1
|
Nanda SS, Kim D, Yang H, An SSA, Yi DK. Synergistic Effect of SiO 2 and Fe 3O 4 Nanoparticles in Autophagy Modulation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1033. [PMID: 38921909 PMCID: PMC11207018 DOI: 10.3390/nano14121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Rapid advancements in nanotechnology have expanded its applications and synergistic impact on modern nanosystems. The comprehensive assessment of nanomaterials' safety for human exposure has become crucial and heightened. In addition to the characterization of cell proliferation and apoptosis, probing the implication of autophagy is vital for understanding the ramification of nanomaterials. Hence, HEK-293 kidney cells were employed to understand the changes in induction and perturbation of autophagy in cells by iron oxide (Fe3O4) and silica (SiO2) nanoparticles. Interestingly, Fe3O4 worked as a potent modulator of the autophagy process through its catalytic performance, which can develop better than that of SiO2 nanoparticles mechanism, stressing their therapeutic implication in the understanding of cell behaviors. The quantification of reactive oxygen species (ROS) was measured along with the process of autophagy during cell growth. This modulated autophagy will help in cell fate determination in complementary therapy for disease treatment, provide a clinical strategy for future study.
Collapse
Affiliation(s)
| | - Danyeong Kim
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea; (D.K.); (H.Y.)
| | - Hyewon Yang
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea; (D.K.); (H.Y.)
| | - Seong Soo A. An
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea; (D.K.); (H.Y.)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
2
|
Kosame S, Josline MJ, Lee JH, Ju H. Anomalous spectral shift of localized surface plasmon resonance. NANOSCALE ADVANCES 2024; 6:2636-2643. [PMID: 38752138 PMCID: PMC11093275 DOI: 10.1039/d3na01131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Abstract
We report the first observation of spectral blue shift of plasmon resonance of synthesized silver nanoparticles (AgNPs) due to a negative optical nonlinearity of a local ambient medium, i.e., indigo carmine (IC) solution at around 420 nm wavelength. The blue shift occurred at a larger concentration of AgNPs or at a larger concentration of IC solution, being in obvious contrast to spectral red shift which was widely witnessed in plasmon spectral shift in a linear regime. Plasmon-enhanced local fields could excite the third-order optical nonlinearity for blue shift even under continuous (non-pulsed) light illumination. We also found that the plasmon-excited nonlinearity could allow for differential nonlinear response of the IC solution to be even greater than its differential linear response, though appearing to be somewhat inconsistent with what was generally known in light-matter interaction. The demonstrated properties of such anomalous shift of plasmon spectral peaks and its accompanying properties indicated that plasmon technologies could be exploited not only in linear but also in nonlinear aspects for critical optimization in plasmon-energy harvesting systems such as in surface enhanced spectroscopy/microscopy, biomedical imaging/sensing, laser frequency conversion, ultrashort pulse generation, and all-optical switching.
Collapse
Affiliation(s)
- Saikiran Kosame
- Department of Physics, Gachon University Seongnam-si 13120 Republic of Korea
| | - Mukkath Joseph Josline
- Department of Materials Science and Engineering, Ajou University Suwon Korea
- Department of Energy Systems Research, Ajou University Suwon Korea
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering, Ajou University Suwon Korea
- Department of Energy Systems Research, Ajou University Suwon Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University Seongnam-si 13120 Republic of Korea
| |
Collapse
|
3
|
Nanda SS, Yi DK. Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application. Int J Mol Sci 2024; 25:3266. [PMID: 38542240 PMCID: PMC10969916 DOI: 10.3390/ijms25063266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy.
