1
|
Nayak PK, Ghosh D. Optimizing Excited Charge Dynamics in Layered Halide Perovskites through Compositional Engineering. NANO LETTERS 2025; 25:5520-5528. [PMID: 40107944 DOI: 10.1021/acs.nanolett.5c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Dion-Jacobson phase multilayered halide perovskites (MLHPs) improve carrier transport and optoelectronic performance thanks to their shorter interlayer distance, long carrier lifetimes, and minimized nonradiative losses. However, limited atomistic insights into dynamic structure-property relationships hinder rational design efforts to further boost their performance. Here, we employ nonadiabatic molecular dynamics, time-domain density functional theory, and unsupervised machine learning to uncover the impact of A-cation mixing on controlling the excited carrier dynamics and recombination processes in MLHPs. Mixing smaller-sized Cs with methylammonium in MLHP weakens electron-phonon interactions, suppresses the nonradiative losses, and slows down intraband hot electron relaxations. On the contrary, larger-sized guanidinium incorporation accelerates nonradiative relaxations. The mutual information analyses reveal the importance of interlayer distances, intra- and interoctahedral angle dynamics, and A-cation motion in extending the excited carrier lifetime by mitigating nonradiative losses in MLHPs. Our work provides a guideline for strategically choosing A-cations to boost the optoelectronic performance of layered halide perovskites.
Collapse
Affiliation(s)
- Pabitra Kumar Nayak
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Li M, Yang Y, Kuang Z, Hao C, Wang S, Lu F, Liu Z, Liu J, Zeng L, Cai Y, Mao Y, Guo J, Tian H, Xing G, Cao Y, Ma C, Wang N, Peng Q, Zhu L, Huang W, Wang J. Acceleration of radiative recombination for efficient perovskite LEDs. Nature 2024; 630:631-635. [PMID: 38811739 PMCID: PMC11186751 DOI: 10.1038/s41586-024-07460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, China
| | - Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Chenjie Hao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Saixue Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Feiyue Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Zhongran Liu
- Center of Electron Microscopy, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jinglong Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Lingjiao Zeng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Yuxiao Cai
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Yulin Mao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Jingshu Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - He Tian
- Center of Electron Microscopy, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Yu Cao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China
| | - Chao Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Lin Zhu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China.
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, China.
- School of Flexible Electronics (SoFE), Sun Yat-sen University, Shenzhen, China.
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China.
- School of Materials Science and Engineering, Changzhou University, Changzhou, China.
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China.
| |
Collapse
|
3
|
Droseros N, Ferdowsi P, Martinez EO, Saliba M, Banerji N, Tsokkou D. Excited-State Dynamics of MAPbBr 3: Coexistence of Excitons and Free Charge Carriers at Ultrafast Times. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:8637-8648. [PMID: 38835933 PMCID: PMC11145650 DOI: 10.1021/acs.jpcc.3c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 06/06/2024]
Abstract
Methylammonium lead tribromide perovskite (MAPbBr3) is an important material, for example, for light-emitting applications and tandem solar cells. The relevant photophysical properties are governed by a plethora of phenomena resulting from the complex and relatively poorly understood interplay of excitons and free charge carriers in the excited state. In this study, we combine transient spectroscopies in the visible and terahertz range to investigate the presence and evolution of excitons and free charge carriers at ultrafast times upon excitation at various photon energies and densities. For above- and resonant band-gap excitation, we find that free charges and excitons coexist and that both are mainly promptly generated within our 50-100 fs experimental time resolution. However, the exciton-to-free charge ratio increases upon decreasing the phonon energy toward resonant band gap excitation. The free charge signatures dominate the transient absorption response for above-band-gap excitation and low excitation densities, masking the excitonic features. With resonant band gap excitation and low excitation densities, we find that although the exciton density increases, free charges remain. We show evidence that the excitons localize into shallow trap and/or Urbach tail states to form localized excitons (within tens of picoseconds) that subsequently get detrapped. Using high excitation densities, we demonstrate that many-body interactions become pronounced and effects such as the Moss-Burstein shift, band gap renormalization, excitonic repulsion, and the formation of Mahan excitons are evident. The coexistence of excitons and free charges that we demonstrate here for photoexcited MAPbBr3 at ultrafast time scales confirms the high potential of the material for both light-emitting diode and tandem solar cell applications.
