1
|
Shamraienko V, Friedrich R, Subakti S, Lubk A, Krasheninnikov AV, Eychmüller A. Weak Spots in Semiconductor Nanoplatelets: From Isolated Defects Toward Directed Nanoscale Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411112. [PMID: 39696925 PMCID: PMC11798351 DOI: 10.1002/smll.202411112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Indexed: 12/20/2024]
Abstract
The chemical engineering of nanostructures with atomic-scale precision is a fundamental scientific challenge. Cation exchange reactions in nanoplatelets (NPLs) offer an attractive platform for this precision chemistry, as it is relatively simple to carry out, extremely versatile, and allows the production of heterogeneous nanostructures that cannot be produced by any other means. A major hindrance has, however, been the lack of knowledge of the "weak spots" of the platelets where the ionic exchange reaction is initiated to optimally control the process toward directed nanoscale assemblies. Here, mercury selenide formation in cadmium selenide NPLs is investigated. The study of Cd(1-n)HgnSe NPLs using scanning transmission electron microscopy (STEM) pinpoints at the corners (vertices) and edges of the NPLs as the exchanged sites. Comprehensive first principles density functional calculations of Hg substitution energies in a hierarchy of models of four monolayers (ML) CdSe NPL stabilized with acetate ligands unambiguously underscore that the energetically preferred exchange positions are platelet corners - in line with the experimental findings. The results thus not only explain in detail how the cation exchange process in 2D CdSe NPLs is kicked-off, but also establish an arena for future studies in 2D nanomaterials reaching far beyond these reactions.
Collapse
Affiliation(s)
| | - Rico Friedrich
- Theoretical ChemistryTU DresdenBergstraße 66c01062DresdenGermany
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
- Center for Extreme MaterialsDuke UniversityDurhamNC27708USA
| | - Subakti Subakti
- Institute for Solid State and Materials Research (IFW) Dresden01069DresdenGermany
| | - Axel Lubk
- Institute for Solid State and Materials Research (IFW) Dresden01069DresdenGermany
- Institute of Solid State and Materials PhysicsTU Dresden01069DresdenGermany
| | - Arkady V. Krasheninnikov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
| | | |
Collapse
|
2
|
Ibrahem MA, Waris M, Miah MR, Shabani F, Canimkurbey B, Unal E, Delikanli S, Demir HV. Orientation-Dependent Photoconductivity of Quasi-2D Nanocrystal Self-Assemblies: Face-Down, Edge-Up Versus Randomly Oriented Quantum Wells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401423. [PMID: 38770984 DOI: 10.1002/smll.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Here, strongly orientation-dependent lateral photoconductivity of a CdSe monolayer colloidal quantum wells (CQWs) possessing short-chain ligands is reported. A controlled liquid-air self-assembly technique is utilized to deliberately engineer the alignments of CQWs into either face-down (FO) or edge-up (EO) orientation on the substrate as opposed to randomly oriented (RO) CQWs prepared by spin-coating. Adapting planar configuration metal-semiconductor-metal (MSM) photodetectors, it is found that lateral conductivity spans ≈2 orders of magnitude depending on the orientation of CQWs in the film in the case of utilizing short ligands. The long native ligands of oleic acid (OA) are exchanged with short-chain ligands of 2-ethylhexane-1-thiol (EHT) to reduce the inter-platelet distance, which significantly improved the photoresponsivity from 4.16, 0.58, and 4.79 mA W-1 to 528.7, 6.17, and 94.2 mA W-1, for the MSM devices prepared with RO, FO, and EO, before and after ligands exchange, respectively. Such CQW orientation control profoundly impacts the photodetector performance also in terms of the detection speed (0.061 s/0.074 s for the FO, 0.048 s/0.060 s for the EO compared to 0.10 s/0.16 s for the RO, for the rise and decay time constants, respectively) and the detectivity (1.7 × 1010, 2.3 × 1011, and 7.5 × 1011 Jones for the FO, EO, and RO devices, respectively) which can be further tailored for the desired optoelectronic device applications. Attributed to charge transportation in colloidal films being proportional to the number of hopping steps, these findings indicate that the solution-processed orientation of CQWs provides the ability to tune the photoconductivity of CQWs with short ligands as another degree of freedom to exploit and engineer their absorptive devices.
