1
|
Meng L, Zhao C, Li F, Liu J, Yan X, Wei Y, Yang T, Zhang X, Jiang L, Lu Z, Sun Q, Tian W, Jin S. Promoted exciton transport in organic semiconductors by triplet-state manipulation. Chem Commun (Camb) 2025; 61:6002-6005. [PMID: 40145311 DOI: 10.1039/d5cc00416k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Efficient excited-state transport is essential for the optimal performance of photoelectronic devices, which, however, is very limited in organic semiconductors (OSCs) due to the presence of poorly diffusive triplet-states. Herein, we report a bridging group enabled triplet-state manipulation strategy for suppressing the intersystem crossing (ISC) and thereby realizing a promoted and directional singlet-state exciton transport in anthracene derivative-based OSCs. Furthermore, this approach is demonstrated to be applicable to various anthracene derivatives, such as bridged anthracene-benzothiophene and anthracene-benzene systems, suggesting its broad generalizability for optimizing the exciton/energy transport properties of OSCs.
Collapse
Affiliation(s)
- Lingchen Meng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- Anhui Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Chunyi Zhao
- Anhui Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Feng Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xianchang Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yaxiong Wei
- Anhui Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Tao Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xianyi Zhang
- Anhui Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhou Lu
- Anhui Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
2
|
Xiao M, Yang J, Zhang W, Xu L, Zhang J, Li W, Chen C, Zhou T, Zhang H, Chen B, Wang J, Chen P. Coherence Programming for Efficient Linearly Polarized Perovskite Light-Emitting Diodes. ACS NANO 2024; 18:29261-29272. [PMID: 39390635 DOI: 10.1021/acsnano.4c11761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although quasi-two-dimensional (quasi-2D) perovskites are ideal material platforms for highly efficient linearly polarized electroluminescence owing to their anisotropic crystal structures, so far, there has been no practical implementation of these materials for the demonstration of linearly polarized perovskite light-emitting diodes (LP-PeLEDs). This scarcity is due to difficulty in orientation and phase distribution control of the quasi-2D perovskites while minimizing the defects, all of which are required to manifest aligned transition dipole moments (TDMs). To achieve this multifaceted goal, herein, we introduce a synergistic strategy to quasi-2D perovskites by incorporating both a trimethylolpropane triacrylate anchoring layer and 18-Crown-6 molecular passivator into the film fabrication process. It is found that the interfacial anchoring layer guides the oriented growth of perovskites along the (110) plane, whereas the molecular passivator reduces the number of defects and homogenizes the crystal phase. As a result, a quasi-2D perovskite film with macroscopically aligned TDM that renders high radiative recombination and the degree of linear polarization (DoLP) is constructed. This "coherence-programmed emission layer" demonstrates highly efficient LP-PeLEDs, not only achieving a maximum external quantum efficiency of ∼23.7%, a brightness of ∼36,142 cd/m2, and a DoLP of ∼38%, but also significantly improving the signal-to-interference-and-noise ratio in a multi-cell visible light communication system.
Collapse
Affiliation(s)
- Meiqin Xiao
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Jonghee Yang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Long Xu
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Jidong Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Wenzhe Li
- Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Chen Chen
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Tingwei Zhou
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Haoyue Zhang
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Bo Chen
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Junzhong Wang
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Ping Chen
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Hazra V, Mandal A, Bhattacharyya S. Optoelectronic insights of lead-free layered halide perovskites. Chem Sci 2024; 15:7374-7393. [PMID: 38784758 PMCID: PMC11110173 DOI: 10.1039/d4sc01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Two-dimensional organic-inorganic halide perovskites have emerged as promising candidates for a multitude of optoelectronic technologies, owing to their versatile structure and electronic properties. The optical and electronic properties are harmoniously integrated with both the inorganic metal halide octahedral slab, and the organic spacer layer. The inorganic octahedral layers can also assemble into periodically stacked nanoplatelets, which are interconnected by the organic ammonium cation, resulting in the formation of a superlattice or superstructure. In this perspective, we explore the structural, electronic, and optical properties of lead-free hybrid halides, and the layered halide perovskite single crystals and nanostructures, expanding our understanding of the diverse applications enabled by these versatile structures. The optical properties of the layered halide perovskite single crystals and superlattices are a function of the organic spacer layer thickness, the metal center with either divalent or a combination of monovalent and trivalent cations, and the halide composition. The distinct absorption and emission features are guided by the structural deformation, electron-phonon coupling, and the polaronic effect. Among the diverse optoelectronic possibilities, we have focused on the photodetection capability of layered halide perovskite single crystals, and elucidated the descriptors such as excitonic band gap, effective mass, carrier mobility, Rashba splitting, and the spin texture that decides the direct component of the optical transitions.
