1
|
Nihara R, Saito K, Kuroda H, Komatsu Y, Chen Y, Ishikita H, Takahashi Y. D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from Q A•- to Q B. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149507. [PMID: 39218331 DOI: 10.1016/j.bbabio.2024.149507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from Chlamydomonas reinhardtii: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O2-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from QA•- to QB in all mutants. Bicarbonate reconstitution resulted in enhanced O2-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.
Collapse
Affiliation(s)
- Ruri Nihara
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yasuto Komatsu
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yang Chen
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
3
|
Yano J, Kern J, Yachandra VK. Structure Function Studies of Photosystem II Using X-Ray Free Electron Lasers. Annu Rev Biophys 2024; 53:343-365. [PMID: 39013027 PMCID: PMC11321711 DOI: 10.1146/annurev-biophys-071723-102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.
Collapse
Affiliation(s)
- Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| |
Collapse
|
4
|
Noji T, Chiba Y, Saito K, Ishikita H. Energetics of the H-Bond Network in Exiguobacterium sibiricum Rhodopsin. Biochemistry 2024; 63:1505-1512. [PMID: 38745402 PMCID: PMC11155677 DOI: 10.1021/acs.biochem.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yoshihiro Chiba
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Saito K, Chen Y, Ishikita H. Exploring the Deprotonation Process during Incorporation of a Ligand Water Molecule at the Dangling Mn Site in Photosystem II. J Phys Chem B 2024; 128:4728-4734. [PMID: 38693711 PMCID: PMC11104351 DOI: 10.1021/acs.jpcb.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
The Mn4CaO5 cluster, featuring four ligand water molecules (W1 to W4), serves as the water-splitting site in photosystem II (PSII). X-ray free electron laser (XFEL) structures exhibit an additional oxygen site (O6) adjacent to the O5 site in the fourth lowest oxidation state, S3, forming Mn4CaO6. Here, we investigate the mechanism of the second water ligand molecule at the dangling Mn (W2) as a potential incorporating species, using a quantum mechanical/molecular mechanical (QM/MM) approach. Previous QM/MM calculations demonstrated that W1 releases two protons through a low-barrier H-bond toward D1-Asp61 and subsequently releases an electron during the S2 to S3 transition, resulting in O•- at W1 and protonated D1-Asp61. During the process of Mn4CaO6 formation, O•-, rather than H2O or OH-, best reproduced the O5···O6 distance. Although the catalytic cluster with O•- at O6 is more stable than that with O•- at W1 in S3, it does not occur spontaneously due to the significantly uphill deprotonation process. Assuming O•- at W2 incorporates into the O6 site, an exergonic conversion from Mn1(III)Mn2(IV)Mn3(IV)Mn4(IV) (equivalent to the open-cubane S2 valence state) to Mn1(IV)Mn2(IV)Mn3(IV)Mn4(III) (equivalent to the closed-cubane S2 valence state) occurs. These findings provide energetic insights into the deprotonation and structural conversion events required for the Mn4CaO6 formation.
Collapse
Affiliation(s)
- Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yang Chen
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
6
|
Fidalgo-Marijuan A, Ruiz de Larramendi I, Barandika G. Superprotonic Conductivity in a Metalloporphyrin-Based SMOF (Supramolecular Metal-Organic Framework). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:398. [PMID: 38470729 PMCID: PMC10934030 DOI: 10.3390/nano14050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Metal-organic frameworks and supramolecular metal-organic frameworks (SMOFs) exhibit great potential for a broad range of applications taking advantage of the high surface area and pore sizes and tunable chemistry. In particular, metalloporphyrin-based MOFs and SMOFs are becoming of great importance in many fields due to the bioessential functions of these macrocycles that are being mimicked. On the other hand, during the last years, proton-conducting materials have aroused much interest, and those presenting high conductivity values are potential candidates to play a key role in some solid-state electrochemical devices such as batteries and fuel cells. In this way, using metalloporphyrins as building units we have obtained a new crystalline material with formula [H(bipy)]2[(MnTPPS)(H2O)2]·2bipy·14H2O, where bipy is 4,4'-bipyidine and TPPS4- is the meso-tetra(4-sulfonatephenyl) porphyrin. The crystal structure shows a zig-zag water chain along the [100] direction located between the sulfonate groups of the porphyrin. Taking into account those structural features, the compound was tested for proton conduction by complex electrochemical impedance spectroscopy (EIS). The as-obtained conductivity is 1 × 10-2 S·cm-1 at 40 °C and 98% relative humidity, which is a remarkably high value.
Collapse
Affiliation(s)
- Arkaitz Fidalgo-Marijuan
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Idoia Ruiz de Larramendi
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain;
| | - Gotzone Barandika
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
7
|
Amin M, Kaur D, Brudvig GW, Brooks BR. Mapping the Oxygens in the Oxygen-Evolving Complex of Photosystem II by Their Nucleophilicity Using Quantum Descriptors. J Chem Theory Comput 2024. [PMID: 38306696 DOI: 10.1021/acs.jctc.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The oxygen-evolving complex (OEC) of Photosystem II catalyzes the water-splitting reaction using solar energy. Thus, understanding the reaction mechanism will inspire the design of biomimetic artificial catalysts that convert solar energy to chemical energy. Conceptual Density Functional Theory (CDFT) focuses on understanding the reactivity of molecules and the atomic contribution to the overall nucleophilicity and electrophilicity of the molecule using quantum descriptors. However, this method has not been applied to the OEC before. Here, we use Fukui functions and the dual descriptor to provide quantitative measures of the nucleophilicity and electrophilicity of oxygens in the OEC for different models in different S states. Our results show that the μ-oxo bridges connected to terminal Mn4 are nucleophilic, and those in the cube formed by Mn1, Mn2, and Mn3 are mostly electrophilic. The dual descriptors of the bridging oxygens in the OEC showed a similar reactivity to that of bridging oxygens in Mn model compounds. However, the terminal water W1, which is bound to Mn4, showed very strong reactivity in some of the S3 models. Thus, our calculations support the model that proposes the formation of the O2 molecule through nucleophilic attack by a terminal water.