Collapse
Affiliation(s)
- Mohammed A Ibrahem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Laser Science and Technology Branch, Applied Sciences Department, University of Technology, Baghdad, 10066, Iraq
| | - Mohsin Waris
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Md Rumon Miah
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Betul Canimkurbey
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Serefeddin Health Services Vocational School, Central Research Laboratory, Amasya University, Amasya, 05100, Turkey
| | - Emre Unal
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
3
|
Chen S, Al-Hilfi SH, Chen G, Zhang H, Zheng W, Virgilio LD, Geuchies JJ, Wang J, Feng X, Riedinger A, Bonn M, Wang HI. Tuning the Inter-Nanoplatelet Distance and Coupling Strength by Thermally Induced Ligand Decomposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308951. [PMID: 38010120 DOI: 10.1002/smll.202308951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 11/29/2023]
Abstract
CdSe nanoplatelets (NPLs) are promising 2D semiconductors for optoelectronic applications, in which efficient charge transport properties are desirable. It is reported that thermal annealing constitutes an effective strategy to control the optical absorption and electrical properties of CdSe NPLs by tuning the inter-NPL distance. Combining optical absorption, transmission electron microscopy, and thermogravimetric analysis, it is revealed that the thermal decomposition of ligands (e.g., cadmium myristate) governs the inter-NPL distance and thus the inter-NPL electronic coupling strength. Employing ultrafast terahertz spectroscopy, it is shown that this enhanced electronic coupling increases both the free carrier generation efficiency and the short-range mobility in NPL solids. The results show a straightforward method of controlling the interfacial electronic coupling strength for developing functional optoelectronic devices through thermal treatments.
Collapse
Affiliation(s)
- Shuai Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Samir H Al-Hilfi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062, Dresden, Germany
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lucia Di Virgilio
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jaco J Geuchies
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Junren Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120, Halle (Saale), Germany
| | - Andreas Riedinger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, 3584 CC, The Netherlands
| |
Collapse
|
4
|
van der Sluijs M, Vliem JF, de Wit JW, Rietveld JJ, Meeldijk JD, Vanmaekelbergh DAM. Cation Exchange and Spontaneous Crystal Repair Resulting in Ultrathin, Planar CdS Nanosheets. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8301-8308. [PMID: 37840776 PMCID: PMC10568967 DOI: 10.1021/acs.chemmater.3c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Cation exchange has become a major postsynthetic tool to obtain nanocrystals with a combination of stoichiometry, size, and shape that is challenging to achieve by direct wet-chemical synthesis. Here, we report on the transformation of highly anisotropic, ultrathin, and planar PbS nanosheets into CdS nanosheets of the same dimensions. We monitor the evolution of the Cd-for-Pb exchange by ex-situ TEM, HAADF-STEM, and EDX. We observe that in the early stages of the exchange the sheets show large in-sheet voids that repair spontaneously upon further exchange and annealing, resulting in ultrathin, planar, and crystalline CdS nanosheets. After cation exchange, the nanosheets show broad sub-band gap luminescence, as often observed in CdS nanocrystals. The photoluminescence excitation spectrum reveals the heavy- and light-hole exciton features, with very strong quantum confinement and large electron-hole Coulomb energy, typical for 2D ultrathin Cd-chalcogenide nanosheets.
Collapse
Affiliation(s)
- Maaike
M. van der Sluijs
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Jara F. Vliem
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Jur W. de Wit
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Jeppe J. Rietveld
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Johannes D. Meeldijk
- Electron
Microscopy Centre, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Daniel A. M. Vanmaekelbergh
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
5
|
Babaev AA, Skurlov ID, Timkina YA, Fedorov AV. Colloidal 2D Lead Chalcogenide Nanocrystals: Synthetic Strategies, Optical Properties, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111797. [PMID: 37299700 DOI: 10.3390/nano13111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Lead chalcogenide nanocrystals (NCs) are an emerging class of photoactive materials that have become a versatile tool for fabricating new generation photonics devices operating in the near-IR spectral range. NCs are presented in a wide variety of forms and sizes, each of which has its own unique features. Here, we discuss colloidal lead chalcogenide NCs in which one dimension is much smaller than the others, i.e., two-dimensional (2D) NCs. The purpose of this review is to present a complete picture of today's progress on such materials. The topic is quite complicated, as a variety of synthetic approaches result in NCs with different thicknesses and lateral sizes, which dramatically change the NCs photophysical properties. The recent advances highlighted in this review demonstrate lead chalcogenide 2D NCs as promising materials for breakthrough developments. We summarized and organized the known data, including theoretical works, to highlight the most important 2D NC features and give the basis for their interpretation.