Collapse
Affiliation(s)
- Nikolaos Droseros
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Parnian Ferdowsi
- Adolphe
Merkle Institute, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | | | - Michael Saliba
- Helmholtz
Young Investigator Group FRONTRUNNER, IEK5-Photovoltaics,
Forschungszentrum Jülich, Jülich 52428, Germany
- Institute
for Photovoltaics, University of Stuttgart, Stuttgart 70569, Germany
| | - Natalie Banerji
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Demetra Tsokkou
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| |
Collapse
|
4
|
Yadav AN, Min S, Choe H, Park J, Cho J. Halide Ion Mixing across Colloidal 2D Ruddlesden-Popper Perovskites: Implication of Spacer Ligand on Mixing Kinetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305546. [PMID: 37702148 DOI: 10.1002/smll.202305546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Halide ion exchange seen in metal halide perovskites provide a substantial opportunity to control their halide composition and corresponding optoelectronic properties. Halide ion mixing across colloidal 3D perovskite nanocrystals have been extensively studied while the mixing within colloidal 2D counterparts remain underexplored. In this study, the halide ion exchange kinetics across colloidally stable 2D Ruddlesden-Popper layered bromide (Br) and iodide (I) perovskites using two different spacer ligands such as aromatic phenethylammonium (PEA) versus linear butyammonium (BA) is demonstrated. The halide exchange kinetic rate constant (k), as determined by tracking time-dependent absorbance changes, indicates that Br/I halide mixing in 2D PEA-based perovskites (2.7 × 10-3 min-1 ) occurs at an order of magnitude slower than in 2D BA-based perovskites (3.3 × 10-2 min-1 ). Concentration (≈1 mM to 100 mM) and temperature-dependent (50 to 80 °C) kinetic studies further allow for the determination of activation barrier for halide ion mixing across the 2D layered perovskites with 75.2 ± 4.4 kJ mol-1 (2D PEA) and 57.8 ± 7.8 kJ mol-1 (2D BA), respectively. The activation energy reveals that the type of spacer cations plays a crucial role in controlling the halide ion mobility and halide stability due mainly to the internal ligand chemical interaction within 2D structures.
Collapse
Affiliation(s)
- Amar Nath Yadav
- School of Chemistry and Energy, Sungshin Women's University, Seoul, 01133, South Korea
| | - Seonhong Min
- School of Chemistry and Energy, Sungshin Women's University, Seoul, 01133, South Korea
| | - Hyejin Choe
- School of Chemistry and Energy, Sungshin Women's University, Seoul, 01133, South Korea
| | - Jiwoo Park
- School of Chemistry and Energy, Sungshin Women's University, Seoul, 01133, South Korea
| | - Junsang Cho
- School of Chemistry and Energy, Sungshin Women's University, Seoul, 01133, South Korea
| |
Collapse
|
5
|
Marjit K, Francis AG, Pati SK, Patra A. Impacts of Exciton Binding Energy and Dielectric Confinement of Layered Lead Halide Perovskites on Carrier Relaxation and Exciton Phonon Interactions. J Phys Chem Lett 2023:10900-10909. [PMID: 38033173 DOI: 10.1021/acs.jpclett.3c02738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
This work highlights the significance of dielectric confinements and exciton binding energy of hybrid layered perovskites (LPs) in controlling the carrier relaxation dynamics of LPs for designing efficient optoelectronic devices. The polarizability of organic spacer cations in LPs modulates the carrier-phonon and carrier-carrier interactions, which eventually control the carrier relaxation dynamics. Here, we have varied the alkyl-ammonium chain length in the LPs to change the dielectric confinement, and the first-principles calculations reveal that the long-chain organic spacer experiences stronger dielectric confinement in comparison to short-chain organic spacer cation-based LPs. Transient absorption spectroscopic analysis suggests that the larger dielectric confinement and higher exciton binding energy exhibit faster carrier relaxation dynamics. The enhanced exciton-phonon interaction leads to faster carrier relaxation dynamics. The much softer phonon modes are responsible for the higher up-conversion of acoustic modes to optical modes, which leads to slower carrier relaxation dynamics in n-butylamine (BA) based LPs.
