1
|
Beaton AA, Guinness A, Franck JM. Rapidly Screening the Correlation between the Rotational Mobility and the Hydrogen Bonding Strength of Confined Water. J Phys Chem B 2024; 128:10749-10763. [PMID: 39439388 PMCID: PMC11533181 DOI: 10.1021/acs.jpcb.4c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Automated Deuterium Relaxation-Ordered SpectroscopY in solution (ADROSYS), an automated two-dimensional deuterium NMR methodology, discriminates between D2O populations (as well as deuterium-labeled alcohol groups) whose properties differ as a result of being confined inside nanoscale volumes. In this contribution, a proof-of-principle demonstration on reverse micelles (RMs) yields the insight that as the length scale of the confinement decreases from several nanometers down to less than a nanometer, the position of the signal peak migrates through the two-dimensional (2D) spectrum, tracing out a distinctive path in the 2D space (of relaxation time vs chemical shift). The signals typically follow a relatively gentle linear path for water confined on the scale of several nanometers, before curving once the surfactants confine the water molecules to length scales smaller than 1-2 nm. The qualitative shape of this path, especially in the regime of strong confinement, can change with different choices of surfactants, i.e., a different choice of chemistry at the edges of the confining environment. An important facet of this research was to demonstrate the relatively wide applicability of these techniques by showing that both: (1) Standard modern NMR instrumentation is capable of deploying an automated measurement, even though the choice of a deuterium nucleus is nonstandard and frequently requires companion proton spectra in order to reference the chemical shifts; and (2) well-established (though underutilized) modern techniques can process the resulting signal even though it involves the somewhat unusual combination of chemical shifts along one dimension and a distribution of relaxation times along another dimension. In addition to demonstrating that this technique can be deployed across many samples of interest, detailed facts pertaining to the broadening or shifting of resulting signals upon inclusion of various guest molecules are also discussed.
Collapse
Affiliation(s)
- Alec A. Beaton
- Department of Chemistry, Syracuse University, Syracuse, New York 13210, United States
| | - Alexandria Guinness
- Department of Chemistry, Syracuse University, Syracuse, New York 13210, United States
| | - John M. Franck
- Department of Chemistry, Syracuse University, Syracuse, New York 13210, United States
| |
Collapse
|
2
|
Deymier AC, Deymier PA. Open-system force-elongation relationship of collagen in chemo-mechanical equilibrium with water. J Mech Behav Biomed Mater 2024; 152:106464. [PMID: 38367533 DOI: 10.1016/j.jmbbm.2024.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
A significant deformation mechanism of collagen at low loads is molecular uncoiling and rearrangement. Although the effect of hydration and cross-linking has been investigated at larger loads when collagen undergoes molecular sliding, their effects on collagen molecular reorganization remain unclear. Here we develop two thermodynamic models that use the notion of open-system elasticity to elucidate the effect of swelling due to water uptake during deformation of collagen networks under low and high cross-linking conditions. With low crosslinking, entropic contributions dominate resulting in rejection of solvent from the polymer network leading to reduced collagen stiffness with increased loads. Contrarily, high cross-linking inhibits initial coiling and structural kinking and the mechanical behavior is dominated by elastic energy. In this configuration, the solvent content depends on the sign of the applied load resulting in a non-linear open-system stress-strain relationship. The models provide insight on the parameters that impact the stress-strain relationships of hydrated collagen and can inform the way collagenous matrices are treated both in medical and laboratory settings.
Collapse
Affiliation(s)
- A C Deymier
- Department of Biomedical Engineering, UConn Health, Farmington, CT, USA.
