1
|
Chen S, Abouhaidar R, Artiglia L, Yang H, Boucly A, Iezzi L, Gabathuler JP, Bartels-Rausch T, Toubin C, Ammann M. Influence of Surfactants with Differently Charged Headgroups on the Surface Propensity of Bromide. J Phys Chem A 2025; 129:3085-3097. [PMID: 40118072 PMCID: PMC11973919 DOI: 10.1021/acs.jpca.4c07539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025]
Abstract
Halide ions in oceans and sea-spray aerosol particles are an important source of reactive halogen species in the atmosphere that impact the ozone budget and radiative balance. The multiphase cycling of halogen species is linked to the abundance of halide ions at the aqueous solution-air interface. Ubiquitously present surface-active organic compounds may affect the interfacial abundance of halide ions. Here, we use liquid jet X-ray photoelectron spectroscopy and molecular dynamics (MD) simulations to assess the impact of surfactants with different headgroups on the abundance of bromide and sodium ions at the interface. Core level spectra of Br 3d, Na 2s, and O 1s are reported for solutions containing tetrabutylammonium, hexylamine (HA), and propyl sulfate. We used a photoelectron attenuation model to retrieve the interfacial concentration of bromide in the presence of these different surfactants. The experimental results confirm the previously reported strong enhancement of bromide in the presence of tetrabutylammonium at the interface. In turn, propyl sulfate had a minor impact on the abundance of bromide but led to a significantly enhanced concentration of sodium cations. The MD simulations performed for bromide solutions containing hexylammonium and propyl sulfate show an enhancement of the interfacial bromide and sodium concentrations, respectively, comparable to the experimental results. The difference between the measured enhancement of bromide for HA and the nearly nonexistent effect of HA on bromide in the MD simulations is ascribed to the small amounts of hexylammonium present in the experimental solution. The present work suggests an important role of electrostatic interactions at the interface, which may guide the assessment of anion and cation abundances in atmospheric particles more generally.
Collapse
Affiliation(s)
- Shuzhen Chen
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Department
of Environmental System Science, ETH Zurich, 8093 Zürich, Switzerland
| | - Rawan Abouhaidar
- Université
de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers Atomes
et Molécules, F-59000 Lille, France
| | - Luca Artiglia
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Huanyu Yang
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Department
of Environmental System Science, ETH Zurich, 8093 Zürich, Switzerland
| | - Anthony Boucly
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Lucia Iezzi
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Department
of Environmental System Science, ETH Zurich, 8093 Zürich, Switzerland
| | | | - Thorsten Bartels-Rausch
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Céline Toubin
- Université
de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers Atomes
et Molécules, F-59000 Lille, France
| | - Markus Ammann
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
2
|
Bryant SJ, Bryant G, Drummond CJ, Greaves TL. Physico-Chemical Characterization of Amino Acid-Based Deep Eutectic Solvents. Molecules 2025; 30:818. [PMID: 40005131 PMCID: PMC11858736 DOI: 10.3390/molecules30040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Deep eutectic solvents are an exciting class of designer solvents that are increasingly gaining popularity. Deep eutectic solvents based on amino acids are particularly interesting for biomedical applications due to their potential low toxicity. However, very few have been reported to date, and only one of these has been comprehensively studied, made from a combination of proline and glycerol. Here, we report for the first time a systematic investigation into amino acid-based deep eutectic solvents, with a particular focus on the structural features of amino acids that promote eutectic formation and their influence on viscosity, refractive index, surface tension and thermal behavior. Of the 22 amino acids (and related compounds) examined, only 3 (lysine, arginine and, as previously reported, proline) formed stable homogenous liquids in combination with glycerol or ethylene glycol. For these mixtures, it was found that the second component (glycerol or ethylene glycol) had a much more significant influence on the physical properties than the identity of the amino acid. Most significantly, it was found that far fewer amino acids readily formed deep eutectic solvents than has been generally assumed. This is the first work to systematically characterize deep eutectic solvents based on amino acids and, as such, paves the way for future biomedical applications of these solvents.