Collapse
Affiliation(s)
- Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Sciences, University College Groningen, University of Groningen, 9718 BG Groningen, The Netherlands
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
8
|
Saito K, Nishio S, Ishikita H. Interplay of two low-barrier hydrogen bonds in long-distance proton-coupled electron transfer for water oxidation. PNAS NEXUS 2023; 2:pgad423. [PMID: 38130665 PMCID: PMC10733176 DOI: 10.1093/pnasnexus/pgad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
D1-Tyr161 (TyrZ) forms a low-barrier H-bond with D1-His190 and functions as a redox-active group in photosystem II. When oxidized to the radical form (TyrZ-O•), it accepts an electron from the oxygen-evolving Mn4CaO5 cluster, facilitating an increase in the oxidation state (Sn; n = 0-3). In this study, we investigated the mechanism of how TyrZ-O• drives proton-coupled electron transfer during the S2 to S3 transition using a quantum mechanical/molecular mechanical approach. In response to TyrZ-O• formation and subsequent loss of the low-barrier H-bond, the ligand water molecule at the Ca2+ site (W4) reorients away from TyrZ and donates an H-bond to D1-Glu189 at Mn4 of Mn4CaO5 together with an adjacent water molecule. The H-bond donation to the Mn4CaO5 cluster triggers the release of the proton from the lowest pKa site (W1 at Mn4) along the W1…D1-Asp61 low-barrier H-bond, leading to protonation of D1-Asp61. The interplay of the two low-barrier H-bonds, involving the Ca2+ interface and forming the extended Grotthuss-like network [TyrZ…D1-His190]-[Mn4CaO5]-[W1…D1-Asp61], rather than the direct electrostatic interaction, is likely a basis of the apparent long-distance interaction (11.4 Å) between TyrZ-O• formation and D1-Asp61 protonation.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Shunya Nishio
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
9
|
Gates C, Williams JM, Ananyev G, Dismukes GC. How chloride functions to enable proton conduction in photosynthetic water oxidation: Time-resolved kinetics of intermediates (S-states) in vivo and bromide substitution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148998. [PMID: 37499962 DOI: 10.1016/j.bbabio.2023.148998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Chloride (Cl-) is essential for O2 evolution during photosynthetic water oxidation. Two chlorides near the water-oxidizing complex (WOC) in Photosystem II (PSII) structures from Thermosynechococcus elongatus (and T. vulcanus) have been postulated to transfer protons generated from water oxidation. We monitored four criteria: primary charge separation flash yield (P* → P+QA-), rates of water oxidation steps (S-states), rate of proton evolution, and flash O2 yield oscillations by measuring chlorophyll variable fluorescence (P* quenching), pH-sensitive dye changes, and oximetry. Br-substitution slows and destabilizes cellular growth, resulting from lower light-saturated O2 evolution rate (-20 %) and proton release (-36 % ΔpH gradient). The latter implies less ATP production. In Br- cultures, protonogenic S-state transitions (S2 → S3 → S0') slow with increasing light intensity and during O2/water exchange (S0' → S0 → S1), while the non-protonogenic S1 → S2 transition is kinetically unaffected. As flash rate increases in Cl- cultures, both rate and extent of acidification of the lumen increase, while charge recombination is suppressed relative to Br-. The Cl- advantage in rapid proton escape from the WOC to lumen is attributed to correlated ion-pair movement of H3O+Cl- in dry water channels vs. separated Br- and H+ ion movement through different regions (>200-fold difference in Bronsted acidities). By contrast, at low flash rates a previously unreported reversal occurs that favors Br- cultures for both proton evolution and less PSII charge recombination. In Br- cultures, slower proton transfer rate is attributed to stronger ion-pairing of Br- with AA residues lining the water channels. Both anions charge-neutralize protons and shepherd them to the lumen using dry aqueous channels.
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Computational Biology and Molecular Biophysics, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Biochemistry, Loyola University Chicago, IL 60660, USA
| | - Jonah M Williams
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
10
|
Hussein R, Ibrahim M, Bhowmick A, Simon PS, Bogacz I, Doyle MD, Dobbek H, Zouni A, Messinger J, Yachandra VK, Kern JF, Yano J. Evolutionary diversity of proton and water channels on the oxidizing side of photosystem II and their relevance to function. PHOTOSYNTHESIS RESEARCH 2023; 158:91-107. [PMID: 37266800 PMCID: PMC10684718 DOI: 10.1007/s11120-023-01018-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 06/03/2023]
Abstract
One of the reasons for the high efficiency and selectivity of biological catalysts arise from their ability to control the pathways of substrates and products using protein channels, and by modulating the transport in the channels using the interaction with the protein residues and the water/hydrogen-bonding network. This process is clearly demonstrated in Photosystem II (PS II), where its light-driven water oxidation reaction catalyzed by the Mn4CaO5 cluster occurs deep inside the protein complex and thus requires the transport of two water molecules to and four protons from the metal center to the bulk water. Based on the recent advances in structural studies of PS II from X-ray crystallography and cryo-electron microscopy, in this review we compare the channels that have been proposed to facilitate this mass transport in cyanobacteria, red and green algae, diatoms, and higher plants. The three major channels (O1, O4, and Cl1 channels) are present in all species investigated; however, some differences exist in the reported structures that arise from the different composition and arrangement of membrane extrinsic subunits between the species. Among the three channels, the Cl1 channel, including the proton gate, is the most conserved among all photosynthetic species. We also found at least one branch for the O1 channel in all organisms, extending all the way from Ca/O1 via the 'water wheel' to the lumen. However, the extending path after the water wheel varies between most species. The O4 channel is, like the Cl1 channel, highly conserved among all species while having different orientations at the end of the path near the bulk. The comparison suggests that the previously proposed functionality of the channels in T. vestitus (Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Hussein et al., Nat Commun 12:6531, 2021) is conserved through the species, i.e. the O1-like channel is used for substrate water intake, and the tighter Cl1 and O4 channels for proton release. The comparison does not eliminate the potential role of O4 channel as a water intake channel. However, the highly ordered hydrogen-bonded water wire connected to the Mn4CaO5 cluster via the O4 may strongly suggest that it functions in proton release, especially during the S0 → S1 transition (Saito et al., Nat Commun 6:8488, 2015; Kern et al., Nature 563:421-425, 2018; Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Sakashita et al., Phys Chem Chem Phys 22:15831-15841, 2020; Hussein et al., Nat Commun 12:6531, 2021).
