1
|
Prasannan D, Nemykin VN. Introducing Pyridone[α]-Fused BOPHYs as Red-Shifted Bright Fluorophore Potentially Useful as Non-fullerene Acceptors in Donor-Acceptor Dyads. Inorg Chem 2025; 64:2468-2479. [PMID: 39854729 DOI: 10.1021/acs.inorgchem.4c04972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
A series of 2-pyridone[α]-fused BOPHYs 6-8 were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs 7 and 8 have a pyridine group connected to the BOPHY core via one- or two -CH2- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction. Conjugation of the pyridone fragment into the BOPHY core results in a significant red shift of the absorption and fluorescence while maintaining extremely high fluorescence quantum yields. Axial coordination and photophysical properties of the supramolecular dyads formed between pyridine-appended pyridone-fused BOPHYs 7 and 8 with TPPF20Zn (TPPF20Zn = zinc 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin) were investigated using UV-vis and fluorescence spectroscopy and gave a binding constant in the range of 1.46 × 105 to 4.6 × 105 M-1. The electronic structures and excited-state properties of new BOPHYs 6-8 and their donor-acceptor assemblies with TPPF20Zn were studied by the density functional theory (DFT) and time-dependent DFT (TDDFT). The HOMO and HOMO - 1 of supramolecular complexes TPPF20Zn-7/8 are TPPF20Zn centered, while the LUMO is localized on the BOPHY entity, allowing potential HOMO → LUMO charge transfer from the TPPF20Zn donor to the BOPHY acceptor.
Collapse
Affiliation(s)
- Dijo Prasannan
- Department of Chemistry University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Victor N Nemykin
- Department of Chemistry University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
2
|
Ye K, Carbonera D, Liao S, Zhang X, Chen X, Xiao X, Zhao J, Shanmugam M, Li M, Barbon A. Multiple Pathways in the Triplet States Population for a Naphthalenediimide-C 60 Dyad. Chemistry 2024; 30:e202401084. [PMID: 38819870 DOI: 10.1002/chem.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The link of an antenna dye with an electron spin converter, in this case naphthalenediimide and C60, produces a system with a rich photophysics including the detection of more than one triplet state on the long timescale (tens of μs). Beside the use of optical spectroscopies in the ns and in the fs time scale, we used time-resolved Electron Paramagnetic Resonance (TREPR) to study the system evolution following photoexcitation. TREPR keeps track of the formation path of the triplet states through specific spin polarization patterns observed in the spectra. The flexibility of the linker and solvent polarity play a role in favouring either electron transfer or energy transfer processes.
Collapse
Affiliation(s)
- Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35134, Padova, Italy
| | - Sheng Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35134, Padova, Italy
| |
Collapse
|
3
|
Liang H, Zhang X, Lu M, Chen X, Li W, Li S, Li MD, Zhao J, Huo Y, Ji S. Novel Photocatalyst Based on Through-Space Charge Transfer Induced Intersystem Crossing Enables Rapid and Efficient Polymerization Under Low-Power Excitation Light. Angew Chem Int Ed Engl 2024; 63:e202402774. [PMID: 38584586 DOI: 10.1002/anie.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Currently, most photoredox catalysis polymerization systems are limited by high excitation power, long polymerization time, or the requirement of electron donors due to the precise design of efficient photocatalysts still poses a great challenge. Herein, we propose a new approach: the creation of efficient photocatalysts having low ground state oxidation potentials and high excited state energy levels, along with through-space charge transfer (TSCT) induced intersystem crossing (ISC) properties. A cabazole-naphthalimide (NI) dyad (NI-1) characterized by long triplet excited state lifetime (τT=62 μs), satisfactory ISC efficiency (ΦΔ=54.3 %) and powerful reduction capacity [Singlet: E1/2 (PC+1/*PC)=-1.93 eV, Triplet: E1/2 (PC+1/*PC)=-0.84 eV] was obtained. An efficient and rapid polymerization (83 % conversion of 1 mM monomer in 30 s) was observed under the conditions of without electron donor, low excitation power (10 mW cm-2) and low catalyst (NI-1) loading (<50 μM). In contrast, the conversion rate was lower at 29 % when the reference catalyst (NI-4) was used for photopolymerization under the same conditions, demonstrating the advantage of the TSCT photocatalyst. Finally, the TSCT material was used as a photocatalyst in practical lithography for the first time, achieving pattern resolutions of up to 10 μm.