Collapse
Affiliation(s)
- Saffron J. Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (G.B.); (C.J.D.); (T.L.G.)
| | | | | | | |
Collapse
|
3
|
Cooper A, Shenkiryk A, Chin H, Morris M, Mehndiratta L, Roundtree K, Tafuri T, Slade JH. Photoinitiated Degradation Kinetics of the Organic UV Filter Oxybenzone in Solutions and Aerosols: Impacts of Salt, Photosensitizers, and the Medium. ACS ES&T AIR 2024; 1:1430-1441. [PMID: 39539463 PMCID: PMC11555681 DOI: 10.1021/acsestair.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Organic UV filters like oxybenzone (BP3) in sunscreens are seawater pollutants suspected to transfer to the atmosphere via sea spray aerosol (SSA). This study examines the photoinitiated degradation of BP3 in artificial and real seawater compared to SSA mimics containing NaCl and 4-benzoylbenzoic acid (4-BBA). We investigated pure, binary, and ternary mixtures of BP3, NaCl, and 4-BBA using solar-simulated light to isolate the effects of salt and photosensitization on BP3 degradation. Results showed significantly faster degradation in the aerosol phase (J eff,env ≈ 10-3-10-2 s-1 or t 1/2 < 10 min) compared to bulk solutions (J eff,env ≈ 10-6 s-1 or t 1/2 > 1 day). The photosensitizer enhanced BP3 photodegradation in both phases more than when mixed with salt or all three components in solutions. BP3 photodegradation was most enhanced by salt in the aerosol phase. High-resolution molecular analysis via Orbitrap LC-MS/MS revealed more acutely toxic compounds (benzophenone, benzoic acid, and benzaldehyde) in irradiated aerosols than in solution, supported by electronic structure and toxicity modeling. These findings highlight that seawater may serve as a reservoir for BP3 and other organic UV filters and that upon transfer into SSA, BP3 rapidly transforms, increasing aerosol toxicity.
Collapse
Affiliation(s)
- Adam Cooper
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alexis Shenkiryk
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Henry Chin
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Maya Morris
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Lincoln Mehndiratta
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Kanuri Roundtree
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Tessa Tafuri
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Jonathan H. Slade
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Kruse SM, Tumminello PR, Moore AN, Lee C, Prather KA, Slade JH. Effects of Relative Humidity and Phase on the Molecular Detection of Nascent Sea Spray Aerosol Using Extractive Electrospray Ionization. Anal Chem 2024; 96:12901-12907. [PMID: 39047064 DOI: 10.1021/acs.analchem.4c02871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Online mass spectrometry techniques, such as extractive electrospray ionization mass spectrometry (EESI-MS), present an attractive alternative for analyzing aerosol molecular composition due to reduced aerosol sample collection and handling times and improved time resolution. Recent studies show a dependence of EESI-MS sensitivity on particle size and mixing state. This study measured authentic sea spray aerosol (SSA) components generated during a phytoplankton bloom, specifically glycerol, palmitic acid, and potassium ions. We demonstrate temporal variability and trends dependent on specific biological processes occurring in seawater. We found that the EESI-MS sensitivity, after adjusting for pressure variations at the inlet and normalizing to the reagent ion, critically depends on the sample's relative humidity. Relevant SSA species exhibited heightened sensitivity at an elevated relative humidity near the deliquescence relative humidity of sea salt and poorer sensitivity with sparse detection below the efflorescence relative humidity. Modeling the reagent ion's diffusive depth demonstrates that the sample aerosol particle viscosity governs the relative humidity dependence because it modulates the particle's coagulation efficiency and distance the reagent ion diffuses and reacts with components in the particle bulk. The effects of particle size and mixing state are discussed, revealing improved sensitivity of phase-separated components present along the particle surface. This work highlights the importance of the particle phase state in detecting and quantifying molecular components within authentic and complex aerosol particles and the utility of EESI-MS for measuring SSA composition.