Collapse
Affiliation(s)
- Rana Hussein
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany.
| | - Mohamed Ibrahim
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Margaret D Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Holger Dobbek
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Athina Zouni
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, SE 75120, Uppsala, Sweden
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Yang X, Liu S, Yin Z, Chen M, Song J, Li P, Yang L. New insights into the proton pumping mechanism of ba 3 cytochrome c oxidase: the functions of key residues and water. Phys Chem Chem Phys 2023; 25:25105-25115. [PMID: 37461851 DOI: 10.1039/d3cp01334k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
As the terminal oxidase of cell respiration in mitochondria and aerobic bacteria, the proton pumping mechanism of ba3-type cytochrome c oxidase (CcO) of Thermus thermophiles is still not fully understood. Especially, the functions of key residues which were considered as the possible proton loading sites (PLSs) above the catalytic center, as well as water located above and within the catalytic center, remain unclear. In this work, molecular dynamic simulations were performed on a set of designed mutants of key residues (Asp287, Asp372, His376, and Glu126II). The results showed that Asp287 may not be a PLS, but it could modulate the ability of the proton transfer pathway to transfer protons through its salt bridge with Arg225. Maintaining the closed state of the water pool above the catalytic center is necessary for the participation of inside water molecules in proton transfer. Water molecules inside the water pool can form hydrogen bond chains with PLS to facilitate proton transfer. Additional quantum cluster models of the Fe-Cu metal catalytic center are established, indicating that when the proton is transferred from Tyr237, it is more likely to reach the OCu atom directly through only one water molecule. This work provides a more profound understanding of the functions of important residues and specific water molecules in the proton pumping mechanism of CcO.
Collapse
Affiliation(s)
- Xiaoyue Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Shaohui Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Zhili Yin
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Mengguo Chen
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Illinois 60660, USA
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
12
|
Saito M, Saito K, Ishikita H. Structural and energetic insights into Mn-to-Fe substitution in the oxygen-evolving complex. iScience 2023; 26:107352. [PMID: 37520740 PMCID: PMC10382916 DOI: 10.1016/j.isci.2023.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Manganese (Mn) serves as the catalytic center for water splitting in photosystem II (PSII), despite the abundance of iron (Fe) on earth. As a first step toward why Mn and not Fe is employed by Nature in the water oxidation catalyst, we investigated the Fe4CaO5 cluster in the PSII protein environment using a quantum mechanical/molecular mechanical (QM/MM) approach, assuming an equivalence between Mn(III/IV) and Fe(II/III). Substituting Mn with Fe resulted in the protonation of μ-oxo bridges at sites O2 and O3 by Arg357 and D1-His337, respectively. While the Mn4CaO5 cluster exhibits distinct open- and closed-cubane S2 conformations, the Fe4CaO5 cluster lacks this variability due to an equal spin distribution over sites Fe1 and Fe4. The absence of a low-barrier H-bond between a ligand water molecule (W1) and D1-Asp61 in the Fe4CaO5 cluster may underlie its incapability for ligand water deprotonation, highlighting the relevance of Mn in natural water splitting.
Collapse
Affiliation(s)
- Masahiro Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
13
|
Gardner AM, Gardner PR. Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase. J Inorg Biochem 2023; 245:112257. [PMID: 37229820 DOI: 10.1016/j.jinorgbio.2023.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Kinetic and structural investigations of the flavohemoglobin-type NO dioxygenase have suggested critical roles for transient Fe(III)O2 complex formation and O2-forced movements affecting hydride transfer to the FAD cofactor and electron-transfer to the Fe(III)O2 complex. Stark-effect theory together with structural models and dipole and internal electrostatic field determinations provided a semi-quantitative spectroscopic method for investigating the proposed Fe(III)O2 complex and O2-forced movements. Deoxygenation of the enzyme causes Stark effects on the ferric heme Soret and charge-transfer bands revealing the Fe(III)O2 complex. Deoxygenation also elicits Stark effects on the FAD that expose forces and motions that create a more restricted NADH access to FAD for hydride transfer and switch electron-transfer off. Glucose also forces the enzyme toward an off state. Amino acid substitutions at the B10, E7, E11, G8, D5, and F7 positions influence the Stark effects of O2 on resting heme spin states and FAD consistent with the proposed roles of the side chains in the enzyme mechanism. Deoxygenation of ferric myoglobin and hemoglobin A also induces Stark effects on the hemes suggesting a common 'oxy-met' state. The ferric myoglobin and hemoglobin heme spectra are also glucose-responsive. A conserved glucose or glucose-6-phosphate binding site is found bridging the BC-corner and G-helix in flavohemoglobin and myoglobin suggesting novel allosteric effector roles for glucose or glucose-6-phosphate in the NO dioxygenase and O2 storage functions. The results support the proposed roles of a ferric O2 intermediate and protein motions in regulating electron-transfer during NO dioxygenase turnover.
Collapse
Affiliation(s)
- Anne M Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Paul R Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Chemistry and Biochemistry Department, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
14
|
Sugo Y, Ishikita H. Mechanism of Asparagine-Mediated Proton Transfer in Photosynthetic Reaction Centers. Biochemistry 2023; 62:1544-1552. [PMID: 37083399 PMCID: PMC10194076 DOI: 10.1021/acs.biochem.3c00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs), light-induced charge separation leads to the reduction of the terminal electron acceptor quinone, QB. The reduction of QB to QB•- is followed by protonation via Asp-L213 and Ser-L223 in PbRC from Rhodobacter sphaeroides. However, Asp-L213 is replaced with nontitratable Asn-L222 and Asn-L213 in PbRCs from Thermochromatium tepidum and Blastochloris viridis, respectively. Here, we investigated the energetics of proton transfer along the asparagine-involved H-bond network using a quantum mechanical/molecular mechanical approach. The potential energy profile for the H-bond between H3O+ and the carbonyl O site of Asn-L222 shows that the proton is predominantly localized at the Asn-L222 moiety in the T. tepidum PbRC protein environment, easily forming the enol species. The release of the proton from the amide -NH2 site toward Ser-L232 via tautomerization suffers from the energy barrier. Upon reorientation of Asn-L222, the enol -OH site forms a short low-barrier H-bond with Ser-L232, facilitating protonation of QB•- in a Grotthuss-like mechanism. This is a basis of how asparagine or glutamine side chains function as acceptors/donors in proton transfer pathways.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
15
|
Boussac A, Sellés J, Sugiura M. Energetics and proton release in photosystem II from Thermosynechococcus elongatus with a D1 protein encoded by either the psbA 2 or psbA 3 gene. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148979. [PMID: 37080330 DOI: 10.1016/j.bbabio.2023.148979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
In the cyanobacterium Thermosynechococcus elongatus, there are three psbA genes coding for the Photosystem II (PSII) D1 subunit that interacts with most of the main cofactors involved in the electron transfers. Recently, the 3D crystal structures of both PsbA2-PSII and PsbA3-PSII have been solved [Nakajima et al., J. Biol. Chem. 298 (2022) 102668.]. It was proposed that the loss of one hydrogen bond of PheD1 due to the D1-Y147F exchange in PsbA2-PSII resulted in a more negative Em of PheD1 in PsbA2-PSII when compared to PsbA3-PSII. In addition, the loss of two water molecules in the Cl-1 channel was attributed to the D1-P173M substitution in PsbA2-PSII. This exchange, by narrowing the Cl-1 proton channel, could be at the origin of a slowing down of the proton release. Here, we have continued the characterization of PsbA2-PSII by measuring the thermoluminescence from the S2QA-/DCMU charge recombination and by measuring proton release kinetics using time-resolved absorption changes of the dye bromocresol purple. It was found that i) the Em of PheD1-•/PheD1 was decreased by ~30 mV in PsbA2-PSII when compared to PsbA3-PSII and ii) the kinetics of the proton release into the bulk was significantly slowed down in PsbA2-PSII in the S2TyrZ• to S3TyrZ and S3TyrZ• → (S3TyrZ•)' transitions. This slowing down was partially reversed by the PsbA2/M173P mutation and induced by the PsbA3/P173M mutation thus confirming a role of the D1-173 residue in the egress of protons trough the Cl-1 channel.