Collapse
Affiliation(s)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
4
|
Rajamanikandan R, Ilanchelian M, Ju H. Smartphone-enabled colorimetric visual quantification of highly hazardous trivalent chromium ions in environmental waters and catalytic reduction of p-nitroaniline by thiol-functionalized gold nanoparticles. CHEMOSPHERE 2023; 340:139838. [PMID: 37598944 DOI: 10.1016/j.chemosphere.2023.139838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
High-efficiency sensing systems for extremely hazardous chromium (Cr(III)) ions are important due to their detrimental effects on human health and the environment. We employed a spectrophotometric method combined with a smartphone (red, green, and blue (RGB) color ratio)-based detection platform to realize the quick, visually quantifiable in situ detection of Cr(III) ions using surface plasmon resonance (SPR)-aided colorimetry. For optical sensing nanoprobes, we synthesized the 2-Mercapto-5-methyl-1,3,4-thiadiazole (MMT)-modified gold nanoparticles (MMT-AuNPs) using a wet chemical method. By way of a coordination reaction, the Cr(III) ions induce the as-prepared MMT-AuNPs to aggregate and subsequently change the SPR wavelength band. The freshly synthesized MMT-AuNPs exhibited a wine-red color. While Cr(III) ions interact with the MMT-AuNPs, the color of the latter evolved from wine red to purple, thus facilitating visual monitoring. The SPR-relevant color change allowed the quantitative sensing of Cr(III) ions in the range of 40-128 nM, with the limit of detection of 6.93 nM when employing the spectrophotometric method and 12.4 nM when using the smartphone RGB color ratio. Furthermore, we developed the spectrophotometric technique that used the smartphone RGB color ratio for on-site analysis of Cr(III) ions in environmental water samples, indicating the possibility of its chemo-sensing applications for portable quantitative detection devices. Additionally, the catalytic performance of the MMT-AuNPs was demonstrated by the reduction of p-nitroaniline in the presence of sodium borohydride. It was interestingly unveiled that the MMT-AuNPs showed outstanding catalytic performance with a catalytic rate constant of 6.31 × 10-3 s-1.
Collapse
Affiliation(s)
| | | | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
5
|
Rajamanikandan R, Shanmugaraj K, Ilanchelian M, Ju H. Cysteamine-decorated gold nanoparticles for plasmon-based colorimetric on-site sensors for detecting cyanide ions using the smart-phone color ratio and for catalytic reduction of 4-nitrophenol. CHEMOSPHERE 2023; 316:137836. [PMID: 36642146 DOI: 10.1016/j.chemosphere.2023.137836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this paper, we have reported the cyanide ions (CN-) sensing in environmental water samples using cysteamine-capped gold nanoparticles (Cyst-AuNPs) by spectrophotometric, colorimetric, and smartphone-based RGB color detection. The surface plasmon resonance shift at around 525 nm for the Cyst-AuNPs could be used to detect quantitatively the amounts of CN- with concomitant alteration of their color from wine red to purple visualized by the naked eye. For the first time, the Cyst-AuNPs-based visual sensing of CN- was performed using smartphone-based detection with its detection limit of 159 × 10-9 M, ten times lower than that of the highest tolerance level (2 × 10-6 M) permitted by the world health organization. The Cyst-AuNPs displayed excellent specificity for detecting the concentration of 30 × 10-6 M even amid the presence of other interfering inorganic anions with their concentrations about five times higher than it. Environmental real water samples were used to arrange the three different CN- concentrations for plasmon-based colorimetric detection and smartphone-based method. Additionally, the catalytic performance of Cyst-AuNPs was demonstrated for the fast catalytic conversion of hazardous 4-nitrophenol (selected environmental contaminant) to the analogous amino aromatic compounds. A chemical kinetic study showed the conversion rate to be estimated as 1.65 × 10-2 s-1. Cyst-AuNPs can find an application in colorimetric sensing of CN- while being able to be utilized as a catalytic nanomaterial for ecological remedies associated with health care.