Collapse
Affiliation(s)
- Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Manlin Lu
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P.R. China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shangru Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
4
|
Wang Y, Luan K, Li J, Chen Z, Deng LL, Yang Y. Bridge effect on charge transfer and energy transfer in fullerene-chromophore dyads. J Chem Phys 2024; 160:211104. [PMID: 38828804 DOI: 10.1063/5.0187704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Fullerene-chromophore dyads have attracted a great deal of research interest because these complexes can be potentially designed as nanoscale artificial photosynthetic centers, in which the chromophore and fullerene function as the electron donor and acceptor, respectively. The basic operation of this dyad-type artificial reaction center is photoinduced electron transfer from the donor to the acceptor. The fullerene and chromophore are usually covalently linked so that sufficient electronic coupling between these two moieties can facilitate the electron transfer. However, other deactivation pathways for the chromophore excited state, such as energy transfer to the fullerene, may reduce the quantum yield of the photoinduced electron transfer. Here, a series of C60-perylene dyads is exploited to interrogate the effect of the linkage on deactivation mechanisms of the chromophore excited state. For the C60-perylene dyads with a single or double bond bridge, we find that the decay of the singlet state of the chromophore is dominated by the electron transfer, and the corresponding time constant is determined to be 45 ps. On the other hand, for the dyad with a triple bond bridge, the singlet state of the chromophore is quickly quenched through energy transfer to fullerene, and the time constant is as short as 7.9 ps. Our finding suggests that the bond order of the bridge in the fullerene-chromophore dyads can be utilized to control the deactivation pathways of the excited state.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ke Luan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiahao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zuochang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin-Long Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Zhao M, Xu S, He C, Zhou Y. Synthesis, Structures and Photophysical Properties of Asymmetric Fulvene-[b]-fused BODIPYs. Chemistry 2024; 30:e202303930. [PMID: 38117253 DOI: 10.1002/chem.202303930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Herein, we developed a one-pot procedure to synthesize novel fulvene-[b]-fused BODIPYs from α-(2-alkynylphenyl)-pyrrole and acylpyrrole, using 5-exo cyclization as the key transformation. Compared to benzene-[b]-fused BODIPYs, although they have similar chemical compositions, their structures and properties significantly differ from each other, which can be attributed to the less aromaticity of the fulvene linker than benzene. Notably, fulvene-[b]-fused BODIPY 1 b exhibits helical-twisted core skeleton, intensified red-shifted absorption, and peak fluorescence. In addition, the pathway of this one-pot reaction and the mechanism of POCl3 mediated 5-exo cyclization have been proposed by a combining experimental and computational study.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| | - Shaoyu Xu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| | - Chun He
- Apeloa Pharmaceutical Co., Ltd Dongyang, Zhejiang, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhu W, Wu Y, Zhang Y, Sukhanov AA, Chu Y, Zhang X, Zhao J, Voronkova VK. Preparation of Xanthene-TEMPO Dyads: Synthesis and Study of the Radical Enhanced Intersystem Crossing. Int J Mol Sci 2023; 24:11220. [PMID: 37446398 DOI: 10.3390/ijms241311220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
We prepared a rhodamine-TEMPO chromophore-radical dyad (RB-TEMPO) to study the radical enhanced intersystem crossing (REISC). The visible light-harvesting chromophore rhodamine is connected with the TEMPO (a nitroxide radical) via a C-N bond. The UV-vis absorption spectrum indicates negligible electron interaction between the two units at the ground state. Interestingly, the fluorescence of the rhodamine moiety is strongly quenched in RB-TEMPO, and the fluorescence lifetime of the rhodamine moiety is shortened to 0.29 ns, from the lifetime of 3.17 ns. We attribute this quenching effect to the intramolecular electron spin-spin interaction between the nitroxide radical and the photoexcited rhodamine chromophore. Nanosecond transient absorption spectra confirm the REISC in RB-TEMPO, indicated by the detection of the rhodamine chromophore triplet excited state; the lifetime was determined as 128 ns, which is shorter than the native rhodamine triplet state lifetime (0.58 μs). The zero-field splitting (ZFS) parameters of the triplet state of the chromophore were determined with the pulsed laser excited time-resolved electron paramagnetic resonance (TREPR) spectra. RB-TEMPO was used as a photoinitiator for the photopolymerization of pentaerythritol triacrylate (PETA). These studies are useful for the design of heavy atom-free triplet photosensitizers, the study of the ISC, and the electron spin dynamics of the radical-chromophore systems upon photoexcitation.