Collapse
Affiliation(s)
- Alain Boussac
- I2BC, UMR CNRS 9198, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Miwa Sugiura
- Proteo-Science Research Center, and Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
16
|
Saito K, Nakao S, Ishikita H. Identification of the protonation and oxidation states of the oxygen-evolving complex in the low-dose X-ray crystal structure of photosystem II. FRONTIERS IN PLANT SCIENCE 2023; 14:1029674. [PMID: 37008466 PMCID: PMC10061019 DOI: 10.3389/fpls.2023.1029674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/10/2023] [Indexed: 06/19/2023]
Abstract
In photosystem II (PSII), the O3 and O4 sites of the Mn4CaO5 cluster form hydrogen bonds with D1-His337 and a water molecule (W539), respectively. The low-dose X-ray structure shows that these hydrogen bond distances differ between the two homogeneous monomer units (A and B) [Tanaka et al., J. Am Chem. Soc. 2017, 139, 1718]. We investigated the origin of the differences using a quantum mechanical/molecular mechanical (QM/MM) approach. QM/MM calculations show that the short O4-OW539 hydrogen bond (~2.5 Å) of the B monomer is reproduced when O4 is protonated in the S1 state. The short O3-NεHis337 hydrogen bond of the A monomer is due to the formation of a low-barrier hydrogen bond between O3 and doubly-protonated D1-His337 in the overreduced states (S-1 or S-2). It seems plausible that the oxidation state differs between the two monomer units in the crystal.
Collapse
Affiliation(s)
- Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| | - Shu Nakao
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Mandal M, Saito K, Ishikita H. Substitution of Ca 2+ and changes in the H-bond network near the oxygen-evolving complex of photosystem II. Phys Chem Chem Phys 2023; 25:6473-6480. [PMID: 36785919 DOI: 10.1039/d2cp05036f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ca2+, which provides binding sites for ligand water molecules W3 and W4 in the Mn4CaO5 cluster, is a prerequisite for O2 evolution in photosystem II (PSII). We report structural changes in the H-bond network and the catalytic cluster itself upon the replacement of Ca2+ with other alkaline earth metals, using a quantum mechanical/molecular mechanical approach. The small radius of Mg2+ makes W3 donate an H-bond to D1-Glu189 in Mg2+-PSII. If an additional water molecule binds at the large surface of Ba2+, it donates H-bonds to D1-Glu189 and the ligand water molecule at the dangling Mn, altering the H-bond network. The potential energy profiles of the H-bond between D1-Tyr161 (TyrZ) and D1-His190 and the interconversion between the open- and closed-cubane S2 conformations remain substantially unaltered upon the replacement of Ca2+. Remarkably, the O5⋯Ca2+ distance is shortest among all O5⋯metal distances irrespective of the radius being larger than that of Mg2+. Furthermore, Ca2+ is the only alkaline earth metal that equalizes the O5⋯metal and O2⋯metal distances and facilitates the formation of the symmetric cubane structure.
Collapse
Affiliation(s)
- Manoj Mandal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India.
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. .,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. .,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
18
|
Tamura H, Saito K, Nishio S, Ishikita H. Electron-Transfer Route in the Early Oxidation States of the Mn 4CaO 5 Cluster in Photosystem II. J Phys Chem B 2023; 127:205-211. [PMID: 36542840 PMCID: PMC9841979 DOI: 10.1021/acs.jpcb.2c08246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
The electron transfer from the oxygen-evolving Mn4CaO5 cluster to the electron acceptor D1-Tyr161 (TyrZ) is a prerequisite for water oxidation and O2 evolution. Here, we analyzed the electronic coupling in the rate-limiting electron-transfer transitions using a combined quantum mechanical/molecular mechanical/polarizable continuum model approach. In the S0 to S1 transition, the electronic coupling between the electron-donor Mn3(III) and TyrZ is small (2 meV). In contrast, the electronic coupling between the dangling Mn4(III) and TyrZ is significantly large (172 meV), which suggests that the electron transfer proceeds from Mn3(III) to TyrZ via Mn4(III). In the S1 to S2 transition, the electronic coupling between Mn4(III) and TyrZ is also larger (124 meV) than that between Mn1(III) and TyrZ (1 meV), which favors the formation of the open-cubane S2 conformation with Mn4(IV) over the formation of the closed-cubane S2 conformation with Mn1(IV). In the S0 to S1 and S1 to S2 transitions, the Mn4 d-orbital and the TyrZ π-orbital are hybridized via D1-Asp170, which suggests that D1-Asp170 commonly provides a dominant electron-transfer route.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Shunya Nishio
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| |
Collapse
|
19
|
Sirohiwal A, Pantazis DA. Functional Water Networks in Fully Hydrated Photosystem II. J Am Chem Soc 2022; 144:22035-22050. [PMID: 36413491 PMCID: PMC9732884 DOI: 10.1021/jacs.2c09121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Water channels and networks within photosystem II (PSII) of oxygenic photosynthesis are critical for enzyme structure and function. They control substrate delivery to the oxygen-evolving center and mediate proton transfer at both the oxidative and reductive endpoints. Current views on PSII hydration are derived from protein crystallography, but structural information may be compromised by sample dehydration and technical limitations. Here, we simulate the physiological hydration structure of a cyanobacterial PSII model following a thorough hydration procedure and large-scale unconstrained all-atom molecular dynamics enabled by massively parallel simulations. We show that crystallographic models of PSII are moderately to severely dehydrated and that this problem is particularly acute for models derived from X-ray free electron laser (XFEL) serial femtosecond crystallography. We present a fully hydrated representation of cyanobacterial PSII and map all water channels, both static and dynamic, associated with the electron donor and acceptor sides. Among them, we describe a series of transient channels and the attendant conformational gating role of protein components. On the acceptor side, we characterize a channel system that is absent from existing crystallographic models but is likely functionally important for the reduction of the terminal electron acceptor plastoquinone QB. The results of the present work build a foundation for properly (re)evaluating crystallographic models and for eliciting new insights into PSII structure and function.