Collapse
Affiliation(s)
| | - Krishnamoorthy Shanmugaraj
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Universidad de Concepción, Concepción, Chile; Faculty of Engineering and Science, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2640, Peñalolén, Santiago, Chile
| | | | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
6
|
Palani S, Kenison JP, Sabuncu S, Huang T, Civitci F, Esener S, Nan X. Multispectral Localized Surface Plasmon Resonance (msLSPR) Reveals and Overcomes Spectral and Sensing Heterogeneities of Single Gold Nanoparticles. ACS NANO 2023; 17:2266-2278. [PMID: 36660770 PMCID: PMC9933608 DOI: 10.1021/acsnano.2c08702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Metal nanoparticles can be sensitive molecular sensors due to enhanced absorption and scattering of light near a localized surface plasmon resonance (LSPR). Variations in both intrinsic properties such as the geometry and extrinsic properties such as the environment can cause heterogeneity in nanoparticle LSPR and impact the overall sensing responses. To date, however, few studies have examined LSPR and sensing heterogeneities, due to technical challenges in obtaining the full LSPR spectra of individual nanoparticles in dynamic assays. Here, we report multispectral LSPR (msLSPR), a wide-field imaging technique for real-time spectral monitoring of light scattering from individual nanoparticles across the whole field of view (FOV) at ∼0.5 nm spectral and ∼100 ms temporal resolutions. Using msLSPR, we studied the spectral and sensing properties of gold nanoparticles commonly used in LSPR assays, including spheres, rods, and bipyramids. Complemented with electron microscopy imaging, msLSPR analysis revealed that all classes of gold nanoparticles exhibited variations in LSPR peak wavelengths that largely paralleled variations in morphology. Compared with the rods and spheres, gold nanobipyramids exhibited both more uniform and stronger sensing responses as long as the bipyramids are structurally intact. Simulations incorporating the experimental LSPR properties demonstrate the negative impact of spectral heterogeneity on the overall performance of conventional, intensity-based LSPR assays and the ability of msLSPR in overcoming both particle heterogeneity and measurement noise. These results highlight the importance of spectral heterogeneity in LSPR-based sensors and the potential advantage of performing LSPR assays in the spectral domain.
Collapse
Affiliation(s)
- Stephen Palani
- Knight
Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 2720 S. Moody Ave., Portland, Oregon 97201, United States
- Department
of Biomedical Engineering, Oregon Health
& Science University, 2730 S Moody Ave., Portland, Oregon 97201, United States
| | - John P. Kenison
- Knight
Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 2720 S. Moody Ave., Portland, Oregon 97201, United States
| | - Sinan Sabuncu
- Knight
Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 2720 S. Moody Ave., Portland, Oregon 97201, United States
| | - Tao Huang
- Department
of Biomedical Engineering, Oregon Health
& Science University, 2730 S Moody Ave., Portland, Oregon 97201, United States
| | - Fehmi Civitci
- Knight
Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 2720 S. Moody Ave., Portland, Oregon 97201, United States
| | - Sadik Esener
- Knight
Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 2720 S. Moody Ave., Portland, Oregon 97201, United States
- Department
of Biomedical Engineering, Oregon Health
& Science University, 2730 S Moody Ave., Portland, Oregon 97201, United States
| | - Xiaolin Nan
- Knight
Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 2720 S. Moody Ave., Portland, Oregon 97201, United States
- Department
of Biomedical Engineering, Oregon Health
& Science University, 2730 S Moody Ave., Portland, Oregon 97201, United States
| |
Collapse
|
7
|
Rajamanikandan R, Sasikumar K, Kosame S, Ju H. Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020290. [PMID: 36678042 PMCID: PMC9863761 DOI: 10.3390/nano13020290] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Water toxicity, one of the major concerns for ecosystems and the health of humanity, is usually attributed to inorganic anions-induced contamination. Particularly, cyanide ions are considered one of the most harmful elements required to be monitored in water. The need for cyanide sensing and monitoring has tempted the development of sensing technologies without highly sophisticated instruments or highly skilled operations for the objective of in-situ monitoring. Recent decades have witnessed the growth of noble metal nanomaterials-based sensors for detecting cyanide ions quantitatively as nanoscience and nanotechnologies advance to allow nanoscale-inherent physicochemical properties to be exploited for sensing performance. Particularly, noble metal nanostructure e-based optical sensors have permitted cyanide ions of nanomolar levels, or even lower, to be detectable. This capability lends itself to analytical application in the quantitative detection of harmful elements in environmental water samples. This review covers the noble metal nanomaterials-based sensors for cyanide ions detection developed in a variety of approaches, such as those based on colorimetry, fluorescence, Rayleigh scattering (RS), and surface-enhanced Raman scattering (SERS). Additionally, major challenges associated with these nano-platforms are also addressed, while future perspectives are given with directions towards resolving these issues.