Collapse
Affiliation(s)
- Samantha M Kruse
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Paul R Tumminello
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Alexia N Moore
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Christopher Lee
- Scripps Institution of Oceanography, University of California San Deigo, La Jolla, California 92093, United States
| | - Kimberly A Prather
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Scripps Institution of Oceanography, University of California San Deigo, La Jolla, California 92093, United States
| | - Jonathan H Slade
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Kumar N, Premadasa UI, Dong D, Roy S, Ma YZ, Doughty B, Bryantsev VS. Adsorption, Orientation, and Speciation of Amino Acids at Air-Aqueous Interfaces for the Direct Air Capture of CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14311-14320. [PMID: 38958522 DOI: 10.1021/acs.langmuir.4c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Amino acids make up a promising family of molecules capable of direct air capture (DAC) of CO2 from the atmosphere. Under alkaline conditions, CO2 reacts with the anionic form of an amino acid to produce carbamates and deactivated zwitterionic amino acids. The presence of the various species of amino acids and reactive intermediates can have a significant effect on DAC chemistry, the role of which is poorly understood. In this study, all-atom molecular dynamics (MD) based computational simulations and vibrational sum frequency generation (vSFG) spectroscopy studies were conducted to understand the role of competitive interactions at the air-aqueous interface in the context of DAC. We find that the presence of potassium bicarbonate ions, in combination with the anionic and zwitterionic forms of amino acids, induces concentration and charge gradients at the interface, generating a layered molecular arrangement that changes under pre- and post-DAC conditions. In parallel, an enhancement in the surface activity of both anionic and zwitterionic forms of amino acids is observed, which is attributed to enhanced interfacial stability and favorable intermolecular interactions between the adsorbed amino acids in their anionic and zwitterionic forms. The collective influence of these competitive interactions, along with the resulting interfacial heterogeneity, may in turn affect subsequent capture reactions and associated rates. These effects underscore the need to consider dynamic changes in interfacial chemical makeup to enhance DAC efficiency and to develop successful negative emission and storage technologies.
Collapse
Affiliation(s)
- Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dengpan Dong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Hariharan A, Bready CJ, Ajello JG, Black SH, Shields GC, Johnson CJ. Stability and Structure of Potentially Atmospherically Relevant Glycine Ammonium Bisulfate Clusters. J Phys Chem A 2024; 128:4268-4278. [PMID: 38752426 DOI: 10.1021/acs.jpca.4c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
New particle formation (NPF) is the process by which trace atmospheric acids and bases cluster and grow into particles that ultimately impact climate. Sulfuric acid concentration drives NPF, but nitrogen-containing bases promote the formation of more stable clusters via salt bridge formation. Recent computational efforts have suggested that amino acids can enhance NPF, predicting that they can stabilize new particles via multiple protonation sites, but there has yet to be experimental validation of these predictions. We used mass spectrometry and infrared spectroscopy to study the structure and stability of cationic clusters composed of glycine, sulfuric acid, and ammonia. When collisionally activated, clusters were significantly more likely to eliminate ammonia or sulfuric acid than glycine, while quantum chemical calculations predicted lower binding free energies for ammonia but similar binding free energies for glycine and sulfuric acid. These calculations predicted several low-energy structures, so we compared experimental and computed vibrational spectra to attempt to validate the computationally predicted minimum energy structure. Unambiguous identification of the experimental structure by comparison to these calculations was made difficult by the complexity of the experimental spectra and the fact that the identity of the computed lowest-energy structure depended strongly on temperature. If their vapors are present, amino acids are likely to be enriched in new particles by displacing more weakly bound ammonia, similar to the behavior of other atmospheric amines. The carboxylic acid groups were found to preferentially interact with other carboxylic acids, suggesting incipient organic/inorganic phase separation even at these small sizes.