Collapse
Affiliation(s)
- Kritiman Marjit
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anita Gemmy Francis
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
6
|
DuBose JT, Christy A, Chakkamalayath J, Kamat PV. Trap or Triplet? Excited-State Interactions in 2D Perovskite Colloids with Chromophoric Cations. ACS NANO 2023; 17:19052-19062. [PMID: 37725791 DOI: 10.1021/acsnano.3c04932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Movement of energy within light-harvesting assemblies is typically carried out with separately synthesized donor and acceptor species, which are then brought together to induce an interaction. Recently, two-dimensional (2D) lead halide perovskites have gained interest for their ability to accommodate and assemble chromophoric molecules within their lattice, creating hybrid organic-inorganic compositions. Using a combination of steady-state and time-resolved absorption and emission spectroscopy, we have now succeeded in establishing the competition between energy transfer and charge trapping in 2D halide perovskite colloids containing naphthalene-derived cations (i.e., NEA2PbX4, where NEA = naphthylethylamine). The presence of room-temperature triplet emission from the naphthalene moiety depends on the ratio of bromide to iodide in the lead halide sublattice (i.e., x in NEA2Pb(Br1-xIx)4), with only bromide-rich compositions showing sensitized emission. Photoluminescence lifetime measurements of the sensitized naphthalene reveal the formation of the naphthalene triplet excimer at room temperature. From transient absorption measurements, we find the rate constant of triplet energy transfer (kEnT) to be on the order of ∼109 s-1. At low temperatures (77 K) a new broad emission feature arising from trap states is observed in all samples ranging from pure bromide to pure iodide composition. These results reveal the interplay between sensitized triplet energy transfer and charge trapping in 2D lead halide perovskites, highlighting the need to carefully parse contributions from competing de-excitation pathways for optoelectronic applications.
Collapse
|
7
|
Mishra L, Behera RK, Panigrahi A, Dubey P, Dutta S, Sarangi MK. Deciphering the Relevance of Quantum Confinement in the Optoelectronics of CsPbBr 3 Perovskite Nanostructures. J Phys Chem Lett 2023; 14:2651-2659. [PMID: 36924080 DOI: 10.1021/acs.jpclett.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perovskites (PVKs) have emerged as an exciting class of semiconducting materials owing to their magnificent photophysical properties and been used in solar cells, light-emitting diodes, photodetectors, etc. The growth of multidimensional nanostructures has revealed many exciting alterations in their optoelectronic properties compared to those of their bulk counterparts. In this work, we have spotlighted the influence of quantum confinement in CsPbBr3 PVKs like the quantum dot (PQD), nanoplatelet (PNPL), and nanorod (PNR) on their charge transfer (CT) dynamics with 1,4-naphthoquinone (NPQ). The energy band alignment facilitates the transfer of both electrons and holes in the PNPL to NPQ, enhancing its CT rate, while only electron transfer in the PQD and PNR diminishes CT. The tunneling current across a metal-nanostructure-metal junction for the PNPL is observed to be higher than others. The higher exciton binding energy in the PNPL results in efficient charge transport by enhancing the mobility of the excited-state carrier and its lifetime compared to those of the PNR and PQD.