Collapse
Affiliation(s)
- Vishwadeepa Hazra
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Arnab Mandal
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| |
Collapse
|
4
|
Park Y, Han H, Lee H, Kim S, Park TH, Jang J, Kim G, Park Y, Lee J, Kim D, Kim J, Jung YS, Jeong B, Park C. Sub-30 nm 2D Perovskites Patterns via Block Copolymer Guided Self-Assembly for Color Conversion Optical Polarizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300568. [PMID: 37518679 DOI: 10.1002/smll.202300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Despite the remarkable advances made in the development of 2D perovskites suitable for various high-performance devices, the development of sub-30 nm nanopatterns of 2D perovskites with anisotropic photoelectronic properties remains challenging. Herein, a simple but robust route for fabricating sub-30 nm 1D nanopatterns of 2D perovskites over a large area is presented. This method is based on nanoimprinting a thin precursor film of a 2D perovskite with a topographically pre-patterned hard poly(dimethylsiloxane) mold replicated from a block copolymer nanopattern consisting of guided self-assembled monolayered in-plane cylinders. 1D nanopatterns of various 2D perovskites (A'2 MAn -1 Pbn X3 n +1 ,A' = BA, PEA, X = Br, I) are developed; their enhanced photoluminescence (PL) quantum yields are approximately four times greater than those of the corresponding control flat films. Anisotropic photocurrent is observed because 2D perovskite nanocrystals are embedded in a topological 1D nanopattern. Furthermore, this 1D metal-coated nanopattern of a 2D perovskite is employed as a color conversion optical polarizer, in which polarized PL is developed. This is due to its capability of polarization of an incident light arising from the sub-30 nm line pattern, as well as the PL of the confined 2D perovskite nanocrystals in the pattern.
Collapse
Affiliation(s)
- Youjin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeokjung Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohee Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae Hyun Park
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 601 74, Sweden
| | - Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gwanho Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yemin Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiyeon Lee
- Department of Integrated Science and Engineering, Yonsei International Campus, Songdogwahak-ro 85, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Dongjun Kim
- Department of Integrated Science and Engineering, Yonsei International Campus, Songdogwahak-ro 85, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jiwon Kim
- Department of Integrated Science and Engineering, Yonsei International Campus, Songdogwahak-ro 85, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Beomjin Jeong
- Department of Organic Material Science and Engineering, Pusan National University, Busandaehak-ro 63 beongil 2, Geumjeong-gu, Busan, 46241, South Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
5
|
Zhao B, Vasilopoulou M, Fakharuddin A, Gao F, Mohd Yusoff ARB, Friend RH, Di D. Light management for perovskite light-emitting diodes. NATURE NANOTECHNOLOGY 2023; 18:981-992. [PMID: 37653050 DOI: 10.1038/s41565-023-01482-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Perovskite light-emitting diodes (LEDs) have reached external quantum efficiencies of over 20% for various colours, showing great potential for display and lighting applications. Despite the internal quantum efficiencies of the best-performing devices already approaching unity, around 80% of the internally generated photons are trapped in the devices and lose energy through a variety of lossy channels. Significant opportunities for improving efficiency and maximizing photon extraction lie in the effective management of light. In this Review we analyse light management strategies based on the intrinsic optical properties of the perovskite materials and the extrinsic properties related to device structures. These approaches should allow the external quantum efficiencies of perovskite LEDs to substantially exceed the conventional limits of planar organic LED devices. By revisiting lessons learned from organic LEDs and perovskite solar cells, we highlight possible directions of future research towards perovskite LEDs with ultrahigh efficiencies.