Collapse
|
8
|
Calvo R, Thon A, Saad A, Salvador-Matar A, Manso-Silván M, Ahumada Ó, Pini V. Size characterization of plasmonic nanoparticles with dark-field single particle spectrophotometry. Sci Rep 2022; 12:17231. [PMID: 36280772 PMCID: PMC9592611 DOI: 10.1038/s41598-022-21649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Plasmonic nanoparticles are widely used in multiple scientific and industrial applications. Although many synthesis methods have been reported in the literature throughout the last decade, controlling the size and shape of large populations still remains as a challenge. As size and shape variations have a strong impact in their plasmonic properties, the need to have metrological techniques to accurately characterize their morphological features is peremptory. We present a new optical method referred as Dark-Field Single Particle Spectrophotometry which is able to measure the individual sizes of thousands of particles with nanometric accuracy in just a couple of minutes. Our method also features an easy sample preparation, a straightforward experimental setup inspired on a customized optical microscope, and a measurement protocol simple enough to be carried out by untrained technicians. As a proof of concept, thousands of spherical nanoparticles of different sizes have been measured, and after a direct comparison with metrological gold standard electron microscopy, a discrepancy of 3% has been attested. Although its feasibility has been demonstrated on spherical nanoparticles, the true strengthness of the method is that it can be generalized also to nanoparticles with arbitrary shapes and geometries, thus representing an advantageous alternative to the gold-standard electron microscopy.
Collapse
Affiliation(s)
- Rodrigo Calvo
- Mecwins, Roda de Poniente 15, Tres Cantos, 28760 Madrid, Spain ,grid.5515.40000000119578126Departamento de Física Aplicada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Andreas Thon
- Mecwins, Roda de Poniente 15, Tres Cantos, 28760 Madrid, Spain
| | - Asis Saad
- Mecwins, Roda de Poniente 15, Tres Cantos, 28760 Madrid, Spain
| | | | - Miguel Manso-Silván
- grid.5515.40000000119578126Departamento de Física Aplicada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Óscar Ahumada
- Mecwins, Roda de Poniente 15, Tres Cantos, 28760 Madrid, Spain
| | - Valerio Pini
- Mecwins, Roda de Poniente 15, Tres Cantos, 28760 Madrid, Spain
| |
Collapse
|
9
|
Hossain MI, Nanda SS, Selvan ST, Yi DK. Recent Insights into NIR-Light-Responsive Materials for Photothermal Cell Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3318. [PMID: 36234446 PMCID: PMC9565779 DOI: 10.3390/nano12193318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Controlling cells using photo-responsive materials is highly indispensable in the current biomedical sector. Considering the potential side effects of nanoparticles, it has become a challenge to control cells with photo-responsive materials. Recent studies have described several methods for controlling cell behavior using nanoparticles subjected to the near-infrared (NIR) laser light operating at the wavelength of 808 nm to 980 nm and at the power densities of 0.33 to 0.72 W·cm-2. The challenge here is the preparation of biocompatible nanoparticles for both in vivo and in vitro studies and understanding cell behavior with an external light source recommended for biological application. Earlier studies have well documented many approaches and associated mechanisms for controlling cell behavior and the interaction between nanoparticles, cells, and appropriate external light sources. In this review, various nanomaterials such as metal nanomaterials and carbon-based nanomaterials are compared systematically regarding the effects of controlling cell behavior and inflammation by studying their mechanisms, route of administration, dose, and adverse effects such as toxicity and the interaction of nanoparticles with a specific wavelength of the light. Future directions should focus on stable and efficient light-responsive materials with minimal cytotoxicity.
Collapse
Affiliation(s)
- Md Imran Hossain
- Department of Chemistry, Myongji University, Yongin 17058, Korea
| | | | - Subramanian Tamil Selvan
- Alpha Biomedical Pte Ltd., 21 Biopolis Road, Nucleos North Tower #02-03, Singapore 138567, Singapore
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Korea
| |
Collapse
|
10
|
Mariyappan K, Park S, Nanda SS, Kokkiligadda S, Jo S, Lee J, Tandon A, Yi DK, Park SH. Fibres and films made from DNA and CTMA-modified DNA embedded with gold nanorods and organic light-emitting materials. Colloids Surf B Biointerfaces 2021; 211:112291. [PMID: 34954515 DOI: 10.1016/j.colsurfb.2021.112291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
The scaffolding of deoxyribonucleic acid (DNA) makes DNA molecules effective templates for hosting various types of nanomaterials. Recently, electrospun fibres formed by a variety of polymers have begun to see use in a number of applications, such as filtration in energy applications, insulation in thermodynamics and protein scaffolding in biomedicine. In this study, we constructed electrospun fibres and thin films made of DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA (CDNA) embedded with dyes, organic light-emitting materials (OLEMs), and gold nanorods (GNRs). These materials provide significant advantages, including selectivity of dimensionality, solubility in organic and inorganic solvents, and functionality enhancement. In addition, coaxial fibres made of CDNA were constructed to demonstrate the feasibility of constructing relatively complex fibres with an electrospinner. To determine the basic physical characteristics of the fibres and thin films containing GNRs and OLEMs, we conducted current measurements, photoluminescence (PL) measurements, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The currents in DNA and CDNA were found to exhibit Ohmic behaviour, while the PL emission could be controlled by OLEMs. In addition, the XPS provided the chemical configuration of samples, and the UV-Vis spectra revealed the plasmon resonance of GNR. Due to their simple fabrication and enhanced functionality, these DNA and CDNA fibres and thin films could be used in various devices (e.g., filters or blocking layers) and sensors (e.g., gas detectors and bio sensors) in a number of industries.