Collapse
|
20
|
Saito K, Mino H, Nishio S, Ishikita H. Protonation structure of the closed-cubane conformation of the O 2-evolving complex in photosystem II. PNAS NEXUS 2022; 1:pgac221. [PMID: 36712340 PMCID: PMC9802176 DOI: 10.1093/pnasnexus/pgac221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
In photosystem II (PSII), one-electron oxidation of the most stable state of the oxygen-evolving Mn4CaO5 cluster (S1) leads to the S2 state formation, Mn1(III)Mn2(IV)Mn3(IV)Mn4(IV) (open-cubane S2) or Mn1(IV)Mn2(IV)Mn3(IV)Mn4(III) (closed-cubane S2). In electron paramagnetic resonance (EPR) spectroscopy, the g = 4.1 signal is not observed in cyanobacterial PSII but in plant PSII, whereas the g = 4.8 signal is observed in cyanobacterial PSII and extrinsic-subunit-depleted plant PSII. Here, we investigated the closed-cubane S2 conformation, a candidate for a higher spin configuration that accounts for g > 4.1 EPR signal, considering all pairwise exchange couplings in the PSII protein environment (i.e. instead of considering only a single exchange coupling between the [Mn3(CaO4)] cubane region and the dangling Mn4 site). Only when a ligand water molecule that forms an H-bond with D1-Asp61 (W1) is deprotonated at dangling Mn4(IV), the g = 4.1 EPR spectra can be reproduced using the cyanobacterial PSII crystal structure. The closed-cubane S2 is less stable than the open-cubane S2 in cyanobacterial PSII, which may explain why the g = 4.1 EPR signal is absent in cyanobacterial PSII.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Mino
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shunya Nishio
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
21
|
Shimada Y, Sugiyama A, Nagao R, Noguchi T. Role of D1-Glu65 in Proton Transfer during Photosynthetic Water Oxidation in Photosystem II. J Phys Chem B 2022; 126:8202-8213. [PMID: 36199221 DOI: 10.1021/acs.jpcb.2c05869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II (PSII) through a light-driven cycle of five intermediates called S states (S0-S4). Although the PSII structures have shown the presence of several channels around the Mn4CaO5 cluster leading to the lumen, the pathways for proton release in the individual S-state transitions remain unidentified. Here, we studied the involvement of the so-called Cl channel in proton transfer during water oxidation by examining the effect of the mutation of D1-Glu65, a key residue in this channel, to Ala using Fourier transform infrared difference and time-resolved infrared spectroscopies together with thermoluminescence and delayed luminescence measurements. It was shown that the structure and the redox property of the catalytic site were little affected by the D1-Glu65Ala mutation. In the S2 → S3 transition, the efficiency was still high and the transition rate was only moderately retarded in the D1-Glu65Ala mutant. In contrast, the S3 → S0 transition was significantly inhibited by this mutation. These results suggest that proton transfer in the S2 → S3 transition occurs through multiple pathways including the Cl channel, whereas this channel likely serves as a single pathway for proton exit in the S3 → S0 transition.
Collapse
Affiliation(s)
- Yuichiro Shimada
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Ayane Sugiyama
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Ryo Nagao
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Okayama700-8530, Japan
| | - Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| |
Collapse
|
22
|
Imaizumi K, Ifuku K. Binding and functions of the two chloride ions in the oxygen-evolving center of photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 153:135-156. [PMID: 35698013 DOI: 10.1007/s11120-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Light-driven water oxidation in photosynthesis occurs at the oxygen-evolving center (OEC) of photosystem II (PSII). Chloride ions (Cl-) are essential for oxygen evolution by PSII, and two Cl- ions have been found to specifically bind near the Mn4CaO5 cluster in the OEC. The retention of these Cl- ions within the OEC is critically supported by some of the membrane-extrinsic subunits of PSII. The functions of these two Cl- ions and the mechanisms of their retention both remain to be fully elucidated. However, intensive studies performed recently have advanced our understanding of the functions of these Cl- ions, and PSII structures from various species have been reported, aiding the interpretation of previous findings regarding Cl- retention by extrinsic subunits. In this review, we summarize the findings to date on the roles of the two Cl- ions bound within the OEC. Additionally, together with a short summary of the functions of PSII membrane-extrinsic subunits, we discuss the mechanisms of Cl- retention by these extrinsic subunits.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
23
|
Sugo Y, Saito K, Ishikita H. Conformational Changes and H-Bond Rearrangements during Quinone Release in Photosystem II. Biochemistry 2022; 61:1836-1843. [PMID: 35914244 PMCID: PMC9454826 DOI: 10.1021/acs.biochem.2c00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII) and photosynthetic reaction centers from purple bacteria (PbRC), the electron released from the electronically excited chlorophyll is transferred to the terminal electron acceptor quinone, QB. QB accepts two electrons and two protons before leaving the protein. We investigated the molecular mechanism of quinone exchange in PSII, conducting molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations. MD simulations suggest that the release of QB leads to the transformation of the short helix (D1-Phe260 to D1-Ser264), which is adjacent to the stromal helix de (D1-Asn247 to D1-Ile259), into a loop and to the formation of a water-intake channel. Water molecules enter the QB binding pocket via the channel and form an H-bond network. QM/MM calculations indicate that the H-bond network serves as a proton-transfer pathway for the reprotonation of D1-His215, the proton donor during QBH-/QBH2 conversion. Together with the absence of the corresponding short helix but the presence of Glu-L212 in PbRC, it seems likely that the two type-II reaction centers undergo quinone exchange via different mechanisms.