| | - P A Deymier
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
3
|
Bini F, Pica A, Marinozzi A, Marinozzi F. 3D Tortuosity and Diffusion Characterization in the Human Mineralized Collagen Fibril Using a Random Walk Model. Bioengineering (Basel) 2023; 10:bioengineering10050558. [PMID: 37237628 DOI: 10.3390/bioengineering10050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone tissue is mainly composed at the nanoscale of apatite minerals, collagen molecules and water that form the mineralized collagen fibril (MCF). In this work, we developed a 3D random walk model to investigate the influence of bone nanostructure on water diffusion. We computed 1000 random walk trajectories of water molecules within the MCF geometric model. An important parameter to analyse transport behaviour in porous media is tortuosity, computed as the ratio between the effective path length and the straight-line distance between initial and final points. The diffusion coefficient is determined from the linear fit of the mean squared displacement of water molecules as a function of time. To achieve more insight into the diffusion phenomenon within MCF, we estimated the tortuosity and diffusivity at different quotes in the longitudinal direction of the model. Tortuosity is characterized by increasing values in the longitudinal direction. As expected, the diffusion coefficient decreases as tortuosity increases. Diffusivity outcomes confirm the findings achieved by experimental investigations. The computational model provides insights into the relation between the MCF structure and mass transport behaviour that may contribute to the improvement of bone-mimicking scaffolds.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 43/B, 07100 Sassari, Italy
| | - Andrea Marinozzi
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
| |
Collapse
|
4
|
Merryweather DJ, Weston N, Roe J, Parmenter C, Lewis MP, Roach P. Exploring the microstructure of hydrated collagen hydrogels under scanning electron microscopy. J Microsc 2023; 290:40-52. [PMID: 36718074 DOI: 10.1111/jmi.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/05/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Collagen hydrogels are a rapidly expanding platform in bioengineering and soft materials engineering for novel applications focused on medical therapeutics, medical devices and biosensors. Observations linking microstructure to material properties and function enables rational design strategies to control this space. Visualisation of the microscale organisation of these soft hydrated materials presents unique technical challenges due to the relationship between hydration and the molecular organisation of a collagen gel. Scanning electron microscopy is a robust tool widely employed to visualise and explore materials on the microscale. However, investigation of collagen gel microstructure is difficult without imparting structural changes during preparation and/or observation. Electrons are poorly propagated within liquid-phase materials, limiting the ability of electron microscopy to interrogate hydrated gels. Sample preparation techniques to remove water induce artefactual changes in material microstructure particularly in complex materials such as collagen, highlighting a critical need to develop robust material handling protocols for the imaging of collagen hydrogels. Here a collagen hydrogel is fabricated, and the gel state explored under high-vacuum (10-6 Pa) and low-vacuum (80-120 Pa) conditions, and in an environmental SEM chamber. Visualisation of collagen fibres is found to be dependent on the degree of sample hydration, with higher imaging chamber pressures and humidity resulting in decreased feature fidelity. Reduction of imaging chamber pressure is used to induce evaporation of gel water content, revealing collagen fibres of significantly larger diameter than observed in samples dehydrated prior to imaging. Rapid freezing and cryogenic handling of the gel material is found to retain a porous 3D structure following sublimation of the gel water content. Comparative analysis of collagen hydrogel materials demonstrates the care needed when preparing hydrogel samples for electron microscopy.
Collapse
Affiliation(s)
- Daniel J Merryweather
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Nicola Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Jordan Roe
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK.,Department of Materials, Loughborough University, Leicestershire, UK
| | | | - Mark P Lewis
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| |
Collapse
|
5
|
Crețu A, Mattea C, Stapf S. Low-field and variable-field NMR relaxation studies of H2O and D2O molecular dynamics in articular cartilage. PLoS One 2021; 16:e0256177. [PMID: 34432832 PMCID: PMC8386884 DOI: 10.1371/journal.pone.0256177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis (OA) as the main degenerative disease of articular cartilage in joints is accompanied by structural and compositional changes in the tissue. Degeneration is a consequence of a reduction of the amount of macromolecules, the so-called proteoglycans, and of a corresponding increase in water content, both leading to structural weakening of cartilage. NMR investigations of cartilage generally address only the relaxation properties of water. In this study, two-dimensional (T1-T2) measurements of bovine articular cartilage samples were carried out for different stages of hydration, complemented by molecular exchange with D2O and treatment by trypsin which simulates degeneration by OA. Two signal components were identified in all measurements, characterized by very different T2 which suggests liquid-like and solid-like dynamics. These measurements allow the quantification of separate hydrogen components and their assignment to defined physical pools which had been discussed repeatedly in the literature, i.e. bulk-like water and a combination of protein hydrogens and strongly bound water. The first determination of 2H relaxation dispersion in comparison to 1H dispersion suggests intramolecular interactions as the dominating source for the pronounced magnetic field dependence of the longitudinal relaxation time T1.