Collapse
Affiliation(s)
- Baodan Zhao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', Attica, Greece
| | | | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | | | - Dawei Di
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Saleem MI, Katware A, Amin A, Jung SH, Lee JH. YCl 3-Substituted CsPbI 3 Perovskite Nanorods for Efficient Red-Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1366. [PMID: 37110951 PMCID: PMC10141025 DOI: 10.3390/nano13081366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Cesium lead iodide (CsPbI3) perovskite nanocrystals (NCs) are a promising material for red-light-emitting diodes (LEDs) due to their excellent color purity and high luminous efficiency. However, small-sized CsPbI3 colloidal NCs, such as nanocubes, used in LEDs suffer from confinement effects, negatively impacting their photoluminescence quantum yield (PLQY) and overall efficiency. Here, we introduced YCl3 into the CsPbI3 perovskite, which formed anisotropic, one-dimensional (1D) nanorods. This was achieved by taking advantage of the difference in bond energies among iodide and chloride ions, which caused YCl3 to promote the anisotropic growth of CsPbI3 NCs. The addition of YCl3 significantly improved the PLQY by passivating nonradiative recombination rates. The resulting YCl3-substituted CsPbI3 nanorods were applied to the emissive layer in LEDs, and we achieved an external quantum efficiency of ~3.16%, which is 1.86-fold higher than the pristine CsPbI3 NCs (1.69%) based LED. Notably, the ratio of horizontal transition dipole moments (TDMs) in the anisotropic YCl3:CsPbI3 nanorods was found to be 75%, which is higher than the isotropically-oriented TDMs in CsPbI3 nanocrystals (67%). This increased the TDM ratio and led to higher light outcoupling efficiency in nanorod-based LEDs. Overall, the results suggest that YCl3-substituted CsPbI3 nanorods could be promising for achieving high-performance perovskite LEDs.
Collapse
Affiliation(s)
| | - Amarja Katware
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Al Amin
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seo-Hee Jung
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Filip MR, Qiu DY, Del Ben M, Neaton JB. Screening of Excitons by Organic Cations in Quasi-Two-Dimensional Organic-Inorganic Lead-Halide Perovskites. NANO LETTERS 2022; 22:4870-4878. [PMID: 35679538 PMCID: PMC9228398 DOI: 10.1021/acs.nanolett.2c01306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interlayer organic cations in quasi-two-dimensional halide perovskites are a versatile tuning vehicle for the optoelectronic properties of these complex systems, but chemical intuition for this design route is yet to be established. Here, we use density functional theory, the GW approximation, and the Bethe-Salpeter equation approach to understand the contribution of the organic cation to the quasiparticle band gap and exciton binding energy of layered perovskites. We show that organic cations in quasi-two-dimensional perovskites contribute significantly to the dielectric screening in these systems, countering quantum confinement effects on the quasiparticle band gap and the exciton binding energy. Using a simple electrostatics model inspired by parallel-plate capacitors, we decouple the organic cation and inorganic layer contributions to the effective dielectric constants and show that dielectric properties of layered perovskites are broadly tunable via the interlayer cation, providing a direct means of tuning photophysical properties for a variety of applications.
Collapse
Affiliation(s)
- Marina R. Filip
- Department
of Physics, University of Oxford, Clarendon
Laboratory, Oxford OX1 3PU, United Kingdom
| | - Diana Y. Qiu
- School
of Engineering and Applied Science, Yale
University, New Haven, Connecticut 06511, United States
| | - Mauro Del Ben
- Computational
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey B. Neaton
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nano Sciences Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Sun Q, Gong J, Yan X, Wu Y, Cui R, Tian W, Jin S, Wang Y. Elucidating the Unique Hot Carrier Cooling in Two-Dimensional Inorganic Halide Perovskites: The Role of Out-of-Plane Carrier-Phonon Coupling. NANO LETTERS 2022; 22:2995-3002. [PMID: 35318847 DOI: 10.1021/acs.nanolett.2c00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) halide perovskites represent the natural semiconductor quantum wells (QWs), which hold great promise for optoelectronics. However, due to the hybrid structure of Ruddlesden-Popper 2D perovskites, the intrinsic nature of hot-carrier kinetics remains shielded within. Herein, we adopt CsPbBr3 nanoplates as a model system to reveal the intrinsic carrier dynamics in inorganic perovskite QWs. Interestingly, we revealed an ultrafast and hot-phonon-bottleneck (HPB)-free carrier cooling in monodisperse CsPbBr3 QWs, which is in sharp contrast to the bulk and nanocrystalline perovskites. The absence of HPB was attributed to the efficient out-of-plane triplet-exciton-LO-phonon coupling in 2D perovskites because of the structural anisotropy. Accordingly, the HPB can be activated by shutting down the out-of-plane energy loss route through forming the layer-stacked perovskite superlattice. The controllable on and off of HPB may provide new possibilities in optoelectronic devices and these findings deepen the understanding of a hot-carrier cooling mechanism in 2D perovskites.