Collapse
Affiliation(s)
- Leepsa Mishra
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Ranjan Kumar Behera
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Aradhana Panigrahi
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Priyanka Dubey
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Soumi Dutta
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Manas Kumar Sarangi
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| |
Collapse
|
8
|
Min S, Choe H, Cho J. Stabilizing and accessing across ternary phase cesium lead bromide perovskite nanocrystals: thermodynamic and kinetic controls. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Seonhong Min
- School of Chemistry and Energy, Sungshin Women’s University, Seoul, South Korea
| | - Hyejin Choe
- School of Chemistry and Energy, Sungshin Women’s University, Seoul, South Korea
| | - Junsang Cho
- School of Chemistry and Energy, Sungshin Women’s University, Seoul, South Korea
| |
Collapse
|
9
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
10
|
Lu J, Zhou C, Chen W, Wang X, Jia B, Wen X. Origin and physical effects of edge states in two-dimensional Ruddlesden-Popper perovskites. iScience 2022; 25:104420. [PMID: 35663014 PMCID: PMC9157205 DOI: 10.1016/j.isci.2022.104420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The edge region of two-dimensional (2D) Ruddlesden-Popper (RP) perovskites exhibits anomalous properties from the bulk region, including low energy emission and superior capability of dissociating exciton, which is highly beneficial for the optoelectronic devices like solar cells and photodetectors, denoted as “edge states”. In this review, we introduce the recent progress on the edge states that have been focused on the origin and the optoelectronic properties of edge states in 2D RP perovskites. By providing theoretical frameworks and experimental observations, we elucidate the origin of the edge states from two aspects, intrinsic electronic properties and extrinsic structure distortions. Besides, we introduce the physical properties of the edge states and current debating on this topic. Finally, we present an outlook on future research about the edge states of 2D RP perovskites.
Collapse
Affiliation(s)
- Junlin Lu
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia.,South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong 510631, China
| | - Chunhua Zhou
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024 China
| | - Weijian Chen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia.,Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Xin Wang
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong 510631, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006 China
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia.,School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia
| |
Collapse
|
11
|
Gao L, Zhang Y, Wei X, Zheng T, Zhao W, Zhang X, Lu J, Ni Z, Liu H. Potassium Iodide Doping Strategy for High-Efficiency Perovskite Solar Cells Revealed by Ultrafast Spectroscopy. J Phys Chem Lett 2022; 13:711-717. [PMID: 35025524 DOI: 10.1021/acs.jpclett.1c03830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic-inorganic halide perovskites are promising materials for high-performance photovoltaics. The doping strategy is considered to be an effective method for regulating the performance of perovskite solar cells, yet its efficiency is still far below what has been anticipated. Here, we systematically investigate the regulatory mechanisms of the performance of perovskites by exploiting potassium iodide (KI) doping. We find that the surface states are passivated apart from the modified lattice structure. Most importantly, carrier recombination and transport are regulated by varying two different trap states when doping KI. The corresponding defect penalty can be effectively restrained at an optimal concentration of added KI (5%). A significant increase in the conductivity and radiative efficiency is achieved under such conditions. Our results provide fundamental insights into defect engineering through doping and a promising route toward highly efficient perovskite solar cells.
Collapse
Affiliation(s)
- Lei Gao
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
| | - Yong Zhang
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
| | - Xin Wei
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
| | - Ting Zheng
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
| | - Weijie Zhao
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
- The Purple Mountain Laboratories, Nanjing 211111, China
| | - Xinhai Zhang
- Department of Electrical and Electronic Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Junpeng Lu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
| | - Zhenhua Ni
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
- The Purple Mountain Laboratories, Nanjing 211111, China
| | - Hongwei Liu
- Jiangsu Key Lab on Optoelectronic Technology, School of Physics and Technology, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
12
|
Narra S, Lin CY, Seetharaman A, Jokar E, Diau EWG. Femtosecond Exciton and Carrier Relaxation Dynamics of Two-Dimensional (2D) and Quasi-2D Tin Perovskites. J Phys Chem Lett 2021; 12:12292-12299. [PMID: 34931843 DOI: 10.1021/acs.jpclett.1c03427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamics of exciton and free-carrier relaxation of low-dimensional tin iodide perovskites, BA2FAn-1SnnI3n+1, where n = 1 (N1), 2 (N2), 5 (N5), and 10 (N10), were investigated with femtosecond transient absorption spectra (TAS). The absorption and photoluminescence spectra of N1 and N2 show exciton characteristics due to quantum confinement, whereas N5 and N10 display a free-carrier nature, the same as for bulk three-dimensional (3D) films. The TAS profiles were fitted according to a global kinetic model with three time coefficients representing the interactions of biexcitons, trions, and excitons for N1 and N2 and hot carriers, cold carriers, and shallow trap carriers for N5 and N10. The carrier relaxation dynamics of N5 and N10 were similar to those of 3D FASnI3 except for the absence of surface recombination in the deep-trap states due to passivation of the grain surfaces by the long alkyl chain for these quasi-2D samples (N5/N10 vs 3D).