Collapse
Affiliation(s)
- Annapoorani Hariharan
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| | - Conor J Bready
- Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613, United States
| | - Jack G Ajello
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| | - Samantha H Black
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| | - George C Shields
- Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| |
Collapse
|
7
|
Xu M, Tchinda NT, Li S, Du L. Enhanced saccharide enrichment in sea spray aerosols by coupling surface-active fatty acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170322. [PMID: 38278262 DOI: 10.1016/j.scitotenv.2024.170322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The chemical composition of aerosols plays a significant role in aerosol-cloud interactions and, although saccharides make up their largest organic mass fraction, the current process model for understanding sea spray aerosol (SSA) composition struggles to replicate the enrichment of saccharides that has been observed. Here, we simulated the generation of SSA and quantified the enrichment of two soluble saccharides (glucose and trehalose) in SSA with a homemade sea spray aerosol generator. The results of the generation experiments demonstrated that both saccharides, especially trehalose, can promote the generation of SSA, whereas surface-active fatty acids primarily inhibit SSA production due to fewer bubble bursts caused by a large amount of foam accumulation. A significant decrease in surface tension of seawater with the addition of fatty acids was observed, while only a minor decrease was observed for seawater with the addition of only saccharide. Enrichment factors (EFs) of saccharides measured using high performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) revealed no enrichment of glucose in submicron SSA, while trehalose showed a slight enrichment. In the presence of surface-active fatty acids on the seawater surface, a significant increase in the enrichment of saccharides in SSA was observed, with glucose and trehalose showing EF of approximately 27-fold and 58-fold, respectively. Besides, this enrichment was accompanied by the accumulation of calcium and magnesium ions. The results presented here suggest that the coupling interaction mechanism of soluble saccharides and surface-active fatty acids on the ocean surface contributes to the enrichment of soluble saccharides in SSA.
Collapse
Affiliation(s)
- Minglan Xu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Narcisse Tsona Tchinda
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Siyang Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Ecology and Environment, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| |
Collapse
|
8
|
Premadasa UI, Kumar N, Zhu Z, Stamberga D, Li T, Roy S, Carrillo JMY, Einkauf JD, Custelcean R, Ma YZ, Bocharova V, Bryantsev VS, Doughty B. Synergistic Assembly of Charged Oligomers and Amino Acids at the Air-Water Interface: An Avenue toward Surface-Directed CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12052-12061. [PMID: 38411063 DOI: 10.1021/acsami.3c18225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zewen Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
9
|
Seki T, Yu CC, Chiang KY, Yu X, Sun S, Bonn M, Nagata Y. Spontaneous Appearance of Triiodide Covering the Topmost Layer of the Iodide Solution Interface Without Photo-Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3830-3837. [PMID: 38353041 PMCID: PMC10902846 DOI: 10.1021/acs.est.3c08243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ions containing iodine atoms at the vapor-aqueous solution interfaces critically affect aerosol growth and atmospheric chemistry due to their complex chemical nature and multivalency. While the surface propensity of iodide ions has been intensely discussed in the context of the Hofmeister series, the stability of various ions containing iodine atoms at the vapor-water interface has been debated. Here, we combine surface-specific sum-frequency generation (SFG) vibrational spectroscopy with ab initio molecular dynamics simulations to examine the extent to which iodide ions cover the aqueous surface. The SFG probe of the free O-D stretch mode of heavy water indicates that the free O-D group density decreases drastically at the interface when the bulk NaI concentration exceeds ∼2 M. The decrease in the free O-D group density is attributed to the spontaneous appearance of triiodide that covers the topmost interface rather than to the surface adsorption of iodide. This finding demonstrates that iodide is not surface-active, yet the highly surface-active triiodide is generated spontaneously at the water-air interface, even under dark and oxygen-free conditions. Our study provides an important first step toward clarifying iodine chemistry and pathways for aerosol formation.
