c00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In highly concentrated salt solutions, the water hydrogen bond (H-bond) network is completely disrupted by the presence of ions. Water is forced to restructure as dictated by the water-ion and ion-ion interactions. Using ultrafast polarization-selective pump-probe (PSPP) spectroscopy measurements of the OD stretch of dilute HOD, we demonstrate that the limited water-water H-bonding present in concentrated lithium chloride solutions (up to four waters per ion pair) is, on average, stronger than that occurring in bulk water. Furthermore, information on the orientational dynamics and the angular restriction of water H-bonded to both water oxygens and chloride anions was obtained through analysis of the frequency-dependent anisotropy decays. It was found that, when the salt concentration increased, the water showed increasing restriction and slowing at frequencies correlated with strong H-bonding. The angular restriction of the water molecules and strengthening of water-water H-bonds are due to the formation of a water-ion network not present in bulk water and dilute salt solutions. The structural evolution of the ionic medium was also observed through spectral diffusion of the OD stretch using 2D IR spectroscopy. Compared to bulk water, there is significant slowing of the biexponential spectral diffusion dynamics. The slowest component of the spectral diffusion (13 ps) is virtually identical to the time for complete reorientation of HOD measured with the PSPP experiments. This result suggests that the slowest component of the spectral diffusion reflects rearrangement of water molecules in the water-ion network.
Collapse
Affiliation(s)
- Sean A Roget
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Biswas A, Mallik BS. Vibrational Spectral Dynamics and Ion-Probe Interactions of the Hydrogen-Bonded Liquids in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
A polarization scheme that resolves cross-peaks with transient absorption and eliminates diagonal peaks in 2D spectroscopy. Proc Natl Acad Sci U S A 2022; 119:2117398119. [PMID: 35115405 PMCID: PMC8833161 DOI: 10.1073/pnas.2117398119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional (2D) optical spectroscopy contains cross-peaks that are helpful features for determining molecular structure and monitoring energy transfer, but they can be difficult to resolve from the much more intense diagonal peaks. Transient absorption (TA) spectra contain transitions similar to cross-peaks in 2D spectroscopy, but in most cases they are obscured by the bleach and stimulated emission peaks. We report a polarization scheme, <0°,0°,+θ2(t2),-θ2(t2)>, that can be easily implemented in the pump-probe beam geometry, used most frequently in 2D and TA spectroscopy. This scheme removes the diagonal peaks in 2D spectroscopies and the intense bleach/stimulated emission peaks in TA spectroscopies, thereby resolving the cross-peak features. At zero pump-probe delay, θ2 = 60° destructively interferes two Feynman paths, eliminating all signals generated by field interactions with four parallel transition dipoles, and the intense diagonal and bleach/stimulated emission peaks. At later delay times, θ2(t2) is adjusted to compensate for anisotropy caused by rotational diffusion. When implemented with TA spectroscopy or microscopy, the pump-probe spectrum is dominated by the cross-peak features. The local oscillator is also attenuated, which enhances the signal two times. This overlooked polarization scheme reduces spectral congestion by eliminating diagonal peaks in 2D spectra and enables TA spectroscopy to measure similar information given by cross-peaks in 2D spectroscopy.
Collapse
|
21
|
Biswas A, Mallik BS. Revisiting OD-stretching dynamics of methanol‑d4, ethanol-d6 and dilute HOD/H2O mixture with predefined potentials and wavelet transform spectra. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Dereka B, Lewis NHC, Keim JH, Snyder SA, Tokmakoff A. Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes. J Phys Chem B 2021; 126:278-291. [PMID: 34962409 PMCID: PMC8762666 DOI: 10.1021/acs.jpcb.1c09572] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetonitrile has emerged as a solvent candidate for novel electrolyte formulations in metal-ion batteries and supercapacitors. It features a bright local C≡N stretch vibrational mode whose infrared (IR) signature is sensitive to battery-relevant cations (Li+, Mg2+, Zn2+, Ca2+) both in pure form and in the presence of water admixture across a full possible range of concentrations from the dilute to the superconcentrated regime. Stationary and time-resolved IR spectroscopy thus emerges as a natural tool to study site-specific intermolecular interactions from the solvent perspective without introducing an extrinsic probe that perturbs solution morphology and may not represent the intrinsic dynamics in these electrolytes. The metal-coordinated acetonitrile, water-separated metal-acetonitrile pair, and free solvent each have a distinct vibrational signature that allows their unambiguous differentiation. The IR band frequency of the metal-coordinated acetonitrile depends on the ion charge density. To study the ion transport dynamics, it is necessary to differentiate energy-transfer processes from structural interconversions in these electrolytes. Isotope labeling the solvent is a necessary prerequisite to separate these processes. We discuss the design principles and choice of the CD313CN label and characterize its vibrational spectroscopy in these electrolytes. The Fermi resonance between 13C≡N and C-D stretches complicates the spectral response but does not prevent its effective utilization. Time-resolved two-dimensional (2D) IR spectroscopy can be performed on a mixture of acetonitrile isotopologues and much can be learned about the structural dynamics of various species in these formulations.