Collapse
Affiliation(s)
- Sudhakar Narra
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 30010, Taiwan
| | - Chia-Yi Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 30010, Taiwan
| | - Ashank Seetharaman
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 30010, Taiwan
| | - Efat Jokar
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 30010, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
13
|
Cho J, Mathew PS, DuBose JT, Kamat PV. Photoinduced Halide Segregation in Ruddlesden-Popper 2D Mixed Halide Perovskite Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105585. [PMID: 34617360 DOI: 10.1002/adma.202105585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Indexed: 05/24/2023]
Abstract
2D lead halide perovskites, which exhibit bandgap tunability and increased chemical stability, have been found to be useful for designing optoelectronic devices. Reducing dimensionality with decreasing number of layers (n = 10-1) also imparts resistance to light-induced ion migration as seen from the halide ion segregation and dark recovery in mixed halide (Br:I = 50:50) perovskite films. The light-induced halide ion segregation efficiency, as determined from difference absorbance spectra, decreases from 20% to <1% as the dimensionality is decreased for 2D perovskite film from n = 10 to 1. The segregation rate constant (ksegregation ), which decreases from 5.9 × 10-3 s-1 (n = 10) to 3.6 × 10-4 s-1 (n = 1), correlates well with nearly an order of magnitude decrease observed in charge-carrier lifetime (τaverage = 233 ps for n = 10 vs τavg = 27 ps for n = 1). The tightly bound excitons in 2D perovskites make charge separation less probable, which in turn decreases the halide mobility and resulting phase segregation. The importance of controlling the dimensionality of the 2D architecture in suppressing halide ion mobility is discussed.
Collapse
Affiliation(s)
- Junsang Cho
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Preethi S Mathew
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeffrey T DuBose
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
14
|
Jung HS, Cho J, Neuman KC. Highly stable cesium lead bromide perovskite nanocrystals for ultra-sensitive and selective latent fingerprint detection. Anal Chim Acta 2021; 1181:338850. [PMID: 34556215 DOI: 10.1016/j.aca.2021.338850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022]
Abstract
Latent fingerprints (LFPs) are one of the most important forms of evidence in crime scenes due to the uniqueness and permanence of the friction ridges in fingerprints. Therefore, an efficient method to detect LFPs is crucial in forensic science. However, there remain several challenges with traditional detection strategies including low sensitivity, low contrast, high background, and complicated processing steps. In order to overcome these drawbacks, we present an approach for developing latent fingerprints using stabilized CsPbBr3 perovskite nanocrystals (NCs) as solid-state nanopowders. We demonstrate the superior optical stability of CsPbBr3 NCs with respect to absorption, photoluminescence (PL), and fluorescence lifetime. We then used these highly stable, fluorescent CsPbBr3 NCs as a powder dusting material to develop LFPs on diverse surfaces. The stable optical properties and hydrophobic surface of the CsPbBr3 NC nanopowder permitted high resolution images from which unique features of friction ridge arrangements with first, second, and third-level LFP details can be obtained within minutes.