Collapse
Affiliation(s)
- Yu Sugo
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
24
|
Imaizumi K, Nishimura T, Nagao R, Saito K, Nakano T, Ishikita H, Noguchi T, Ifuku K. D139N mutation of PsbP enhances the oxygen-evolving activity of photosystem II through stabilized binding of a chloride ion. PNAS NEXUS 2022; 1:pgac136. [PMID: 36741451 PMCID: PMC9896922 DOI: 10.1093/pnasnexus/pgac136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Photosystem II (PSII) is a multisubunit membrane protein complex that catalyzes light-driven oxidation of water to molecular oxygen. The chloride ion (Cl-) has long been known as an essential cofactor for oxygen evolution by PSII, and two Cl- ions (Cl-1 and Cl-2) have been found to specifically bind near the Mn4CaO5 cluster within the oxygen-evolving center (OEC). However, despite intensive studies on these Cl- ions, little is known about the function of Cl-2, the Cl- ion that is associated with the backbone nitrogens of D1-Asn338, D1-Phe339, and CP43-Glu354. In green plant PSII, the membrane extrinsic subunits-PsbP and PsbQ-are responsible for Cl- retention within the OEC. The Loop 4 region of PsbP, consisting of highly conserved residues Thr135-Gly142, is inserted close to Cl-2, but its importance has not been examined to date. Here, we investigated the importance of PsbP-Loop 4 using spinach PSII membranes reconstituted with spinach PsbP proteins harboring mutations in this region. Mutations in PsbP-Loop 4 had remarkable effects on the rate of oxygen evolution by PSII. Moreover, we found that a specific mutation, PsbP-D139N, significantly enhances the oxygen-evolving activity in the absence of PsbQ, but not significantly in its presence. The D139N mutation increased the Cl- retention ability of PsbP and induced a unique structural change in the OEC, as indicated by light-induced Fourier transform infrared (FTIR) difference spectroscopy and theoretical calculations. Our findings provide insight into the functional significance of Cl-2 in the water-oxidizing reaction of PSII.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taishi Nishimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8654 , Japan
| | - Takeshi Nakano
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8654 , Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Mandal M, Saito K, Ishikita H. Release of a Proton and Formation of a Low-Barrier Hydrogen Bond between Tyrosine D and D2-His189 in Photosystem II. ACS PHYSICAL CHEMISTRY AU 2022; 2:423-429. [PMID: 36855688 PMCID: PMC9955220 DOI: 10.1021/acsphyschemau.2c00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII), the second-lowest oxidation state (S1) of the oxygen-evolving Mn4CaO5 cluster is the most stable, as the radical form of the redox-active D2-Tyr160 is considered to be a candidate that accepts an electron from the lowest oxidation state (S0) in the dark. Using quantum mechanical/molecular mechanical calculations, we investigated the redox potential (E m) of TyrD and its H-bond partner, D2-His189. The potential energy profile indicates that the release of a proton from the TyrD...D2-His189 pair leads to the formation of a low-barrier H-bond. The E m depends on the H+ position along the low-barrier H-bond, e.g., 680 mV when the H+ is at the D2-His189 moiety and 800 mV when the H+ is at the TyrD moiety, which can explain why TyrD mediates both the S0 to S1 oxidation and the S2 to S1 reduction.
Collapse
Affiliation(s)
- Manoj Mandal
- Department
of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India
| | - Keisuke Saito
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan,. Tel: +81-3-5452-5056. Fax: +81-3-5452-5083
| |
Collapse
|
26
|
Flesher DA, Liu J, Wiwczar JM, Reiss K, Yang KR, Wang J, Askerka M, Gisriel CJ, Batista VS, Brudvig GW. Glycerol binding at the narrow channel of photosystem II stabilizes the low-spin S 2 state of the oxygen-evolving complex. PHOTOSYNTHESIS RESEARCH 2022; 152:167-175. [PMID: 35322325 PMCID: PMC9427693 DOI: 10.1007/s11120-022-00911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/02/2022] [Indexed: 05/11/2023]
Abstract
The oxygen-evolving complex (OEC) of photosystem II (PSII) cycles through redox intermediate states Si (i = 0-4) during the photochemical oxidation of water. The S2 state involves an equilibrium of two isomers including the low-spin S2 (LS-S2) state with its characteristic electron paramagnetic resonance (EPR) multiline signal centered at g = 2.0, and a high-spin S2 (HS-S2) state with its g = 4.1 EPR signal. The relative intensities of the two EPR signals change under experimental conditions that shift the HS-S2/LS-S2 state equilibrium. Here, we analyze the effect of glycerol on the relative stability of the LS-S2 and HS-S2 states when bound at the narrow channel of PSII, as reported in an X-ray crystal structure of cyanobacterial PSII. Our quantum mechanics/molecular mechanics (QM/MM) hybrid models of cyanobacterial PSII show that the glycerol molecule perturbs the hydrogen-bond network in the narrow channel, increasing the pKa of D1-Asp61 and stabilizing the LS-S2 state relative to the HS-S2 state. The reported results are consistent with the absence of the HS-S2 state EPR signal in native cyanobacterial PSII EPR spectra and suggest that the narrow water channel hydrogen-bond network regulates the relative stability of OEC catalytic intermediates during water oxidation.
Collapse
Affiliation(s)
- David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jessica M Wiwczar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT, 05620, USA
| | - Ke R Yang
- Department of Chemistry, Yale University, New Haven, CT, 05620, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Mikhail Askerka
- Department of Chemistry, Yale University, New Haven, CT, 05620, USA
| | | | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 05620, USA
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT, 05620, USA.
| |
Collapse
|
27
|
Mandal M, Saito K, Ishikita H. Requirement of Chloride for the Downhill Electron Transfer Pathway from the Water-Splitting Center in Natural Photosynthesis. J Phys Chem B 2021; 126:123-131. [PMID: 34955014 DOI: 10.1021/acs.jpcb.1c09176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII), Cl- is a prerequisite for the second flash-induced oxidation of the Mn4CaO5 cluster (the S2 to S3 transition). We report proton transfer from the substrate water molecule via D1-Asp61 and electron transfer via redox-active D1-Tyr161 (TyrZ) to the chlorophyll pair in Cl--depleted PSII using a quantum mechanical/molecular mechanical approach. The low-barrier H-bond formation between the substrate water molecule and D1-Asp61 remained unaffected upon the depletion of Cl-. However, the binding site, D2-Lys317, formed a salt bridge with D1-Asp61, leading to the inhibition of the subsequent proton transfer. Remarkably, the redox potential (Em) of S2/S3 increased significantly, making electron transfer from S2 to TyrZ energetically uphill, as observed in Ca2+-depleted PSII. The uphill electron transfer pathway was induced by the significant increase in Em(S2/S3) caused by the loss of charge compensation for D2-Lys317 upon the depletion of Cl-, whereas it was induced by the significant decrease in Em(TyrZ) caused by the rearrangement of the water molecules at the Ca2+ binding moiety upon the depletion of Ca2+.
