1
|
Polycarpou G, Skourtis SS. Nickel-Dithiolene Cofactors as Electron Donors and Acceptors in Protein Hosts. J Phys Chem B 2025; 129:2992-3006. [PMID: 40049608 PMCID: PMC11931547 DOI: 10.1021/acs.jpcb.4c08264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/21/2025]
Abstract
Metal dithiolene compounds are attracting considerable attention in the field of molecular electronics, particularly as constituents of materials with high charge-carrier mobilities. Recent experiments on cable bacteria that perform centimeter-scale charge transport suggest that Ni-bis(dithiolene) cofactors are important components of the bacterial conductive network. Further, current-voltage experiments of cable-bacteria-conductive sheaths have measured high conductivity values as compared to other electron-transfer bacteria. An important question is how the Ni-bis(dithiolene) structures participating as electron donors/acceptors contribute to the high conductivity. Currently, the protein and cofactor structures of these bacterial networks are largely unknown. Given this limitation, in this work, we explore the more general question of how Ni-bis(dithiolene) molecules would perform as electron donor and acceptor centers in protein-mediated charge transfer. Our aim is to deduce order-of-magnitude higher bounds for charge-transfer rates in such systems as a function of donor-acceptor distance, protein-bridge (amino acid) sequence, cofactor size, and redox state. These bounds are useful for predicting charge-transfer mechanisms and estimating rates in the absence of detailed structural information on protein wires that may use Ni-bis(dithiolene) redox cofactors. Our analysis is also relevant to the design of artificial Ni-bis(dithiolene) protein wires.
Collapse
|
2
|
Jiang F, Wang Z, Cong Z. Tuning the peroxidase activity of artificial P450 peroxygenase by engineering redox-sensitive residues. Faraday Discuss 2024; 252:52-68. [PMID: 38836616 DOI: 10.1039/d4fd00008k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cytochrome P450 monooxygenases (P450s) are well recognized as versatile bio-oxidation catalysts. However, the catalytic functions of P450s are highly dependent on NAD(P)H and redox partner proteins. Our group has recently reported the use of a dual-functional small molecule (DFSM) for generating peroxygenase activity of P450BM3, a long-chain fatty acid hydroxylase from Bacillus megaterium. The DFSM-facilitated P450BM3 peroxygenase system exhibited excellent peroxygenation activity and regio-/enantioselectivity for various organic substrates, such as styrenes, thioanisole, small alkanes, and alkylbenzenes. Very recently, we demonstrated that the DFSM-facilitated P450BM3 peroxygenase could be switched to a peroxidase by engineering the redox-sensitive tyrosine residues in P450BM3. Given the great potential of P450 peroxidase for C-H oxyfunctionalization, we herein report scrutiny of the effect of mutating redox-sensitive residues on peroxidase activity by deeply screening all redox-sensitive residues of P450BM3, namely methionines, tryptophans, cysteines, and phenylalanines. As a result, six beneficial mutations at positions M212, F81, M112, F173, M177, and F77 were screened out from 78 constructed mutants, and significantly enhanced the peroxidase activity of P450BM3 in the presence of Im-C6-Phe, a typical DFSM molecule. Further combination of the beneficial mutations resulted in a more than 100-fold improvement in peroxidase activity compared with that of the combined parent enzyme and DFSM, comparable to or better than most natural peroxidases. In addition, mutations of redox-sensitive residues even dramatically increased, by more than 300-fold, the peroxidase activity of the starting F87A enzyme in the absence of the DFSM, despite the far lower apparent catalytic turnover number compared with the DFSM-P450 system. This study provides new insights and a potential strategy for regulating the catalytic promiscuity of P450 enzymes for multiple functional oxidations.
Collapse
Affiliation(s)
- Fengjie Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
3
|
Ravanfar R, Sheng Y, Gray HB, Winkler JR. Tryptophan extends the life of cytochrome P450. Proc Natl Acad Sci U S A 2023; 120:e2317372120. [PMID: 38060561 PMCID: PMC10722969 DOI: 10.1073/pnas.2317372120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
Powerfully oxidizing enzymes need protective mechanisms to prevent self-destruction. The flavocytochrome P450 BM3 from Priestia megaterium (P450BM3) is a self-sufficient monooxygenase that hydroxylates fatty acid substrates using O2 and NADPH as co-substrates. Hydroxylation of long-chain fatty acids (≥C14) is well coupled to O2 and NADPH consumption, but shorter chains (≤C12) are more poorly coupled. Hydroxylation of p-nitrophenoxydodecanoic acid by P450BM3 produces a spectrophotometrically detectable product wherein the coupling of NADPH consumption to product formation is just 10%. Moreover, the rate of NADPH consumption is 1.8 times that of O2 consumption, indicating that an oxidase uncoupling pathway is operative. Measurements of the total number of enzyme turnovers before inactivation (TTN) indicate that higher NADPH concentrations increase TTN. At lower NADPH levels, added ascorbate increases TTN, while a W96H mutation leads to a decrease. The W96 residue is about 7 Å from the P450BM3 heme and serves as a gateway residue in a tryptophan/tyrosine (W/Y) hole transport chain from the heme to a surface tyrosine residue. The data indicate that two oxidase pathways protect the enzyme from damage by intercepting the powerfully oxidizing enzyme intermediate (Compound I) and returning it to its resting state. At high NADPH concentrations, reducing equivalents from the flavoprotein are delivered to Compound I by the usual reductase pathway. When NADPH is not abundant, however, oxidizing equivalents from Compound I can traverse a W/Y chain, arriving at the enzyme surface where they are scavenged by reductants. Ubiquitous tryptophan/tyrosine chains in highly oxidizing enzymes likely perform similar protective functions.
Collapse
Affiliation(s)
- Raheleh Ravanfar
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Yuling Sheng
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
4
|
Ravanfar R, Sheng Y, Gray HB, Winkler JR. Tryptophan-96 in cytochrome P450 BM3 plays a key role in enzyme survival. FEBS Lett 2023; 597:59-64. [PMID: 36250256 PMCID: PMC9839481 DOI: 10.1002/1873-3468.14514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 01/17/2023]
Abstract
Flavocytochrome P450 from Bacillus megaterium (P450BM3 ) is a natural fusion protein containing reductase and heme domains. In the presence of NADPH and dioxygen the enzyme catalyses the hydroxylation of long-chain fatty acids. Analysis of the P450BM3 structure reveals chains of closely spaced tryptophan and tyrosine residues that might serve as pathways for high-potential oxidizing equivalents to escape from the heme active site when substrate oxidation is not possible. Our investigations of the total number of enzyme turnovers before deactivation have revealed that replacement of selected tryptophan and tyrosine residues with redox inactive groups leads to a twofold reduction in enzyme survival time. Tryptophan-96 is critical for prolonging enzyme activity, suggesting a key protective role for this residue.
Collapse
Affiliation(s)
- Raheleh Ravanfar
- Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Yuling Sheng
- Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Ma N, Fang W, Liu C, Qin X, Wang X, Jin L, Wang B, Cong Z. Switching an Artificial P450 Peroxygenase into Peroxidase via Mechanism-Guided Protein Engineering. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhan Fang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Xiling Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Longyi Jin
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Binju Wang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Eidenschenk C, Cheruzel L. Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand. J Inorg Biochem 2020; 213:111254. [PMID: 32979791 PMCID: PMC7686262 DOI: 10.1016/j.jinorgbio.2020.111254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionalization and was successfully applied to other P450 enzymes. In this review, we wish to present the recent contributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical catalysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid ligand loss feature in those complexes.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department Biochemical and Cellular Pharmacology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|