Collapse
Affiliation(s)
- Bogdan Dereka
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| | - Nicholas H C Lewis
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| | - Jonathan H Keim
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| |
Collapse
|
23
|
Ghosh D, Sakpal SS, Chatterjee S, Deshmukh SH, Kwon H, Kim YS, Bagchi S. Association-Dissociation Dynamics of Ionic Electrolytes in Low Dielectric Medium. J Phys Chem B 2021; 126:239-248. [PMID: 34961310 DOI: 10.1021/acs.jpcb.1c08613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ionic electrolytes are known to form various complexes which exist in dynamic equilibrium in a low dielectric medium. However, structural characterization of these complexes has always posed a great challenge to the scientific community. An additional challenge is the estimation of the dynamic association-dissociation time scales (lifetime of the complexes), which are key to the fundamental understanding of ion transport. In this work, we have used a combination of infrared absorption spectroscopy, two-dimensional infrared spectroscopy, molecular dynamics simulations, and density functional theory calculations to characterize the various ion complexes formed by the thiocyanate-based ionic electrolytes as a function of different cations in a low dielectric medium. Our results demonstrate that thiocyanate is an excellent vibrational reporter of the heterogeneous ion complexes undergoing association-dissociation dynamics. We find that the ionic electrolytes exist as contact ion pairs, dimers, and clusters in a low dielectric medium. The relative ratios of the various ion complexes are sensitive to the cations. In addition to the interactions between the thiocyanate anion and the countercation, the solute-solvent interactions drive the dynamic equilibrium. We have estimated the association-dissociation dynamics time scales from two-dimensional infrared spectroscopy. The exchange time scale involving the cluster is faster than that between a dimer and an ion pair. Moreover, we find that the dynamic equilibrium between the cluster and another ion complex is correlated to the solvent fluctuations.
Collapse
Affiliation(s)
- Deborin Ghosh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sushil S Sakpal
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samadhan H Deshmukh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hyejin Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Robben KC, Cheatum CM. Least-Squares Fitting of Multidimensional Spectra to Kubo Line-Shape Models. J Phys Chem B 2021; 125:12876-12891. [PMID: 34783568 PMCID: PMC8630800 DOI: 10.1021/acs.jpcb.1c08764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We report a comprehensive
study of the efficacy of least-squares
fitting of multidimensional spectra to generalized Kubo line-shape
models and introduce a novel least-squares fitting metric, termed
the scale invariant gradient norm (SIGN), that enables a highly reliable
and versatile algorithm. The precision of dephasing parameters is
between 8× and 50× better for nonlinear model fitting compared
to that for the centerline-slope (CLS) method, which effectively increases
data acquisition efficiency by 1–2 orders of magnitude. Whereas
the CLS method requires sequential fitting of both the nonlinear and
linear spectra, our model fitting algorithm only requires nonlinear
spectra but accurately predicts the linear spectrum. We show an experimental
example in which the CLS time constants differ by 60% for independent
measurements of the same system, while the Kubo time constants differ
by only 10% for model fitting. This suggests that model fitting is
a far more robust method of measuring spectral diffusion than the
CLS method, which is more susceptible to structured residual signals
that are not removable by pure solvent subtraction. Statistical analysis
of the CLS method reveals a fundamental oversight in accounting for
the propagation of uncertainty by Kubo time constants in the process
of fitting to the linear absorption spectrum. A standalone desktop
app and source code for the least-squares fitting algorithm are freely
available, with example line-shape models and data. We have written
the MATLAB source code in a generic framework where users may supply
custom line-shape models. Using this application, a standard desktop
fits a 12-parameter generalized Kubo model to a 106 data-point
spectrum in a few minutes.