Collapse
Affiliation(s)
- Manoj Mandal
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
28
|
Bertalan É, Lesca E, Schertler GFX, Bondar AN. C-Graphs Tool with Graphical User Interface to Dissect Conserved Hydrogen-Bond Networks: Applications to Visual Rhodopsins. J Chem Inf Model 2021; 61:5692-5707. [PMID: 34670076 DOI: 10.1021/acs.jcim.1c00827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamic hydrogen-bond networks provide proteins with structural plasticity required to translate signals such as ligand binding into a cellular response or to transport ions and larger solutes across membranes and, thus, are of central interest to understand protein reaction mechanisms. Here, we present C-Graphs, an efficient tool with graphical user interface that analyzes data sets of static protein structures or of independent numerical simulations to identify conserved, vs unique, hydrogen bonds and hydrogen-bond networks. For static structures, which may belong to the same protein or to proteins with different sequences, C-Graphs uses a clustering algorithm to identify sites of the hydrogen-bond network where waters are conserved among the structures. Using C-Graphs, we identify an internal protein-water hydrogen-bond network common to static structures of visual rhodopsins and adenosine A2A G protein-coupled receptors (GPCRs). Molecular dynamics simulations of a visual rhodopsin indicate that the conserved hydrogen-bond network from static structure can recruit dynamic hydrogen bonds and extend throughout most of the receptor. We release with this work the code for C-Graphs and its graphical user interface.
Collapse
Affiliation(s)
- Éva Bertalan
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Elena Lesca
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, ETH Zürich, 5303 Villigen-PSI, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, ETH Zürich, 5303 Villigen-PSI, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.,Faculty of Physics, University of Bucharest, Strada Atomiştilor Nr. 405, Măgurele 077125, Romania.,Computational Biomedicine, IAS-5/INM-9, Institute for Neuroscience and Medicine and Institute for Advanced Simulations, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
29
|
Hussein R, Ibrahim M, Bhowmick A, Simon PS, Chatterjee R, Lassalle L, Doyle M, Bogacz I, Kim IS, Cheah MH, Gul S, de Lichtenberg C, Chernev P, Pham CC, Young ID, Carbajo S, Fuller FD, Alonso-Mori R, Batyuk A, Sutherlin KD, Brewster AS, Bolotovsky R, Mendez D, Holton JM, Moriarty NW, Adams PD, Bergmann U, Sauter NK, Dobbek H, Messinger J, Zouni A, Kern J, Yachandra VK, Yano J. Structural dynamics in the water and proton channels of photosystem II during the S 2 to S 3 transition. Nat Commun 2021; 12:6531. [PMID: 34764256 PMCID: PMC8585918 DOI: 10.1038/s41467-021-26781-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Light-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.89 Å structure obtained by averaging all the S states and refining the data of various time points during the S2 to S3 transition has provided better visualization of the potential pathways for substrate water insertion and proton release. Our results indicate that the O1 channel is the likely water intake pathway, and the Cl1 channel is the likely proton release pathway based on the structural rearrangements of water molecules and amino acid side chains along these channels. In particular in the Cl1 channel, we suggest that residue D1-E65 serves as a gate for proton transport by minimizing the back reaction. The results show that the water oxidation reaction at the OEC is well coordinated with the amino acid side chains and the H-bonding network over the entire length of the channels, which is essential in shuttling substrate waters and protons.
Collapse
Affiliation(s)
- Rana Hussein
- grid.7468.d0000 0001 2248 7639Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mohamed Ibrahim
- grid.7468.d0000 0001 2248 7639Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Asmit Bhowmick
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Philipp S. Simon
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Ruchira Chatterjee
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Louise Lassalle
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Margaret Doyle
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Isabel Bogacz
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - In-Sik Kim
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Mun Hon Cheah
- grid.8993.b0000 0004 1936 9457Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Sheraz Gul
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Casper de Lichtenberg
- grid.8993.b0000 0004 1936 9457Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden ,grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - Petko Chernev
- grid.8993.b0000 0004 1936 9457Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Cindy C. Pham
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Iris D. Young
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Sergio Carbajo
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Franklin D. Fuller
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Roberto Alonso-Mori
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Alex Batyuk
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Kyle D. Sutherlin
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aaron S. Brewster
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Robert Bolotovsky
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Derek Mendez
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - James M. Holton
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Nigel W. Moriarty
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Paul D. Adams
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Uwe Bergmann
- grid.14003.360000 0001 2167 3675Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Nicholas K. Sauter
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Holger Dobbek
- grid.7468.d0000 0001 2248 7639Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Johannes Messinger
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120, Uppsala, Sweden. .,Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden.
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Vittal K. Yachandra
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
30
|
Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers. Proc Natl Acad Sci U S A 2021; 118:2103203118. [PMID: 34301911 PMCID: PMC8325351 DOI: 10.1073/pnas.2103203118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structures of photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II show large structural similarity. However, the proposed mechanisms of proton transfer toward the terminal electron acceptor quinone (QB) are not consistent. In particular, not His-L190, which is an H-bond partner of QB, but rather Glu-L212, which is ∼6 Å away from QB, was assumed to be the direct proton donor for QB. We demonstrate that the H-bond between His-L190 and QB is a low-barrier H-bond, which facilitates proton transfer from singly protonated His-L190 to QB. Furthermore, Glu-L212 is not a direct H-bond donor for QB. However, it facilitates proton transfer toward deprotonated His-L190 via water molecules after QBH2 forms and leaves the PbRC. In photosynthetic reaction centers from purple bacteria (PbRCs) from Rhodobacter sphaeroides, the secondary quinone QB accepts two electrons and two protons via electron-coupled proton transfer (PT). Here, we identify PT pathways that proceed toward the QB binding site, using a quantum mechanical/molecular mechanical approach. As the first electron is transferred to QB, the formation of the Grotthuss-like pre-PT H-bond network is observed along Asp-L213, Ser-L223, and the distal QB carbonyl O site. As the second electron is transferred, the formation of a low-barrier H-bond is observed between His-L190 at Fe and the proximal QB carbonyl O site, which facilitates the second PT. As QBH2 leaves PbRC, a chain of water molecules connects protonated Glu-L212 and deprotonated His-L190 forms, which serves as a pathway for the His-L190 reprotonation. The findings of the second pathway, which does not involve Glu-L212, and the third pathway, which proceeds from Glu-L212 to His-L190, provide a mechanism for PT commonly used among PbRCs.