Collapse
Affiliation(s)
- Hak-Sung Jung
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Junsang Cho
- Department of Chemistry, Duksung Women's University, Seoul, 01369, South Korea
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
15
|
Elshanawany MM, Ricciardulli AG, Saliba M, Wachtveitl J, Braun M. Mechanism of ultrafast energy transfer between the organic-inorganic layers in multiple-ring aromatic spacers for 2D perovskites. NANOSCALE 2021; 13:15668-15676. [PMID: 34523656 DOI: 10.1039/d1nr04290d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lead halide based perovskite semiconductors self-assemble with distinct organic cations in natural multi-quantum-well structures. The emerging electronic properties of these two-dimensional (2D) materials can be controlled by the combination of the halide content and choice of chromophore in the organic layer. Understanding the photophysics of the perovskite semiconductor materials is critical for the optimization of stable and efficient optoelectronic devices. We use femtosecond transient absorption spectroscopy (fs-TAS) to study the mechanism of energy transfer between the organic and inorganic layers in a series of three lead-based mixed-halide perovskites such as benzylammonium (BA), 1-naphthylmethylammonium (NMA), and 1-pyrenemethylammonium (PMA) cations in 2D-lead-based perovskite thin films under similar experimental conditions. After optical excitation of the 2D-confined exciton in the lead halide layer, ultrafast energy transfer is observed to organic singlet and triplet states of the incorporated chromophores. This is explained by an effective Dexter energy transfer, which operates via a correlated electron exchange between the donating 2D-confined exciton and the accepting chromophore under spin conservation.
Collapse
Affiliation(s)
- Mahmoud M Elshanawany
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany.
| | | | - Michael Saliba
- Institute of Photovoltaics (ipv), University of Stuttgart, Stuttgart, Germany
- Helmholtz Young Investigator Group FRONTRUNNER, Forschungszentrum Jülich, Jülich, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany.
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Choe H, Jeon D, Lee SJ, Cho J. Mixed or Segregated: Toward Efficient and Stable Mixed Halide Perovskite-Based Devices. ACS OMEGA 2021; 6:24304-24315. [PMID: 34604614 PMCID: PMC8482395 DOI: 10.1021/acsomega.1c03714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 05/26/2023]
Abstract
Convenient modulation of bandgap for the mixed halide perovskites (MHPs) (e.g., CsPbBr x I1-x ) through varying the halide composition (i.e., the ratio of bromide to iodide) allows for optimizing the light-harvesting properties in perovskite solar cells (PSCs) and emission color in perovskite light-emitting diodes (PeLEDs). Such MHPs, yet, severely suffered from the instability under light irradiation and electrical bias as a result of an intrinsic soft, ionic lattice and a high halide ion mobility. Understanding the halide ion migration (mediated through halide vacancies) and suppressing the halide ion segregation, thus, remain a significant challenge both in the field of PSCs and PeLEDs since it is directly linked to the long-term stability and performances of the corresponding devices. In this Mini-Review, we discuss the intrinsic instability of the MHPs arising from the ionic nature of perovskites. The liquid crystalline properties with the low formation energy of halide ion defects facilitate the defect-mediated halide ion migration. Several different mechanistic models are provided to explain the fundamental origin of the photo- or electric field-driven halide ion segregation based upon thermodynamics and kinetics. These reflect that lattice strains (internal or polaron-induced) and bandgap energy differences between parent mixed halide and iodide-rich domain serve as the thermodynamic driving forces for halide segregation. On the basis of the deeper understanding of the underpinning segregation mechanism mediated through hole trapping and accumulation at the iodide-rich sites, we further discuss the strategies to mitigate the detrimental halide segregation through composition-, defect-, dimension-, and interface-engineering. Finally, we provide a fundamental insight into designing perovskite-based photovoltaic and optoelectronic devices for the long-term operational stability.