Collapse
Affiliation(s)
- Qi Sun
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialong Gong
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianchang Yan
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuting Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rongrong Cui
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yue Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
9
|
|
10
|
Steger M, Janke SM, Sercel PC, Larson BW, Lu H, Qin X, Yu VWZ, Blum V, Blackburn JL. On the optical anisotropy in 2D metal-halide perovskites. NANOSCALE 2022; 14:752-765. [PMID: 34940772 DOI: 10.1039/d1nr06899g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Two-dimensional metal-halide perovskites (MHPs) are versatile solution-processed organic/inorganic quantum wells where the structural anisotropy creates profound anisotropy in their electronic and excitonic properties and associated optical constants. We here employ a wholistic framework, based on semiempirical modeling (k·p/effective mass theory calculations) informed by hybrid density functional theory (DFT) and multimodal spectroscopic ellipsometry on (C6H5(CH2)2NH3)2PbI4 films and crystals, that allows us to link the observed optical properties and anisotropy precisely to the underlying physical parameters that shape the electronic structure of a layered MHP. We find substantial frequency-dependent anisotropy in the optical constants and close correspondence between experiment and theory, demonstrating a high degree of in-plane alignment of the two-dimensional planes in both spin-coated thin films and cleaved single crystals made in this study. Hybrid DFT results elucidate the degree to which organic and inorganic frontier orbitals contribute to optical transitions polarized along a particular axis. The combined experimental and theoretical approach enables us to estimate the fundamental electronic bandgap of 2.65-2.68 eV in this prototypical 2D perovskite and to determine the spin-orbit coupling (ΔSO = 1.20 eV) and effective crystal field (δ = -1.36 eV) which break the degeneracy of the frontier conduction band states and determine the exciton fine structure. The methods and results described here afford a better understanding of the connection between structure and induced optical anisotropy in quantum-confined MHPs, an important structure-property relationship for optoelectronic applications and devices.
Collapse
Affiliation(s)
- Mark Steger
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Svenja M Janke
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Institute of Advanced Study, University of Warwick, CV4 7AL Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter C Sercel
- Center for Hybrid Organic Inorganic Semiconductors for Energy, Golden, CO, 80401, USA
| | - Bryon W Larson
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Haipeng Lu
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Xixi Qin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Victor Wen-Zhe Yu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Volker Blum
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
11
|
Li N, Yang Y, Shi Z, Lan Z, Arramel A, Zhang P, Ong WJ, Jiang J, Lu J. Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. iScience 2022; 25:103753. [PMID: 35128355 PMCID: PMC8803620 DOI: 10.1016/j.isci.2022.103753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Unique performance of the hybrid organic-inorganic halide perovskites (HOIPs) has attracted great attention because of their continuous exploration and breakthrough in a multitude of energy-related applications. However, the instability and lead-induced toxicity that arise in bulk perovskites are the two major challenges that impede their future commercialization process. To find a solution, a series of two-dimensional HOIPs (2D HOIPs) are investigated to prolong the device lifetime with highly efficient photoelectric conversion and energy storage. Herein, the recent advances of 2D HOIPs and their structural derivatives for the energy realms are summarized and discussed. The basic understanding of crystal structures, physicochemical properties, and growth mechanisms is presented. In addition, the current challenges and future directions to provide a roadmap for the development of next generation 2D HOIPs are prospected
Collapse
Affiliation(s)
- Neng Li
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Corresponding author
| | - Yufei Yang
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zuhao Shi
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhigao Lan
- Institute of New Materials & College of Physics and Telecommunications, Huanggang Normal University, Huangzhou 438000, China
- Corresponding author
| | - Arramel Arramel
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang Selangor Darul Ehsan 43900, Malaysia
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering & School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China
- Corresponding author
| | - Jianfeng Lu
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
12
|
Ko BA, Berry K, Qin Z, Sokolov AV, Hu J, Scully MO, Bao J, Zhang Z. Resonant Degenerate Four-Wave Mixing at the Defect Energy Levels of 2D Organic-Inorganic Hybrid Perovskite Crystals. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57075-57083. [PMID: 34797627 DOI: 10.1021/acsami.1c14092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional organic-inorganic lead halide perovskites are generating great interest due to their optoelectronic characteristics such as high solar energy conversion efficiency and a tunable direct band gap in the visible regime. However, the presence of defect states within the two-dimensional crystal structure can affect these properties, resulting in changes to their band gap emission as well as the emergence of nonlinear optical phenomena. Here, we have investigated the effects of the presence of defect states on the nonlinear optical phenomena of the 2D hybrid perovskite (BA)2(MA)2Pb3Br10. When two pulses, one narrowband pump pulse centered at 800 nm and one supercontinuum pulse with bandwidth from 800-1100 nm, are incident on a perovskite flake, degenerate four-wave mixing (FWM) occurs, with peaks corresponding to the energy levels of the defect states present within the crystal. The longer carrier lifetime of the defect state, in comparison to that of virtual transitions that take place in nonresonant FWM processes, allows for a larger population of electrons to be excited by the second pump photon, resulting in increased FWM signal at the defect energy levels. The quenching of the two-photon luminescence as flake thickness increases is also observed and attributed to the increased presence of defects within the flake at larger thicknesses. This technique shows the potential of detecting defect energy levels in crystals using FWM for a variety of optoelectronic applications.