Collapse
Affiliation(s)
- Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shumei Sun
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
10
|
Khuu T, Schleif T, Mohamed A, Mitra S, Johnson MA, Valdiviezo J, Heindel JP, Head-Gordon T. Intra-cluster Charge Migration upon Hydration of Protonated Formic Acid Revealed by Anharmonic Analysis of Cold Ion Vibrational Spectra. J Phys Chem A 2023; 127:7501-7509. [PMID: 37669457 DOI: 10.1021/acs.jpca.3c03971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The rates of many chemical reactions are accelerated when carried out in micron-sized droplets, but the molecular origin of the rate acceleration remains unclear. One example is the condensation reaction of 1,2-diaminobenzene with formic acid to yield benzimidazole. The observed rate enhancements have been rationalized by invoking enhanced acidity at the surface of methanol solvent droplets with low water content to enable protonation of formic acid to generate a cationic species (protonated formic acid or PFA) formed by attachment of a proton to the neutral acid. Because PFA is the key feature in this reaction mechanism, vibrational spectra of cryogenically cooled, microhydrated PFA·(H2O)n=1-6 were acquired to determine how the extent of charge localization depends on the degree of hydration. Analysis of these highly anharmonic spectra with path integral ab initio molecular dynamics simulations reveals the gradual displacement of the excess proton onto the water network in the microhydration regime at low temperatures with n = 3 as the tipping point for intra-cluster proton transfer.
Collapse
Affiliation(s)
- Thien Khuu
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Tim Schleif
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Ahmed Mohamed
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Sayoni Mitra
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Jesús Valdiviezo
- Pitzer Theory Center, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joseph P Heindel
- Pitzer Theory Center, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Pitzer Theory Center, Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Angle KJ, Grassian VH. Direct quantification of changes in pH within single levitated microdroplets and the kinetics of nitrate and chloride depletion. Chem Sci 2023; 14:6259-6268. [PMID: 37325137 PMCID: PMC10266444 DOI: 10.1039/d2sc06994f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/11/2023] [Indexed: 06/17/2023] Open
Abstract
The hygroscopicity and pH of aqueous microdroplets and smaller aerosols control their impacts on human health and the climate. Nitrate depletion and chloride depletion through the partitioning of HNO3 and HCl into the gas phase are processes that are enhanced in micron-sized and smaller aqueous droplets and this depletion influences both hygroscopicity and pH. Despite a number of studies, uncertainties remain about these processes. While acid evaporation and the loss of HCl or HNO3 have been observed during dehydration, there is a question as to the rate of acid evaporation and whether this can occur in fully hydrated droplets at higher relative humidity (RH). To directly elucidate the kinetics of nitrate and chloride depletion through evaporation of HNO3 and HCl, respectively at high RH, single levitated microdroplets are probed with cavity-enhanced Raman spectroscopy. Using glycine as a novel in situ pH probe, we are able to simultaneously measure changes in microdroplet composition and pH over timescales of hours. We find that the loss of chloride from the microdroplet is faster than that of nitrate, and the calculated rate constants infer that depletion is limited by the formation of HCl or HNO3 at the air-water interface and subsequent partitioning into the gas phase.
Collapse
Affiliation(s)
- Kyle J Angle
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
12
|
Seki T, Yu CC, Chiang KY, Greco A, Yu X, Matsumura F, Bonn M, Nagata Y. Ions Speciation at the Water-Air Interface. J Am Chem Soc 2023; 145:10622-10630. [PMID: 37139910 DOI: 10.1021/jacs.3c00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In typical aqueous systems, including naturally occurring sweet and salt water and tap water, multiple ion species are co-solvated. At the water-air interface, these ions are known to affect the chemical reactivity, aerosol formation, climate, and water odor. Yet, the composition of ions at the water interface has remained enigmatic. Here, using surface-specific heterodyne-detected sum-frequency generation spectroscopy, we quantify the relative surface activity of two co-solvated ions in solution. We find that more hydrophobic ions are speciated to the interface due to the hydrophilic ions. Quantitative analysis shows that the interfacial hydrophobic ion population increases with decreasing interfacial hydrophilic ion population at the interface. Simulations show that the solvation energy difference between the ions and the intrinsic surface propensity of ions determine the extent of an ion's speciation by other ions. This mechanism provides a unified view of the speciation of monatomic and polyatomic ions at electrolyte solution interfaces.