Collapse
Affiliation(s)
- Hyejin Choe
- Department
of Chemistry, Duksung Women’s University, Seoul 01369, South Korea
| | - Dohyun Jeon
- Advanced
Materials Division, Korea Research Institute
of Chemical Technology, Daejeon 34114, South Korea
- Department
of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Seon Joo Lee
- Advanced
Materials Division, Korea Research Institute
of Chemical Technology, Daejeon 34114, South Korea
| | - Junsang Cho
- Department
of Chemistry, Duksung Women’s University, Seoul 01369, South Korea
| |
Collapse
|
17
|
Yang JJ, Chen WK, Liu XY, Fang WH, Cui G. Spin-Orbit Coupling Is the Key to Promote Asynchronous Photoinduced Charge Transfer of Two-Dimensional Perovskites. JACS AU 2021; 1:1178-1186. [PMID: 34467356 PMCID: PMC8397356 DOI: 10.1021/jacsau.1c00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) perovskites are emerging as promising candidates for diverse optoelectronic applications because of low cost and excellent stability. In this work, we explore the electronic structures and interfacial properties of (4Tm)2PbI4 with both the collinear and noncollinear DFT (PBE and HSE06) methods. The results evidently manifest that explicitly considering the spin-orbit coupling (SOC) effects is necessary to attain correct band alignment of (4Tm)2PbI4 that agrees with recent experiments (Nat. Chem.2019, 11, 1151; Nature2020, 580, 614). The subsequent time-domain noncollinear DFT-based nonadiabatic carrier dynamics simulations with the SOC effects reveal that the photoinduced electron and hole transfer processes are asymmetric and associated with different rates. The differences are mainly ascribed to considerably different nonadiabatic couplings in charge of the electron and hole transfer processes. Shortly, our current work sheds important light on the mechanism of the interfacial charge carrier transfer processes of (4Tm)2PbI4. The importance of the SOC effects on correctly aligning the band states of (4Tm)2PbI4 may be generalized to similar organic-inorganic hybrid 2D perovskites having heavy Pb atoms.
Collapse
Affiliation(s)
- Jia-Jia Yang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
18
|
Dutta T, Sheikh T, Nag A. Temperature-Dependent Photoluminescence of Hexafluorobenzene-Intercalated Phenethylammonium Tin Iodide 2D Perovskite. Chem Asian J 2021; 16:2745-2751. [PMID: 34342155 DOI: 10.1002/asia.202100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Indexed: 11/07/2022]
Abstract
Tin halide perovskites are potential alternatives of lead halide perovskites. However, the easy oxidation of Sn2+ to Sn4+ brings in a challenge. Recently, layered two-dimensional hybrid tin halide perovskites have been shown to partially resist the oxidation process because of the presence of hydrophobic organic molecules. Consequently, such layered hybrid perovskites are being explored for optoelectronic applications. The optical properties of layered tin halide perovskites depend on the interlayer separation and the dielectric mismatch between the organic and inorganic layers. Intercalation (insertion) of a molecular species between the layers modifies the interlayer interactions affecting the optical properties of layered hybrid perovskites. We investigated the effect of hexafluorobenzene (HFB) intercalation in phenethylammonium tin iodide [(PEA)2 SnI4 ] using temperature-dependent (6 K to 300 K) photoluminescence (PL). HFB intercalation increases the bandgap. A strong PL quenching is observed in pristine (PEA)2 SnI4 below 150 K, probably because of the presence of non-emissive states. HFB intercalation suppresses the influence of such non-emissive states resulting in an increase in PL intensity at the cryogenic temperatures. Our results highlight that a simple molecular intercalation (non-covalent interaction) into layered hybrid perovskites can significantly tailor the electronic and optical properties.
Collapse
Affiliation(s)
- Taniya Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER, Pune, 411008, India
| | - Tariq Sheikh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER, Pune, 411008, India
| | - Angshuman Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER, Pune, 411008, India
| |
Collapse
|
19
|
Han F, Yu T, Qu X, Bergara A, Yang G. Semiconducting MnB 5monolayer as a potential photovoltaic material. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:175702. [PMID: 33530079 DOI: 10.1088/1361-648x/abe269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Exploring new two-dimensional (2D) materials is of great significance for both basic research and practical applications. Although boron can form various 3D and 2D allotropes due to its ease of forming multi-center bonds, the coexistence of honeycomb and kagome boron structures has never been observed in any 2D material yet. In this article we apply first-principle swarm structural searches to predict the existence of a stable MnB5structure, consisting of a sandwich of honeycomb and kagome borophenes. More interestingly, a MnB5nanosheet is a semiconductor with a band gap of 1.07 eV and a high optical absorption in a broad band, which satisfies the requirements of a very good photovoltaic material. Upon moderate strain, MnB5undergoes a conversion from an indirect to a direct band gap semiconductor. The power conversion efficiency of a heterostructure solar cell made of MnB5is up to 18%. The MnB5nanosheet shows a robust dynamical and thermal stability, stemming from the presence of intra- and interlayer multi-center σ and π bonds. These characteristics make MnB5a promising photovoltaic material.