Collapse
Affiliation(s)
- Andrea Crețu
- Fachgebiet Technische Physik II/Polymerphysik, Institute of Physics, Technische Universität Ilmenau, Germany
| | - Carlos Mattea
- Fachgebiet Technische Physik II/Polymerphysik, Institute of Physics, Technische Universität Ilmenau, Germany
| | - Siegfried Stapf
- Fachgebiet Technische Physik II/Polymerphysik, Institute of Physics, Technische Universität Ilmenau, Germany
| |
Collapse
|
6
|
Vaissier Welborn V. Environment-controlled water adsorption at hydroxyapatite/collagen interfaces. Phys Chem Chem Phys 2021; 23:13789-13796. [PMID: 33942041 DOI: 10.1039/d1cp01028j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water contributes to the structure of bone by coupling hydroxyapatite to collagen over the hierarchical levels of tissue organization. Bone water exists in two states, bound or mobile, each accomplishing different roles. Although many experimental studies show that the amount of bound water correlates with bone strength, a molecular understanding of the interactions between hydroxyapatite, collagen and water is missing. In this work, we unveil the water adsorption properties of bone tissues at the nanoscale using advanced density functional theory methods. We demonstrate that environmental factors such as collagen conformation or degree of confinement, rather than the surface itself, dictate the adsorption mode, strength and density of water on hydroxyapatite. While the results derived in this paper come from a simplified model of bone tissues, they are consistent with experimental observations and constitute a reasonable starting point for more realistic models of bone tissues. For example, we show that environmental changes expected in aging bone lead to reduced water adsorption capabilities, which is consistent with weaker bones at the macroscale. Our findings provide a new interpretation of molecular interactions in bone tissues with the potential to impact bone repair strategies.
Collapse
|
7
|
Bini F, Pica A, Marinozzi A, Marinozzi F. 3D random walk model of diffusion in human Hypo- and Hyper- mineralized collagen fibrils. J Biomech 2021; 125:110586. [PMID: 34186294 DOI: 10.1016/j.jbiomech.2021.110586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/04/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022]
Abstract
Bone tissue is composed at the nanoscale of apatite minerals, collagen molecules and water that form the mineralized collagen fibril (MCF). Water has a crucial role in bone biomineralization. We developed a 3D random walk model to investigate the water diffusion process within the MCF for three different scenarios, namely low, intermediate and high mineral volume fraction. The MCF geometric model is obtained after applying 6·106 translational and rotational perturbations to an ordered arrangement of mineral. Subsequently, we compute 300 random trajectories of water molecules within the MCF for each mineral volume fraction. Every trajectory is constituted of up to 500 k positions of the water particle. We determined the diffusion coefficient from the linear fit of the mean squared displacement of water molecules as a function of time. We investigate changes in the diffusivity values in relation to variation of bone mineral content. The analysis performed on the random walk data, for all mineralization conditions, leads to diffusion coefficients in good agreement with the diffusivity outcomes achieved from previous experimental studies. Thus, the 3D geometrical configuration adopted in this numerical study appears suitable for modelling the MCF with different volume fractions, from hypo- to hyper-mineralized conditions. We observed that low mineral content is associated with an increase of the water diffusion, while lower values of diffusivity are determined in hypermineralized conditions. In agreement with experimental data, our results highlight the influence of the structural alterations on the mass transport properties.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, via Eudossiana, 18, 00184 Rome, Italy.
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, via Eudossiana, 18, 00184 Rome, Italy
| | - Andrea Marinozzi
- Orthopedy and Traumatology Area, "Campus Bio-Medico" University, via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, via Eudossiana, 18, 00184 Rome, Italy
| |
Collapse
|
8
|
Abstract
Studying changes in collagen deformation behavior at the nanoscale due to variations in mineralization and hydration is important for characterizing and developing collagen-based bio-composites. Recent studies also find that carbon nanotubes (CNTs) show promise as a reinforcing material for collagenous bio-composites. Currently, the effects of variation in mineral, water, and CNT content on collagen gap and overlap region mechanics during compression is unexplored. We use molecular dynamics simulations to investigate how variations in mineral, water, and CNT contents of collagen bio-composites in compression change their deformation behavior and thermal properties. Results indicate that variations in mineral and water content affect the collagen structure due to expansion or contraction of the gap and overlap regions. The deformation mechanisms of the gap and overlap regions also change. The presence of CNTs in non-mineralized collagen reduces the deformation of the gap region and increases the bio-composite elastic modulus to ranges comparable to mineralized collagen. The collagen/CNT bio-composites are also determined to have a higher specific heat than the studied mineralized collagen bio-composites, making them more likely to be resistant to thermal damage that could occur during implantation or functional use of a collagen collagen/CNT bio-composite biomaterial.