Collapse
Affiliation(s)
- Wenhui Zhu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Yanran Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Yiyan Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Yuqi Chu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| |
Collapse
|
7
|
Chen H, An N, Wang Y, Wang G, Mukherjee S, Bian H, Ma J, Liu J, Fang Y. Tracking the Intramolecular Charge Transfer Process of 2,6-Substituted D-A BODIPY Derivatives. J Phys Chem B 2023; 127:2044-2051. [PMID: 36847652 DOI: 10.1021/acs.jpcb.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Three 2,6-electron donor-substituted boron dipyrromethene (BODIPY) exhibiting an intramolecular charge transfer (ICT) character with large Stokes shift and moderate fluorescence quantum yields were designed and synthesized. Broadband femtosecond transient absorption (fs-TA) spectroscopy measurements were performed to directly detect the CT state in nonpolar or less polar solvents and the charge separation (CS) state in more polar solvents. A solid foundation for the fs-TA assignment can be found in electrolysis experiments. In addition, the ICT character of the newly designed compounds was investigated by density functional theory (DFT) calculations. Meanwhile, the reference compounds without the donor groups were synthesized, and their photophysical behaviors and ultrafast time-resolved spectra confirmed that no ICT process occurred regardless of the nature of the solvent. This work emphasizes the importance of decorating the BODIPY core with electron-donating substituents at 2,6-positions to efficiently adjust its photofunctional behaviors demonstrating the ICT character. Importantly, the photophysical processes could be easily regulated by changing the solvent with different polarities.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Nan An
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yanqing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Somnath Mukherjee
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
8
|
Heavy Atom-Free Triplet Photosensitizers: Molecular Structure Design, Photophysical Properties and Application in Photodynamic Therapy. Molecules 2023; 28:molecules28052170. [PMID: 36903415 PMCID: PMC10004235 DOI: 10.3390/molecules28052170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising method for the treatment of cancer, because of its advantages including a low toxicity, non-drug-resistant character, and targeting capability. From a photochemical aspect, a critical property of triplet photosensitizers (PSs) used for PDT reagents is the intersystem crossing (ISC) efficiency. Conventional PDT reagents are limited to porphyrin compounds. However, these compounds are difficult to prepare, purify, and derivatize. Thus, new molecular structure paradigms are desired to develop novel, efficient, and versatile PDT reagents, especially those contain no heavy atoms, such as Pt or I, etc. Unfortunately, the ISC ability of heavy atom-free organic compounds is usually elusive, and it is difficult to predict the ISC capability of these compounds and design novel heavy atom-free PDT reagents. Herein, from a photophysical perspective, we summarize the recent developments of heavy atom-free triplet PSs, including methods based on radical-enhanced ISC (REISC, facilitated by electron spin-spin interaction), twisted π-conjugation system-induced ISC, the use of fullerene C60 as an electron spin converter in antenna-C60 dyads, energetically matched S1/Tn states-enhanced ISC, etc. The application of these compounds in PDT is also briefly introduced. Most of the presented examples are the works of our research group.
Collapse
|