Collapse
Affiliation(s)
- Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Aomori, Japan
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Kuo-Yang Chiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Alessandro Greco
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Fumiki Matsumura
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
13
|
Stropoli SJ, Greis K, Schleif T, Johnson MA. Characterization of Oxidation Products from HOCl Uptake by Microhydrated Methionine Anions Using Cryogenic Ion Vibrational Spectroscopy. J Phys Chem A 2023; 127:4269-4276. [PMID: 37133983 DOI: 10.1021/acs.jpca.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The oxidation of the amino acid methionine (Met) by hypochlorous acid (HOCl) to yield methionine sulfoxide (MetO) has been implicated in both the interfacial chemistry of tropospheric sea spray aerosols and the destruction of pathogens in the immune system. Here, we investigate the reaction of deprotonated methionine water clusters, Met-·(H2O)n, with HOCl and characterize the resulting products using cryogenic ion vibrational spectroscopy and electronic structure calculations. Capture of the MetO- oxidation product in the gas phase requires the presence of water molecules attached to the reactant anion. Analysis of its vibrational band pattern confirms that the sulfide group of Met- has indeed been oxidized. Additionally, the vibrational spectrum of the anion corresponding to the uptake of HOCl by Met-·(H2O)n indicates that it exists as an "exit-channel" complex in which the Cl- product ion is bound to the COOH group following the formation of the S═O motif.
Collapse
Affiliation(s)
- Santino J Stropoli
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kim Greis
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Tim Schleif
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
14
|
Premadasa UI, Dong D, Stamberga D, Custelcean R, Roy S, Ma YZ, Bocharova V, Bryantsev VS, Doughty B. Chemical Feedback in the Self-Assembly and Function of Air-Liquid Interfaces: Insight into the Bottlenecks of CO 2 Direct Air Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19634-19645. [PMID: 36944180 DOI: 10.1021/acsami.3c00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As fossil fuels remain a major source of energy throughout the world, developing efficient negative emission technologies, such as direct air capture (DAC), which remove carbon dioxide (CO2) from the air, becomes critical for mitigating climate change. Although all DAC processes involve CO2 transport from air into a sorbent/solvent, through an air-solid or air-liquid interface, the fundamental roles the interfaces play in DAC remain poorly understood. Herein, we study the interfacial behavior of amino acid (AA) solvents used in DAC through a combination of vibrational sum frequency generation spectroscopy and molecular dynamics simulations. This study revealed that the absorption of atmospheric CO2 has antagonistic effects on subsequent capture events that are driven by changes in bulk pH and specific ion effects that feedback on surface organization and interactions. Among the three AAs (leucine, valine, and phenylalanine) studied, we identify and separate behaviors from CO2 loading, chemical changes, variations in pH, and specific ion effects that tune structural and chemical degrees of freedom at the air-aqueous interface. The fundamental mechanistic findings described here are anticipated to enable new approaches to DAC based on exploiting interfaces as a tool to address climate change.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dengpan Dong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Enders AA, Clark JB, Elliott SM, Allen HC. New Insights into Cation- and Temperature-Driven Protein Adsorption to the Air-Water Interface through Infrared Reflection Studies of Bovine Serum Albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5505-5513. [PMID: 37027519 DOI: 10.1021/acs.langmuir.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The chemistry and structure of the air-ocean interface modulate biogeochemical processes between the ocean and atmosphere and therefore impact sea spray aerosol properties, cloud and ice nucleation, and climate. Protein macromolecules are enriched in the sea surface microlayer and have complex adsorption properties due to the unique molecular balance of hydrophobicity and hydrophilicity. Additionally, interfacial adsorption properties of proteins are of interest as important inputs for ocean climate modeling. Bovine serum albumin is used here as a model protein to investigate the dynamic surface behavior of proteins under several variable conditions including solution ionic strength, temperature, and the presence of a stearic acid (C17COOH) monolayer at the air-water interface. Key vibrational modes of bovine serum albumin are examined via infrared reflectance-absorbance spectroscopy, a specular reflection method that ratios out the solution phase and highlights the aqueous surface to determine, at a molecular level, the surface structural changes and factors affecting adsorption to the solution surface. Amide band reflection absorption intensities reveal the extent of protein adsorption under each set of conditions. Studies reveal the nuanced behavior of protein adsorption impacted by ocean-relevant sodium concentrations. Moreover, protein adsorption is most strongly affected by the synergistic effects of divalent cations and increased temperature.