Collapse
Affiliation(s)
- Kevin C Robben
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | |
Collapse
|
25
|
Meech S. Virtual Issue on Ultrafast Spectroscopy. J Phys Chem B 2021; 125:6037-6039. [PMID: 34134490 DOI: 10.1021/acs.jpcb.1c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steve Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, U.K
| |
Collapse
|
26
|
Hoffman DJ, Fica-Contreras SM, Pan J, Fayer MD. Distinguishing steric and electrostatic molecular probe orientational ordering via their effects on reorientation-induced spectral diffusion. J Chem Phys 2021; 154:244104. [PMID: 34241361 DOI: 10.1063/5.0053308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The theoretical framework for reorientation-induced spectral diffusion (RISD) describes the polarization dependence of spectral diffusion dynamics as measured with two-dimensional (2D) correlation spectroscopy and related techniques. Generally, RISD relates to the orientational dynamics of the molecular chromophore relative to local electric fields of the medium. The predictions of RISD have been shown to be very sensitive to both restricted orientational dynamics (generally arising from steric hindrance) and the distribution of local electric fields relative to the probe (electrostatic ordering). Here, a theory that combines the two effects is developed analytically and supported with numerical calculations. The combined effects can smoothly vary the polarization dependence of spectral diffusion from the purely steric case (least polarization dependence) to the purely electrostatic case (greatest polarization dependence). Analytic approximations of the modified RISD equations were also developed using the orientational dynamics of the molecular probe and two order parameters describing the degree of electrostatic ordering. It was found that frequency-dependent orientational dynamics are a possible consequence of the combined electrostatic and steric effects, providing a test for the applicability of this model to experimental systems. The modified RISD equations were then used to successfully describe the anomalous polarization-dependent spectral diffusion seen in 2D infrared spectroscopy in a polystyrene oligomer system that exhibits frequency-dependent orientational dynamics. The degree of polarization-dependent spectral diffusion enables the extent of electrostatic ordering in a chemical system to be quantified and distinguished from steric ordering.
Collapse
Affiliation(s)
- David J Hoffman
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | - Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
27
|
Zeng Y, Jia Y, Yan T, Zhuang W. Binary structure and dynamics of the hydrogen bonds in the hydration shells of ions. Phys Chem Chem Phys 2021; 23:11400-11410. [PMID: 33949400 DOI: 10.1039/d0cp06397e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion-specific effects of cations (Li+, Na+, K+, Mg2+, Ca2+) and anions (F-, Cl-) on the hydrogen bond structure and dynamics of the coordination waters in the hydration shells have been studied using molecular dynamics simulations. Our simulations indicate that the hydrogen bonds between the first and second hydration shell waters show binary structural and dynamic properties. The hydrogen bond with a first shell water as the donor (HD) is strengthened, while those with a first shell water as the acceptor (HA) are weakened. For a hydrated anion, this binary effect reverses, but is less significant. This ion-specific binary effect correlates with the size and the valence of the ion, and is more significant for the strong kosmotropic ions of high charge density.
Collapse
Affiliation(s)
- Yonghui Zeng
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yunzhe Jia
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Tianying Yan
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
28
|
Johnson CA, Parker AW, Donaldson PM, Garrett-Roe S. An ultrafast vibrational study of dynamical heterogeneity in the protic ionic liquid ethyl-ammonium nitrate. I. Room temperature dynamics. J Chem Phys 2021; 154:134502. [PMID: 33832238 DOI: 10.1063/5.0044822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using ultrafast two-dimensional infrared spectroscopy (2D-IR), a vibrational probe (thiocyanate, SCN-) was used to investigate the hydrogen bonding network of the protic ionic liquid ethyl-ammonium nitrate (EAN) in comparison to H2O. The 2D-IR experiments were performed in both parallel (⟨ZZZZ⟩) and perpendicular (⟨ZZXX⟩) polarizations at room temperature. In EAN, the non-Gaussian lineshape in the FTIR spectrum of SCN- suggests two sub-ensembles. Vibrational relaxation rates extracted from the 2D-IR spectra provide evidence of the dynamical differences between the two sub-ensembles. We support the interpretation of two sub-ensembles with response function simulations of two overlapping bands with different vibrational relaxation rates and, otherwise, similar dynamics. The measured rates for spectral diffusion depend on polarization, indicating reorientation-induced spectral diffusion (RISD). A model of restricted molecular rotation (wobbling in a cone) fully describes the observed spectral diffusion in EAN. In H2O, both RISD and structural spectral diffusion contribute with similar timescales. This complete characterization of the dynamics at room temperature provides the basis for the temperature-dependent measurements in Paper II of this series.