Collapse
Affiliation(s)
- Anton A Babaev
- PhysNano Department, ITMO University, Saint Petersburg 197101, Russia
| | - Ivan D Skurlov
- PhysNano Department, ITMO University, Saint Petersburg 197101, Russia
| | - Yulia A Timkina
- PhysNano Department, ITMO University, Saint Petersburg 197101, Russia
| | - Anatoly V Fedorov
- PhysNano Department, ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
6
|
van der Sluijs M, Salzmann BBV, Arenas Esteban D, Li C, Jannis D, Brafine LC, Laning TD, Reinders JWC, Hijmans NSA, Moes JR, Verbeeck J, Bals S, Vanmaekelbergh D. Study of the Mechanism and Increasing Crystallinity in the Self-Templated Growth of Ultrathin PbS Nanosheets. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:2988-2998. [PMID: 37063593 PMCID: PMC10100538 DOI: 10.1021/acs.chemmater.3c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Colloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected. For the near-infrared region, PbS nanosheets (NSs) hold strong promise, but the photoluminescence quantum yield is low and many questions on the crystallinity, atomic structure, intriguing rectangular shape, and formation mechanism remain to be answered. Here, we report on a detailed investigation of the PbS NSs prepared with a lead thiocyanate single source precursor. Atomically resolved HAADF-STEM imaging reveals the presence of defects and small cubic domains in the deformed orthorhombic PbS crystal lattice. Moreover, variations in thickness are observed in the NSs, but only in steps of 2 PbS monolayers. To study the reaction mechanism, a synthesis at a lower temperature allowed for the study of reaction intermediates. Specifically, we studied the evolution of pseudo-crystalline templates toward mature, crystalline PbS NSs. We propose a self-induced templating mechanism based on an oleylamine-lead-thiocyanate (OLAM-Pb-SCN) complex with two Pb-SCN units as a building block; the interactions between the long-chain ligands regulate the crystal structure and possibly the lateral dimensions.
Collapse
Affiliation(s)
- Maaike
M. van der Sluijs
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Bastiaan B. V. Salzmann
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Daniel Arenas Esteban
- Electron
Microscopy for Materials Science (EMAT), NANOlab Center for Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Chen Li
- Electron
Microscopy for Materials Science (EMAT), NANOlab Center for Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Daen Jannis
- Electron
Microscopy for Materials Science (EMAT), NANOlab Center for Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Laura C. Brafine
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Tim D. Laning
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Joost W. C. Reinders
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Natalie S. A. Hijmans
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Jesper R. Moes
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Johan Verbeeck
- Electron
Microscopy for Materials Science (EMAT), NANOlab Center for Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Sara Bals
- Electron
Microscopy for Materials Science (EMAT), NANOlab Center for Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Daniel Vanmaekelbergh
- Condensed
Matter & Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
7
|
Xie M, Tao CL, Zhang Z, Liu H, Wan S, Nie Y, Yang W, Wang X, Wu XJ, Tian Y. Nonblinking Colloidal Quantum Dots via Efficient Multiexciton Emission. J Phys Chem Lett 2022; 13:2371-2378. [PMID: 35254074 DOI: 10.1021/acs.jpclett.2c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonblinking colloidal quantum dots (QDs) are significant to their applications as single-photon sources or light-emitting materials. Herein, a simple heat-up method was developed to synthesize high-qualityWZ-CdSe/CdS core-shell colloidal QDs, which achieved a near-unity photoluminescence quantum yield (PLQY). It was found that the blinking behavior of such QDs was completely suppressed at high excitation intensities, and ultra-stable PL emission was observed. For this reason, a systematic investigation was conducted, revealing that the complete blinking suppression was attributed mainly to the efficient multiexciton emission at high excitation intensities. Such high-quality QDs with nonblinking behaviors and nearly ideal PL properties at high excitation intensities have massive potential applications in various robust conditions, including QD display screens, single-particle tracks, and single-photon sources.