Collapse
Affiliation(s)
- Brian A Ko
- Baylor University, Waco, Texas 76706, United States
- Texas A&M University, College Station, Texas 77843, United States
| | - Keith Berry
- Baylor University, Waco, Texas 76706, United States
| | - Zhaojun Qin
- University of Houston, Houston, Texas 77004, United States
| | - Alexei V Sokolov
- Baylor University, Waco, Texas 76706, United States
- Texas A&M University, College Station, Texas 77843, United States
| | - Jonathan Hu
- Baylor University, Waco, Texas 76706, United States
| | - Marlan O Scully
- Baylor University, Waco, Texas 76706, United States
- Texas A&M University, College Station, Texas 77843, United States
- Princeton University, Princeton, New Jersey 08544, United States
| | - Jiming Bao
- University of Houston, Houston, Texas 77004, United States
| | | |
Collapse
|
13
|
Cinquino M, Fieramosca A, Mastria R, Polimeno L, Moliterni A, Olieric V, Matsugaki N, Panico R, De Giorgi M, Gigli G, Giannini C, Rizzo A, Sanvitto D, De Marco L. Managing Growth and Dimensionality of Quasi 2D Perovskite Single-Crystalline Flakes for Tunable Excitons Orientation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102326. [PMID: 34623706 PMCID: PMC11469044 DOI: 10.1002/adma.202102326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Hybrid perovskites are among the most promising materials for optoelectronic applications. Their 2D crystalline form is even more interesting since the alternating inorganic and organic layers naturally forge a multiple quantum-well structure, leading to the formation of stable excitonic resonances. Nevertheless, a controlled modulation of the quantum well width, which is defined by the number of inorganic layers (n) between two organic ones, is not trivial and represents the main synthetic challenge in the field. Here, a conceptually innovative approach to easily tune n in lead iodide perovskite single-crystalline flakes is presented. The judicious use of potassium iodide is found to modulate the supersaturation levels of the precursors solution without being part of the final products. This allows to obtain a fine tuning of the n value. The excellent optical quality of the as synthesized flakes guarantees an in-depth analysis by Fourier-space microscopy, revealing that the excitons orientation can be manipulated by modifying the number of inorganic layers. Excitonic out-of-plane component, indeed, is enhanced when "n" is increased. The combined advances in the synthesis and optical characterization fill in the picture of the exciton behavior in low-dimensional perovskite, paving the way to the design of materials with improved optoelectronic characteristics.
Collapse
Affiliation(s)
- Marco Cinquino
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Antonio Fieramosca
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
| | - Rosanna Mastria
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
| | - Laura Polimeno
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Anna Moliterni
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, Bari, 70126, Italy
| | - Vincent Olieric
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Naohiro Matsugaki
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Riccardo Panico
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Milena De Giorgi
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Gigli
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Cinzia Giannini
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, Bari, 70126, Italy
| | - Aurora Rizzo
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
| | - Daniele Sanvitto
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
| | - Luisa De Marco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
14
|
Cui J, Liu Y, Deng Y, Lin C, Fang Z, Xiang C, Bai P, Du K, Zuo X, Wen K, Gong S, He H, Ye Z, Gao Y, Tian H, Zhao B, Wang J, Jin Y. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. SCIENCE ADVANCES 2021; 7:eabg8458. [PMID: 34623917 PMCID: PMC8500509 DOI: 10.1126/sciadv.abg8458] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horizontal transition dipole moments (TDMs) is expected to boost the photon outcoupling of planar LEDs. However, LEDs based on anisotropic perovskite nanoemitters remain to be inefficient (external quantum efficiency, EQE <5%) due to the difficulties of simultaneously controlling the orientations of TDMs, achieving high photoluminescence quantum yields (PLQYs) and realizing charge balance in the films of assembled nanostructures. Here, we demonstrate efficient electroluminescence from an in situ grown perovskite film composed of a monolayer of face-on oriented nanoplatelets. The ratio of horizontal TDMs of the perovskite nanoplatelet film is ~84%, which leads to a light-outcoupling efficiency of ~31%, substantially higher than that of isotropic emitters (~23%). In consequence, LEDs with a peak EQE of 23.6% are achieved, representing highly efficient planar perovskite LEDs.