Collapse
Affiliation(s)
- Marco Fielder
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas , Fayetteville, AR, USA
| | - Arun K Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas , Fayetteville, AR, USA.,Institute for Nanoscience and Engineering, University of Arkansas , Fayetteville, AR, USA
| |
Collapse
|
9
|
Viani A, Mácová P, Machová D, Mali G. Technical Note: Post-burial alteration of bones: Quantitative characterization with solid-state 1H MAS NMR. Forensic Sci Int 2021; 323:110783. [PMID: 33878550 DOI: 10.1016/j.forsciint.2021.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/28/2021] [Accepted: 04/05/2021] [Indexed: 12/01/2022]
Abstract
The identification of markers of the modifications occurring in human bones after death and of the sedimentary and post-sedimentary processes affecting their state of preservation, is of interest for several scientific disciplines. A new index, obtained from spectral deconvolution of the 1H MAS NMR spectra of bones, relating the number of organic protons to the amount of hydrogen nuclei in the OH- groups of bioapatite, is proposed as indicator of the state of preservation of the organic fraction. In the osteological material from three different archaeological sites, this index resulted positively correlated with the extent of collagen loss derived from infrared spectroscopy. Its sensitivity to changes in the physical and chemical characteristics of bone allows to identify distinct diagenetic pathways specific to each site and to distinguish different trajectories within the same site.
Collapse
Affiliation(s)
- Alberto Viani
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic.
| | - Petra Mácová
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic
| | - Dita Machová
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic
| | - Gregor Mali
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
10
|
Öfkeli F, Demir D, Bölgen N. Biomimetic mineralization of chitosan/gelatin cryogels and in vivo biocompatibility assessments for bone tissue engineering. J Appl Polym Sci 2020. [DOI: 10.1002/app.50337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fatma Öfkeli
- Chemical Engineering Department Mersin University Mersin Turkey
| | - Didem Demir
- Chemical Engineering Department Mersin University Mersin Turkey
| | - Nimet Bölgen
- Chemical Engineering Department Mersin University Mersin Turkey
| |
Collapse
|
11
|
Peterson HM, Tank A, Geller DS, Yang R, Gorlick R, Hoang BH, Roblyer D. Characterization of bony anatomic regions in pediatric and adult healthy volunteers using diffuse optical spectroscopic imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-17. [PMID: 32790252 PMCID: PMC7422854 DOI: 10.1117/1.jbo.25.8.086002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Diffuse optical spectroscopic imaging (DOSI) measures quantitative functional and molecular information in thick tissue in a noninvasive manner using near-infrared light. DOSI may be useful for diagnosis and prognosis of bone pathologies including osteosarcoma and Ewing's sarcoma, but little is currently known about DOSI-derived parameters in bony anatomic locations where this disease occurs. AIM Our goal is to quantify the optical characteristics and chromophore content of bony anatomic locations of healthy volunteers and assess differences due to anatomic region, age, sex, ethnicity, race, and body fat. APPROACH Fifty-five healthy volunteers aged 4 to 72 were enrolled in the study. The optical properties and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids were assessed at the distal humerus, distal femur, and proximal tibia. Body fat was assessed using skinfold calipers. One volunteer underwent a more comprehensive body scan from neck to foot to explore chromophore distributions within an individual. Regression analysis was used to identify the most important sources of variation in the measured data set. RESULTS Statistical differences between bony locations were found for scattering, water, and lipids, but not for hemoglobin. All chromophores had statistical differences with sex, but there were no significant age-related correlations. Regression analysis revealed that body fat measured with skinfold calipers was the most important predictor of oxy-, deoxy-, total hemoglobin, and lipids. Hemoglobin and lipid levels were highly correlated (ρ ≥ 0.7) over the subject population and within the single-subject body scan. CONCLUSIONS DOSI can successfully measure bony anatomic sites where osteosarcomas and Ewing's sarcomas commonly occur. Future studies of bone pathology using DOSI should account for the variation caused by anatomic region, sex, race and ethnicity, and body fat as these cause substantial variations in DOSI-derived metrics.
Collapse
Affiliation(s)
- Hannah M. Peterson
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Anup Tank
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - David S. Geller
- Montefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Rui Yang
- Montefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Richard Gorlick
- MD Anderson Cancer Center, Division of Pediatrics, Houston, Texas, United States
| | - Bang H. Hoang
- Montefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Tiwari N, Rai R, Sinha N. Water-lipid interactions in native bone by high-resolution solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101666. [PMID: 32371298 DOI: 10.1016/j.ssnmr.2020.101666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The study of structural and dynamical properties of lipid and its associated interaction with different components of bone is essential to understand its role at a different level of bone homeostasis such as bone mineralization and bone metabolism. In this article, we present water-dependent dynamical changes observed in lipids (triglycerides) in its absolute native environment inside bone by high-resolution 1H solid-state nuclear magnetic resonance spectroscopy (ssNMR). Relaxation measurement (T2 measurement) ssNMR experiments were performed at different levels of water network induced by dehydration and H/D exchange in native bone. Our measurements reflect the changes in the local environment and dynamical properties of triglyceride due to different hydration levels. The present study explains the role of water in stabilizing the structural properties of triglycerides in bone hence will help understand its pathological role associated with bone physiology and bone disorders.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, 226014, India; Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - RamaNand Rai
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, 226014, India.