Collapse
Affiliation(s)
- Clinton A Johnson
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Anthony W Parker
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom
| | - Paul M Donaldson
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
29
|
Valentine ML, Waterland MK, Fathizadeh A, Elber R, Baiz CR. Interfacial Dynamics in Lipid Membranes: The Effects of Headgroup Structures. J Phys Chem B 2021; 125:1343-1350. [DOI: 10.1021/acs.jpcb.0c08755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mason L. Valentine
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Maya K. Waterland
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Arman Fathizadeh
- Oden Institute for Computational Science and Engineering, Austin, Texas 78712, United States
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
- Oden Institute for Computational Science and Engineering, Austin, Texas 78712, United States
| | - Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
30
|
Hoffman DJ, Fayer MD. CLS Next Gen: Accurate Frequency–Frequency Correlation Functions from Center Line Slope Analysis of 2D Correlation Spectra Using Artificial Neural Networks. J Phys Chem A 2020; 124:5979-5992. [DOI: 10.1021/acs.jpca.0c04313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J. Hoffman
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
31
|
Lane PD, Reichenbach J, Farrell AJ, Ramakers LAI, Adamczyk K, Hunt NT, Wynne K. Experimental observation of nanophase segregation in aqueous salt solutions around the predicted liquid-liquid transition in water. Phys Chem Chem Phys 2020; 22:9438-9447. [PMID: 32314750 DOI: 10.1039/c9cp06082k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The liquid-liquid transition in supercooled liquid water, predicted to occur around 220 K, is controversial due to the difficulty of studying it caused by competition from ice crystallization (the so-called "no man's land"). In aqueous solutions, it has been predicted to give rise to phase separation on a nanometer scale between a solute-rich high-density phase and a water-rich low-density phase. Here we report direct experimental evidence for the formation of a nanosegregated phase in eutectic aqueous solutions of LiCl and LiSCN where the presence of crystalline water can be experimentally excluded. Femtosecond infrared and Raman spectroscopies are used to determine the temperature-dependent structuring of water, the solvation of the SCN- anion, and the size of the phase segregated domains.
Collapse
Affiliation(s)
- Paul D Lane
- Department of Physics, SUPA, University of Strathclyde, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Chen X, Luo X, Li J, Qiu R, Lin J. Cooperative CO 2 absorption by amino acid-based ionic liquids with balanced dual sites. RSC Adv 2020; 10:7751-7757. [PMID: 35492158 PMCID: PMC9049852 DOI: 10.1039/c9ra09293e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/04/2020] [Indexed: 02/05/2023] Open
Abstract
In this study, a variety of functionalized ILs with dual sites including amino acid group (AA) and basic anion (R) were synthesized to investigate the suppression and cooperation between the sites in CO2 absorption. The basic anions selected in this study with different basicity include sulfonate (Su), carboxylate (Ac), imidazolium (Im), and indolium (Ind). These ILs ([P66614]2[AA-R]) were applied to CO2 absorption. The results present that CO2 capacity increases first and then decreases later with the continuous increase in the activity of the anion site. Combined with CO2 absorption experiments, IR and NMR spectroscopic analyses and DFT calculation demonstrate that the ability of one site to capture CO2 would be suppressed when the activity of another site is much stronger. Thus, the cooperation of dual site-functionalized ILs and high CO2 capacity might be achieved through balancing the two sites to be equivalent. Based on this point, [P66614]2[5Am-iPA] was further synthesized by taking the advantage of the conjugated benzene ring. As expected, [P66614]2[5Am-iPA] showed capacity as high as 2.38 mol CO2 per mol IL at 30 °C and 1 bar without capacity decrease even after 10 times recycling performance of CO2 absorption and desorption.
Collapse
Affiliation(s)
- Xiaoyan Chen
- College of Materials Science and Engineering, Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Xiaoyan Luo
- College of Materials Science and Engineering, Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Jiaran Li
- College of Materials Science and Engineering, Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Rongxing Qiu
- College of Materials Science and Engineering, Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Jinqing Lin
- College of Materials Science and Engineering, Huaqiao University Xiamen Fujian 361021 P. R. China
| |
Collapse
|
33
|
Chatterjee S, Ghosh D, Haldar T, Deb P, Sakpal SS, Deshmukh SH, Kashid SM, Bagchi S. Hydrocarbon Chain-Length Dependence of Solvation Dynamics in Alcohol-Based Deep Eutectic Solvents: A Two-Dimensional Infrared Spectroscopic Investigation. J Phys Chem B 2019; 123:9355-9363. [DOI: 10.1021/acs.jpcb.9b08954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Deborin Ghosh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Tapas Haldar
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranab Deb
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil S. Sakpal
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samadhan H. Deshmukh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Somnath M. Kashid
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|