Collapse
Affiliation(s)
- Fanjunjie Han
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Tong Yu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xin Qu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Aitor Bergara
- Departamento de Física de la Materia Condensada, Universidad del País Vasco-Euskal Herriko Unibertsitatea, UPV/EHU, 48080 Bilbao, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia, Spain
- Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain
| | - Guochun Yang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
20
|
Zhou N, Ouyang Z, Yan L, McNamee MG, You W, Moran AM. Elucidation of Quantum-Well-Specific Carrier Mobilities in Layered Perovskites. J Phys Chem Lett 2021; 12:1116-1123. [PMID: 33475365 DOI: 10.1021/acs.jpclett.0c03596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layered organohalide perovskite films consist of quantum wells with concentration distributions tailored to enhance long-range charge transport. Whereas cascaded energy and charge funneling behaviors have been detected with conventional optical spectroscopies, it is not clear that such dynamics contribute to the efficiencies of photovoltaic cells. In this Letter, we use nonlinear photocurrent spectroscopy to selectively target charge transport processes within devices based on layered perovskite quantum wells. The photocurrent induced by a pair of laser pulses is directly measured in this "action" spectroscopy to remove ambiguities in signal interpretation. By varying the external bias, we determine carrier mobilities for quantum-well-specific trajectories taken through the active layers of the devices. The results suggest that the largest quantum wells are primarily responsible for photocurrent production, whereas the smallest quantum wells trap charge carriers and are a major source of energy loss in photovoltaic cells.
Collapse
Affiliation(s)
- Ninghao Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhenyu Ouyang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Meredith G McNamee
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
21
|
Wang M, Zou H, Zhang J, Wu T, Xu H, Haacke S, Hu B. Extremely Long Spin Lifetime of Light-Emitting States in Quasi-2D Perovskites through Orbit-Orbit Interaction. J Phys Chem Lett 2020; 11:3647-3652. [PMID: 32302144 DOI: 10.1021/acs.jpclett.0c00842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper reports an extremely long spin relaxation time of optically polarized light-emitting states at room temperature in quasi-2D perovskites [(PEA)2(MA)4Pb5Br16 with n = 5], when the long-range orbit-orbit interaction between excited states is developed through orbital polarization. Our studies found that the quasi-2D perovskite [(PEA)2(MA)4Pb5Br16 with n = 5] demonstrates a long-range orbit-orbit interaction between excited states to conserve the spins of optically polarized light-emitting states, identified by the positive change on photoluminescence intensity (+ΔPL) in steady state upon switching the photoexcitation from linear to circular polarization. Meanwhile, the PL circular polarization (σ+σ+ - σ+σ-) can maintain in nanosecond under fixed photoexcitation (σ+). In contrast, the 2D/3D mixed perovskite (n > 5) shows a short-range orbit-orbit interaction between excited states through orbital magnetic dipoles, identified by the -ΔPL by switching from linear to circular photoexcitation. At the same time, the spin lifetime of light-emitting states becomes undetectable.
Collapse
Affiliation(s)
- Miaosheng Wang
- Joint Institute for Advanced Materials, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Han Zou
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 67000 Strasbourg, France
| | - Jia Zhang
- Joint Institute for Advanced Materials, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ting Wu
- Joint Institute for Advanced Materials, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Hengxing Xu
- Joint Institute for Advanced Materials, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Stefan Haacke
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 67000 Strasbourg, France
| | - Bin Hu
- Joint Institute for Advanced Materials, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|