| |
Collapse
|
13
|
Static Solid Relaxation Ordered Spectroscopy: SS-ROSY. Int J Mol Sci 2019; 20:ijms20235888. [PMID: 31771243 PMCID: PMC6928731 DOI: 10.3390/ijms20235888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022] Open
Abstract
A two-dimensional pulse sequence is introduced for correlating nuclear magnetic resonance anisotropic chemical shifts to a relaxation time (e.g., T1) in solids under static conditions. The sequence begins with a preparatory stage for measuring relaxation times, and is followed by a multiple pulse sequence for homonuclear dipolar decoupling. Data analysis involves the use of Fourier transform, followed by a one-dimensional inverse Laplace transform for each frequency index. Experimental results acquired on solid samples demonstrate the general approach, and additional variations involving heteronuclear decoupling and magic angle spinning are discussed.
Collapse
|
14
|
Karunanayake G, Ng YL, Knowles JC, Delgado AHS, Young AM, Gulabivala K, Nazhat SN. The effect of NaOCl and heat treatment on static and dynamic mechanical properties and chemical changes of dentine. J Mech Behav Biomed Mater 2019; 97:330-338. [PMID: 31153114 DOI: 10.1016/j.jmbbm.2019.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine the effect of heat on flexural strength (FS), maximum strain (MS), storage modulus (SM), tan delta (TD) and chemical changes through micro-Raman spectroscopy of dentine exposed to 2.5% NaOCl or saline. METHOD ology: Dentine bars were randomly allocated to 8 test groups. Half (groups 2,4,6,8) were treated with NaOCl for 20 min; the rest (groups 1,3,5,7) remained in saline. FS/MS were measured in groups 1-4 (n = 15) (3/4 were also heated to 200 °C & re-hydrated in saline). Micro-Raman spectroscopy was performed on bars from groups 1-4. SM/TD were measured in 5-8: in 5/6 (n = 10), repeated after heating (200 °C), then following re-hydration; in 7/8 (n = 3) after heating to 25-185 °C. RESULTS Increase in MS on heat and FS/MS on heat + NaOCl was not significant (P > 0.05). SM increased (P = 0.06) after heat treatment but reduced to initial state after rehydration (P = 0.03). TD did not change (P = 0.4) after heat (200 °C) treatment but rehydration increased it compared with pre-treatment state (P = 0.001). For dentine bars pre-treated with NaOCl, SM did not change (P = 0.6) after heat (200 °C) treatment or rehydration but TD significantly increased (P = 0.02) upon re-hydration compared with pre- (P=0.007), or post- (P = 0.03) heat-treatment states. SM and TD varied between 25-185 °C with no consistent trend amongst the NaOCl pre-treated bars. Micro-Raman only detected chemical changes following NaOCl treatment in the mineral phase. CONCLUSIONS Exposure of dentine bars to heat and NaOCl produced only moderate changes to quasi-static but marked changes to viscoelastic properties, which may be explained by chemical alterations.
Collapse
Affiliation(s)
- G Karunanayake
- Unit of Endodontology, Division of Restorative Dental Science, UCL Eastman Dental Institute, University College London, London, UK
| | - Y-L Ng
- Unit of Endodontology, Division of Restorative Dental Science, UCL Eastman Dental Institute, University College London, London, UK.