Collapse
Affiliation(s)
- Mingcai Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Lei Tao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Hanyu Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sushu Wan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Nie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Klepzig LF, Biesterfeld L, Romain M, Niebur A, Schlosser A, Hübner J, Lauth J. Colloidal 2D PbSe nanoplatelets with efficient emission reaching the telecom O-, E- and S-band. NANOSCALE ADVANCES 2022; 4:590-599. [PMID: 36132696 PMCID: PMC9418099 DOI: 10.1039/d1na00704a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Colloidal two-dimensional (2D) lead chalcogenide nanoplatelets (NPLs) represent highly interesting materials for near- and short wave-infrared applications including innovative glass fiber optics exhibiting negligible attenuation. In this work, we demonstrate a direct synthesis route for 2D PbSe NPLs with cubic rock salt crystal structure at low reaction temperatures of 0 °C and room temperature. A lateral size tuning of the PbSe NPLs by controlling the temperature and by adding small amounts of octylamine to the reaction leads to excitonic absorption features in the range of 1.55-1.24 eV (800-1000 nm) and narrow photoluminescence (PL) reaching the telecom O-, E- and S-band (1.38-0.86 eV, 900-1450 nm). The PL quantum yield of the as-synthesized PbSe NPLs is more than doubled by a postsynthetic treatment with CdCl2 (e.g. from 14.7% to 37.4% for NPLs emitting at 980 nm with a FWHM of 214 meV). An analysis of the slightly asymmetric PL line shape of the PbSe NPLs and their characterization by ultrafast transient absorption and time-resolved PL spectroscopy reveal a surface trap related PL contribution which is successfully reduced by the CdCl2 treatment from 40% down to 15%. Our results open up new pathways for a direct synthesis and straightforward incorporation of colloidal PbSe NPLs as efficient infrared emitters at technologically relevant telecom wavelengths.
Collapse
Affiliation(s)
- Lars F Klepzig
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines) 30167 Hannover Germany
| | - Leon Biesterfeld
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines) 30167 Hannover Germany
| | - Michel Romain
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
| | - André Niebur
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines) 30167 Hannover Germany
| | - Anja Schlosser
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering (LNQE), Leibniz Universität Hannover Schneiderberg 39 30167 Hannover Germany
| | - Jens Hübner
- Laboratory of Nano and Quantum Engineering (LNQE), Leibniz Universität Hannover Schneiderberg 39 30167 Hannover Germany
- Institute of Solid State Physics, Leibniz Universität Hannover Appelstraße 2 30167 Hannover Germany
| | - Jannika Lauth
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover Callinstr. 3A 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines) 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering (LNQE), Leibniz Universität Hannover Schneiderberg 39 30167 Hannover Germany
| |
Collapse
|
9
|
Lesnyak V. Chemical Transformations of Colloidal Semiconductor Nanocrystals Advance Their Applications. J Phys Chem Lett 2021; 12:12310-12322. [PMID: 34932359 DOI: 10.1021/acs.jpclett.1c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, colloidal semiconductor nanocrystals (NCs) are finding more and more applications in optoelectronic devices. Their usage, however, is still very far from the great potential already demonstrated in many fields owing to their unique features. While researchers are still struggling to achieve a wider gamut of different semiconductor nanomaterials with more controllable properties, the library of already existing candidates is large enough to harness their potential. Modification of well-studied semiconductor NCs by means of their chemical transformations can greatly advance their practical exploitation. In this Perspective, the main types of chemical transformations represented by ligand and cation exchange reactions and their recent examples are summarized. While ligand exchange is used to adjust the surface of a semiconductor NC, cation exchange allows us to engineer its core composition. Both approaches greatly extend the range of properties of the resulting nanomaterials, advancing their further incorporation into optoelectronic devices.
Collapse
Affiliation(s)
- Vladimir Lesnyak
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|