Collapse
Affiliation(s)
- Jieyuan Cui
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yang Liu
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yunzhou Deng
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chen Lin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhishan Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chensheng Xiang
- Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peng Bai
- China State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Kai Du
- Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Kaichuan Wen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Shaolong Gong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Haiping He
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-WZ Novel Materials Science & Technology Innovation Center, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
- Corresponding author. (Z.Y.); (Y.J.)
| | - Yunan Gao
- China State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - He Tian
- Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Baodan Zhao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yizheng Jin
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Corresponding author. (Z.Y.); (Y.J.)
| |
Collapse
|
15
|
Piveteau L, Morad V, Kovalenko MV. Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials. J Am Chem Soc 2020; 142:19413-19437. [PMID: 32986955 PMCID: PMC7677932 DOI: 10.1021/jacs.0c07338] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Two- and three-dimensional lead-halide perovskite (LHP) materials are novel semiconductors that have generated broad interest owing to their outstanding optical and electronic properties. Characterization and understanding of their atomic structure and structure-property relationships are often nontrivial as a result of the vast structural and compositional tunability of LHPs as well as the enhanced structure dynamics as compared with oxide perovskites or more conventional semiconductors. Nuclear magnetic resonance (NMR) spectroscopy contributes to this thrust through its unique capability of sampling chemical bonding element-specifically (1/2H, 13C, 14/15N, 35/37Cl, 39K, 79/81Br, 87Rb, 127I, 133Cs, and 207Pb nuclei) and locally and shedding light onto the connectivity, geometry, topology, and dynamics of bonding. NMR can therefore readily observe phase transitions, evaluate phase purity and compositional and structural disorder, and probe molecular dynamics and ionic motion in diverse forms of LHPs, in which they can be used practically, ranging from bulk single crystals (e.g., in gamma and X-ray detectors) to polycrystalline films (e.g., in photovoltaics, photodetectors, and light-emitting diodes) and colloidal nanocrystals (e.g., in liquid crystal displays and future quantum light sources). Herein we also outline the immense practical potential of nuclear quadrupolar resonance (NQR) spectroscopy for characterizing LHPs, owing to the strong quadrupole moments, good sensitivity, and high natural abundance of several halide nuclei (79/81Br and 127I) combined with the enhanced electric field gradients around these nuclei existing in LHPs as well as the instrumental simplicity. Strong quadrupole interactions, on one side, make 79/81Br and 127I NMR rather impractical but turn NQR into a high-resolution probe of the local structure around halide ions.
Collapse
Affiliation(s)
- Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- CNRS,
UPR 3079, CEMHTI, Orléans, 45071 Cedex 02, France
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|
16
|
Zou C, Lin LY. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. OPTICS LETTERS 2020; 45:4786-4789. [PMID: 32870857 DOI: 10.1364/ol.400814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Metal halide perovskite light-emitting diodes (PeLEDs) have experienced a rapid advancement in the last several years with the external quantum efficiencies (EQEs) reaching over 20%, comparable to the state-of-the-art organic LEDs and quantum dot LEDs. The photoluminescence quantum yields of perovskite films have also been approaching 100%. Therefore, the next step to improving the EQE of PeLEDs should be focused on boosting light extraction. In this Letter, we demonstrate the emitter dipole orientation as a key parameter in determining the outcoupling efficiency of PeLEDs. We find that the CsPbBr3 emitter has a slightly preferred orientation with the horizontal-to-vertical dipole ratio of 0.41:0.59, as compared to 0.33:0.67 in the isotropic case. A theoretical analysis predicts that a purely anisotropic perovskite emitter may result in a maximum EQE of 36%.
Collapse
|