| | - J C Knowles
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK; Institute of Tissue Regeneration Engineering (ITREN) and Department of NanobiomedicalScience and BK21 Plus NBM, Global Research Center for Regenerative Medicine, DankookUniversity, 518-10, Anseo-dong, Dongnam-gu, Cheonan, Chungcheongnam-do, South Korea; The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, GowerStreet, London, WC1E 6BT, UK
| | - A H S Delgado
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - A M Young
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - K Gulabivala
- Unit of Endodontology, Division of Restorative Dental Science, UCL Eastman Dental Institute, University College London, London, UK
| | - S N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Qc, H3A 0C5, Canada
| |
Collapse
|
15
|
Alterations of elastin in female reproductive tissues arising from advancing parity. Arch Biochem Biophys 2019; 666:127-137. [PMID: 30914253 DOI: 10.1016/j.abb.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 11/22/2022]
Abstract
Female reproductive tissues undergo significant alterations during pregnancy, which may compromise the structural integrity of extracellular matrix proteins. Here, we report on modifications of elastic fibers, which are primarily composed of elastin and believed to provide a scaffold to the reproductive tissues, due to parity and parturition. Elastic fibers from the upper vaginal wall of virgin Sprague Dawley rats were investigated and compared to rats having undergone one, three, or more than five pregnancies. Optical microscopy was used to study fiber level changes. Mass spectrometry, 13C and 2H NMR, was applied to study alterations of elastin from the uterine horns. Spectrophotometry was used to measure matrix metalloproteinases-2,9 and tissue inhibitor of metalloproteinase-1 concentration changes in the uterine horns. Elastic fibers were found to exhibit increase in tortuosity and fragmentation with increased pregnancies. Surprisingly, secondary structure, dynamics, and crosslinking of elastin from multiparous cohorts appear similar to healthy mammalian tissues, despite fragmentation observed at the fiber level. In contrast, elastic fibers from virgin and single pregnancy cohorts are less fragmented and comprised of elastin exhibiting structure and dynamics distinguishable from multiparous groups, with reduced crosslinking. These alterations were correlated to matrix metalloproteinases-2,9 and tissue inhibitor of metalloproteinase-1 concentrations. This work indicates that fiber level alterations resulting from pregnancy and/or parturition, such as fragmentation, rather than secondary structure (e.g. elastin crosslinking density), appear to govern scaffolding characteristics in the female reproductive tissues.
Collapse
|
16
|
Fielder M, Nair AK. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale. Biomech Model Mechanobiol 2018; 18:57-68. [PMID: 30088113 DOI: 10.1007/s10237-018-1067-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022]
Abstract
Bone is a biomaterial with a structural load-bearing function. Investigating the biomechanics of bone at the nanoscale is important in application to tissue engineering, the development of bioinspired materials, and for characterizing factors such as age, trauma, or disease. At the nanoscale, bone is composed of fibrils that are primarily a composite of collagen, apatite crystals (mineral), and water. Though several studies have been done characterizing the mechanics of fibrils, the effects of variation and distribution of water and mineral content in fibril gap and overlap regions are unexplored. We investigate how the deformation mechanisms of collagen fibrils change as a function of mineral and water content. We use molecular dynamics to study the mechanics of collagen fibrils of 0 wt%, 20 wt%, and 40 wt% mineralization and 0 wt%, 2 wt%, and 4 wt% hydration under applied tensile stresses. We observe that the stress-strain behavior becomes more nonlinear with an increase in hydration, and an increase in mineral content for hydrated fibrils under tensile stress reduces the nonlinear stress versus strain behavior caused by hydration. The Young's modulus of both non-mineralized and mineralized fibrils decreases as the water content increases. As the water content increases, the gap/overlap ratio increases by approximately 40% for the non-mineralized cases and 16% for the highly mineralized cases. Our results indicate that variations in mineral and water content change the distribution of water in collagen fibrils and that the water distribution changes the deformation of gap and overlap regions under tensile loading.
Collapse
Affiliation(s)
- Marco Fielder
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Arun K Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA. .,Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson Street, Fayetteville, AR, USA.