Collapse
Affiliation(s)
- Abigail A Enders
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica B Clark
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Scott M Elliott
- Computational Physics and Methods (CCS-2), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Meyer KAE, Nickson KA, Garand E. The impact of the electric field of metal ions on the vibrations and internal hydrogen bond strength in alkali metal ion di- and triglycine complexes. J Chem Phys 2022; 157:174301. [DOI: 10.1063/5.0117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Using infrared predissociation spectroscopy of cryogenic ions, we revisit the vibrational spectra of alkali metal ion (Li+, Na+, K+) di- and triglycine complexes. We assign their most stable conformation, which involves metal ion coordination to all C=O groups and an internal NH⋯NH2 hydrogen bond in the peptide backbone. An analysis of the spectral shifts of the OH and C=O stretching vibrations across the different metal ions and peptide chain lengths shows that these are largely caused by the electric field of the metal ion, which varies in strength as a function of the square of the distance. The metal ion–peptide interaction also remotely modulates the strength of internal hydrogen bonding in the peptide backbone via the weakening of the amide C=O bond, resulting in a decrease in internal hydrogen bond strength from Li+ > Na+ > K+.
Collapse
Affiliation(s)
- Katharina A. E. Meyer
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Kathleen A. Nickson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| |
Collapse
|
17
|
Bready CJ, Vanovac S, Odbadrakh TT, Shields GC. Amino Acids Compete with Ammonia in Sulfuric Acid-Based Atmospheric Aerosol Prenucleation: The Case of Glycine and Serine. J Phys Chem A 2022; 126:5195-5206. [PMID: 35896016 DOI: 10.1021/acs.jpca.2c03539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a computational investigation of the sulfuric acid, glycine, serine, ammonia, and water system to understand if this system can form prenucleation clusters, which are precursors to larger aerosols in the atmosphere. We have performed a comprehensive configurational search of all possible clusters in this system, starting with the four different monomers and zero to five waters. Accurate Gibbs free energies of formation have been calculated with the DLPNO-CCSD(T)/complete basis set (CBS) method on ωb97xd/6-31++G** geometries. For the dry dimers of sulfuric acid, the weakest base, serine, is found to form the most stable complex, which is a consequence of the strong di-ionic complex formed between the bisulfate ion and the protonated serine cation. For the dry dimers without sulfuric acid, the glycine-serine complex is more stable than the glycine-ammonia or serine-ammonia complexes, stemming from the detailed structure and not related to base strength. For the larger complexes, sulfuric acid deprotonates and the proton is shifted to glycine, serine, or ammonia. The two amino acids and ammonia are almost interchangeable and there is no easy way to predict which molecule will be protonated without the calculated results. Assuming reasonable starting concentrations and a closed system of sulfuric acid, glycine, serine, ammonia, and five waters, we predict the concentrations of all possible complexes at two temperatures spanning the troposphere. The most negative ΔG° values are a function of the detailed molecular interactions of these clusters. These details are more important than the base strength of ammonia, glycine, and serine.
Collapse
Affiliation(s)
- Conor J Bready
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Sara Vanovac
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Tuguldur T Odbadrakh
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|