Collapse
Affiliation(s)
- Karthikeyan Mariyappan
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Suyoun Park
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | | | - Samanth Kokkiligadda
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Soojin Jo
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Jayeon Lee
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Anshula Tandon
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Korea.
| | - Sung Ha Park
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
11
|
Zhao H, Isozaki K, Taguchi T, Yang S, Miki K. Laying down of gold nanorods monolayers on solid surfaces for surface enhanced Raman spectroscopy applications. Phys Chem Chem Phys 2021; 23:26822-26828. [PMID: 34817481 DOI: 10.1039/d1cp02497c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Laying-down gold nanorods (GNRs) of a monolayer immobilized on a solid substrate was realized with a hybrid method, a combination of three elemental technologies: surface modification, electrophoresis, and solvent evaporation. The self-assembly of CTAB-protected GNRs in the solution was induced by 0.05 mM of EDTA. The assembled GNRs were deposited in a laying-down form on the solid surface during the hybrid method. The final coverage was over 71% on the substrate with an area larger than 0.6 cm2. The spacing between the sides of the GNRs was fixed to be 4.6 ± 0.9 nm by the thermal annealing-promoted crystalline packing of the bilayer of CTAB salt-bridged with EDTA. The obtained laying-down GNRs of a monolayer on the gold substrate show a small shift of the transverse LSPR around 550-570 nm (with a width of around 100 nm) and a large red shift of the longitudinal LSPR to be 900-1050 nm (with a width of 500 nm), because of the strong electromagnetic coupling between the GNRs and gold substrate. Therefore it can be used in a wide range of wavelengths for surface enhanced Raman spectroscopy (SERS) applications. The film has a high enhancement factor with 105 for R6G.
Collapse
Affiliation(s)
- Haidong Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, Shan Xi, People's Republic of China.,National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,School of Science, State Key Laboratory for Mechanical Behavior of Materials, Ministry of Education Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, Shan Xi, People's Republic of China
| | - Katsuhiro Isozaki
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomoya Taguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Shengchun Yang
- School of Science, State Key Laboratory for Mechanical Behavior of Materials, Ministry of Education Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, Shan Xi, People's Republic of China
| | - Kazushi Miki
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
12
|
Synthesis of different morphologies of metal and metal oxide nanoparticles and investigation of their catalytic properties by optical methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Seok JS, Ju H. Plasmonic Optical Biosensors for Detecting C-Reactive Protein: A Review. MICROMACHINES 2020; 11:E895. [PMID: 32992442 PMCID: PMC7599671 DOI: 10.3390/mi11100895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
C-reactive protein (CRP), a potent acute-phase reactant that increases rapidly in response to inflammation, tissue damage or infections, is also considered an indicator of the risk of cardiovascular diseases and neurological disorders. Recent advances in nanofabrication and nanophotonic technologies have prompted the optical plasmonic phenomena to be tailored for specific detection of human serum CRP into label-free devices. We review the CRP-specific detection platforms with high sensitivity, which feature the thin metal films for surface plasmon resonance, nano-enhancers of zero dimensional nanostructures, and metal nanoparticles for localized surface plasmon resonance. The protocols used for various types of assay reported in literature are also outlines with surface chemical pretreatment required for specific detection of CRPs on a plasmonic surface. Properties including sensitivity and detection range are described for each sensor device reviewed, while challenges faced by plasmonic CRP sensors are discussed in the conclusion, with future directions towards which research efforts need to be made.
Collapse
Affiliation(s)
- Joo Seon Seok
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea;
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea;
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea
| |
Collapse
|