| |
Collapse
|
17
|
Ulman K, Busch S, Hassanali AA. Quantum mechanical effects in zwitterionic amino acids: The case of proline, hydroxyproline, and alanine in water. J Chem Phys 2018; 148:222826. [DOI: 10.1063/1.5008665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kanchan Ulman
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr. 1, 85747 Garching bei München, Germany
| | - Ali A. Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
18
|
Rajapakse CS, Padalkar MV, Yang HJ, Ispiryan M, Pleshko N. Non-destructive NIR spectral imaging assessment of bone water: Comparison to MRI measurements. Bone 2017; 103:116-124. [PMID: 28666972 PMCID: PMC5572678 DOI: 10.1016/j.bone.2017.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/07/2017] [Accepted: 06/21/2017] [Indexed: 01/22/2023]
Abstract
Bone fracture risk increases with age, disease states, and with use of certain therapeutics, such as acid-suppressive drugs, steroids and high-dose bisphosphonates. Historically, investigations into factors that underlie bone fracture risk have focused on evaluation of bone mineral density (BMD). However, numerous studies have pointed to factors other than BMD that contribute to fragility, including changes in bone collagen and water. The goal of this study is to investigate the feasibility of using near infrared spectral imaging (NIRSI) to determine the spatial distribution and relative amount of water and organic components in whole cross-sections of bone, and to compare those results to those obtained using magnetic resonance imaging (MRI) methods. Cadaver human whole-section tibiae samples harvested from 18 donors of ages 27-97years underwent NIRSI and ultrashort echo time (UTE) MRI. As NIRSI data is comprised of broad absorbances, second derivative processing was evaluated as a means to narrow peaks and obtain compositional information. The (inverted) second derivative peak heights of the NIRSI absorbances correlated significantly with the mean peak integration of the water, collagen and fat NIR absorbances, respectively, indicating that either processing method could be used for compositional assessment. The 5797cm-1 absorbance was validated as arising from the fat present in bone marrow, as it completely disappeared after ultrasonication. The MRI UTE-determined bound water content in tibial cortical bone samples ranged from 62 to 91%. The NIRSI water peaks at 5152cm-1 and at 7008cm-1 correlated significantly with the UTE data, with r=0.735, p=0.016, and r=0.71, p=0.0096, respectively. There was also a strong correlation between the intensity of the NIRSI water peak at 7008cm-1 and the intensity of the collagen peak at 4608cm-1 (r=0.69, p=0.004). Since NIRSI requires minimal to no sample preparation, this approach has great potential to become a gold standard modality for the investigation of changes in water content, distribution, and environment in pre-clinical studies of bone pathology and therapeutics.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Mugdha V Padalkar
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Hee Jin Yang
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Mikayel Ispiryan
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Piechnik SK, Jerosch-Herold M. Myocardial T1 mapping and extracellular volume quantification: an overview of technical and biological confounders. Int J Cardiovasc Imaging 2017; 34:3-14. [PMID: 28849419 PMCID: PMC5851695 DOI: 10.1007/s10554-017-1235-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 11/24/2022]
Abstract
Novel tissue biomarkers based on the spin–lattice relaxation time T1, a fundamental property in the theory of magnetic resonance physics, have emerged as a new approach for myocardial tissue characterization with many validated clinical applications. This article is intended as an overview of the physical and physiological mechanisms underlying the interpretation and the accuracy of any practical measurement of T1, or derived biomarkers such as extravascular volume fraction, and also includes a discussion of potential pitfalls. Numerous caveats und knowledge gaps related to the precise interpretation of T1-based biomarkers remain, which are being addressed incrementally through ongoing research. Equally important, further careful standardization will pave the way for a wider clinical translation of these novel T1-based biomarkers of tissue remodeling, which have been well validated for their sensitivity to pathophysiological changes, though for the most part in single-center studies.
Collapse
Affiliation(s)
- Stefan K Piechnik
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX39DU, UK
| | - Michael Jerosch-Herold
- Brigham and Women's Hospital, and Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Gentile P, McColgan-Bannon K, Gianone NC, Sefat F, Dalgarno K, Ferreira AM. Biosynthetic PCL-graft-Collagen Bulk Material for Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E693. [PMID: 28773053 PMCID: PMC5551736 DOI: 10.3390/ma10070693] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Biosynthetic materials have emerged as one of the most exciting and productive fields in polymer chemistry due to their widespread adoption and potential applications in tissue engineering (TE) research. In this work, we report the synthesis of a poly(ε-caprolactone)-graft-collagen (PCL-g-Coll) copolymer. We combine its good mechanical and biodegradable PCL properties with the great biological properties of type I collagen as a functional material for TE. PCL, previously dissolved in dimethylformamide/dichloromethane mixture, and reacted with collagen using carbodiimide coupling chemistry. The synthesised material was characterised physically, chemically and biologically, using pure PCL and PCL/Coll blend samples as control. Infrared spectroscopy evidenced the presence of amide I and II peaks for the conjugated material. Similarly, XPS evidenced the presence of C-N and N-C=O bonds (8.96 ± 2.02% and 8.52 ± 0.63%; respectively) for PCL-g-Coll. Static contact angles showed a slight decrease in the conjugated sample. However, good biocompatibility and metabolic activity was obtained on PCL-g-Coll films compared to PCL and blend controls. After 3 days of culture, fibroblasts exhibited a spindle-like morphology, spreading homogeneously along the PCL-g-Coll film surface. We have engineered a functional biosynthetic polymer that can be processed by electrospinning.
Collapse
Affiliation(s)
- Piergiorgio Gentile
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK.
| | - Kegan McColgan-Bannon
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK.
| | - Nicolò Ceretto Gianone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.
| | - Farshid Sefat
- Department of Medical Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK.
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK.
| | - Ana Marina Ferreira
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
21
|
Dhital B, Gul-E-Noor F, Downing KT, Hirsch S, Boutis GS. Pregnancy-Induced Dynamical and Structural Changes of Reproductive Tract Collagen. Biophys J 2017; 111:57-68. [PMID: 27410734 DOI: 10.1016/j.bpj.2016.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 11/16/2022] Open
Abstract
The tissues and organs of the female reproductive tract and pelvic floor undergo significant remodeling and alterations to allow for fetal growth and birth. In this work, we report on a study of the alterations of murine reproductive tract collagen resulting from pregnancy and parturition by spectrophotometry, histology, and (13)C, (2)H nuclear magnetic resonance (NMR). Four different cohorts of rats were investigated that included virgin, multiparous, two- and fourteen-day postpartum primiparous rats. (13)C CPMAS NMR revealed small chemical shift differences across the cohorts. The measured H-C internuclear correlation times indicated differences in dynamics of some motifs. However, the dynamics of the major amino acids, e.g., Gly, remained unaltered with respect to parity. (2)H NMR relaxation measurements revealed an additional water reservoir in the postpartum and multiparous cohorts pointing to redistribution of water due to pregnancy and/or parturition. Spectrophotometric measurements indicated that the collagen content in virgin rats was highest. Histological analysis of the upper vaginal wall indicated a signature of collagen fiber dissociation with smooth muscle and a change in the density of collagen fibers in multiparous rats.
Collapse
Affiliation(s)
- Basant Dhital
- Department of Physics, The Graduate Center, The City University of New York, New York, New York
| | - Farhana Gul-E-Noor
- Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York
| | - Keith T Downing
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Shari Hirsch
- Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York
| | - Gregory S Boutis
- Department of Physics, The Graduate Center, The City University of New York, New York, New York; Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York.
| |
Collapse
|
22
|
Kaflak A, Chmielewski D, Kolodziejski W. Solid-state NMR study of discrete environments of bone mineral nanoparticles using phosphorus-31 relaxation. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
23
|
Marcon M, Keller D, Wurnig MC, Eberhardt C, Weiger M, Eberli D, Boss A. Separation of collagen-bound and porous bone water transverse relaxation in mice: proposal of a multi-step approach. NMR IN BIOMEDICINE 2016; 29:866-872. [PMID: 27116654 DOI: 10.1002/nbm.3533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/15/2016] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
The separation and quantification of collagen-bound water (CBW) and pore water (PW) components of the cortical bone signal are important because of their different contribution to bone mechanical properties. Ultrashort TE (UTE) imaging can be used to exploit the transverse relaxation from CBW and PW, allowing their quantification. We tested, for the first time, the feasibility of UTE measurements in mice for the separation and quantification of the transverse relaxation of CBW and PW in vivo using three different approaches for T2 * determination. UTE sequences were acquired at 4.7 T in six mice with 10 different TEs (50-5000 μs). The transverse relaxation time T2 * of CBW (T2 *cbw ) and PW (T2 *pw ) and the CBW fraction (bwf) were computed using a mono-exponential (i), a standard bi-exponential (ii) and a new multi-step bi-exponential (iii) approach. Regions of interest were drawn at multiple levels of the femur and vertebral body cortical bone for each mouse. The sum of the normalized squared residuals (Res) and the homogeneity of variance were tested to compare the different methods. In the femur, approach (i) yielded mean T2 * ± standard deviation (SD) of 657 ± 234 μs. With approach (ii), T2 *cbw , T2 *pw and bwf were 464 ± 153 μs, 15 777 ± 10 864 μs and 57.6 ± 9.9%, respectively. For approach (iii), T2 *cbw , T2 *pw and bwf were 387 ± 108 μs, 7534 ± 2765 μs and 42.5 ± 6.2%, respectively. Similar values were obtained from vertebral bodies. Res with approach (ii) was lower than with the two other approaches (p < 0.007), but T2 *pw and bwf variance was lower with approach (iii) than with approach (ii) (p < 0.048). We demonstrated that the separation and quantification of cortical bone water components with UTE sequences is feasible in vivo in mouse models. The direct bi-exponential approach exhibited the best approximation to the measured signal curve with the lowest residuals; however, the newly proposed multi-step algorithm resulted in substantially lower variability of the computed parameters. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Magda Marcon
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Keller
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Moritz C Wurnig
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Christian Eberhardt
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute for Technology, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|