Collapse
|
31
|
Kaur D, Zhang Y, Reiss KM, Mandal M, Brudvig GW, Batista VS, Gunner MR. Proton exit pathways surrounding the oxygen evolving complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148446. [PMID: 33964279 DOI: 10.1016/j.bbabio.2021.148446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Photosystem II allows water to be the primary electron source for the photosynthetic electron transfer chain. Water is oxidized to dioxygen at the Oxygen Evolving Complex (OEC), a Mn4CaO5 inorganic core embedded on the lumenal side of PSII. Water-filled channels surrounding the OEC must bring in substrate water molecules, remove the product protons to the lumen, and may transport the product oxygen. Three water-filled channels, denoted large, narrow, and broad, extend from the OEC towards the aqueous surface more than 15 Å away. However, the role of each pathway in the transport in and out of the OEC is yet to be established. Here, we combine Molecular Dynamics (MD), Multi Conformation Continuum Electrostatics (MCCE) and Network Analysis to compare and contrast the three potential proton transfer paths. Hydrogen bond network analysis shows that near the OEC the waters are highly interconnected with similar free energy for hydronium at all locations. The paths diverge as they move towards the lumen. The water chain in the broad channel is better connected than in the narrow and large channels, where disruptions in the network are observed approximately 10 Å from the OEC. In addition, the barrier for hydronium translocation is lower in the broad channel. Thus, a proton released from any location on the OEC can access all paths, but the likely exit to the lumen passes through PsbO via the broad channel.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Krystle M Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Manoj Mandal
- Department of Physics, City College of New York, NY 10031, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States.
| |
Collapse
|
32
|
Mandal M, Saito K, Ishikita H. Two Distinct Oxygen-Radical Conformations in the X-ray Free Electron Laser Structures of Photosystem II. J Phys Chem Lett 2021; 12:4032-4037. [PMID: 33881870 DOI: 10.1021/acs.jpclett.1c00814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the existence of two distinct oxygen-radical-containing Mn4CaO5/6 conformations with short O···O bonds in the crystal structures of the oxygen-evolving enzyme photosystem II (PSII), obtained using an X-ray free electron laser (XFEL). A short O···O distance of <2.3 Å between the O4 site of the Mn4CaO5 complex and the adjacent water molecule (W539) in the proton-conducting O4-water chain was observed in the second flash-induced (2F) XFEL structure (2F-XFEL), which may correspond to S3. By use of a quantum mechanical/molecular mechanical approach, the OH• formation at W539 and the short O4···OW539 distance (<2.3 Å) were reproduced in S2 and S3 with reduced Mn1(III), which lacks the additional sixth water molecule O6. As the O•- formation at O6 and the short O5···O6 distance (1.9 Å) have been reported in another 2F-XFEL structure with reduced Mn4(III), two distinct oxygen-radical conformations exist in the 2F-XFEL crystals.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
33
|
Sakashita N, Ishikita H, Saito K. Rigidly hydrogen-bonded water molecules facilitate proton transfer in photosystem II. Phys Chem Chem Phys 2020; 22:15831-15841. [PMID: 32613215 DOI: 10.1039/d0cp00295j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the water-splitting enzyme photosystem II (PSII), the proton is released from the catalytic site and transferred to the protein bulk surface via the proton-relay mechanism. Proton transfer occurs in a proton-conducting channel consisting of a series of water molecules connected by hydrogen-bonded (H-bonded) chains. The water-transport protein aquaporin (AQP) also contains a water chain with structure similar to that of the PSII proton channel, although the water chain does not transport protons. We compared the PSII proton channel with the AQP water channel from the following standpoints: (1) the energetics of proton transfer based on crystal structures obtained from quantum mechanical/molecular mechanical calculations, and (2) fluctuations in water molecules obtained from molecular dynamics simulations. The results showed that residues facing the channel and acting as H-bonded partners of water molecules predominantly determined the proton-transfer ability. In PSII, the water chain is surrounded by H-bond acceptors (e.g., carbonyl groups), and the water chain transports protons where the water molecules are rigidly fixed. In AQP, the water chain is surrounded by hydrophobic sidechains or H-bond donors (e.g., NH2 groups), and it does not transport protons where the water molecules are flexible and fluctuating.
Collapse
Affiliation(s)
- Naoki Sakashita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan and Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan and Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
34
|
Mandal M, Saito K, Ishikita H. The Nature of the Short Oxygen-Oxygen Distance in the Mn 4CaO 6 Complex of Photosystem II Crystals. J Phys Chem Lett 2020; 11:10262-10268. [PMID: 33210928 DOI: 10.1021/acs.jpclett.0c02868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The O···O distance for a typical H-bond is ∼2.8 Å, whereas the radiation-damage-free structures of photosystem II (PSII), obtained using the X-ray free electron laser (XFEL), shows remarkably short O···O distances of ∼2 Å in the oxygen-evolving Mn4CaO5/6 complex. Herein, we report the protonation/oxidation states of the short O···O atoms in the XFEL structures using a quantum mechanical/molecular mechanical approach. The O5···O6 distance of 1.9 Å is reproduced only when O6 is an unprotonated O radical (O•-) with Mn(IV)3Mn(III), i.e., the S3 state. The potential energy profile shows a barrier-less energy minimum region when O5···O6 = 1.90-2.05 Å (O•- ↓) or 2.05-2.20 Å (O•- ↑). Formation of such a short O5···O6 distance is not possible when O6 is OH- with Mn(IV)4. In the case in which the O5···O6 distance is 1.9 Å, it seems likely that the O radical species exists in the oxygen-evolving complex of the XFEL-S3 crystals.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
35
|
Kuroda H, Kawashima K, Ueda K, Ikeda T, Saito K, Ninomiya R, Hida C, Takahashi Y, Ishikita H. Proton transfer pathway from the oxygen-evolving complex in photosystem II substantiated by extensive mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148329. [PMID: 33069681 DOI: 10.1016/j.bbabio.2020.148329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
We report a structure-based biological approach to identify the proton-transfer pathway in photosystem II. First, molecular dynamics (MD) simulations were conducted to analyze the H-bond network that may serve as a Grotthuss-like proton conduit. MD simulations show that D1-Asp61, the H-bond acceptor of H2O at the Mn4CaO5 cluster (W1), forms an H-bond via one water molecule with D1-Glu65 but not with D2-Glu312. Then, D1-Asp61, D1-Glu65, D2-Glu312, and the adjacent residues, D1-Arg334, D2-Glu302, and D2-Glu323, were thoroughly mutated to the other 19 residues, i.e., 114 Chlamydomonas chloroplast mutant cells were generated. Mutation of D1-Asp61 was most crucial. Only the D61E and D61C cells grew photoautotrophically and exhibit O2-evolving activity. Mutations of D2-Glu312 were less crucial to photosynthetic growth than mutations of D1-Glu65. Quantum mechanical/molecular mechanical calculations indicated that in the PSII crystal structure, the proton is predominantly localized at D1-Glu65 along the H-bond with D2-Glu312, i.e., pKa(D1-Glu65) > pKa(D2-Glu312). The potential-energy profile shows that the release of the proton from D1-Glu65 leads to the formation of the two short H-bonds between D1-Asp61 and D1-Glu65, which facilitates downhill proton transfer along the Grotthuss-like proton conduit in the S2 to S3 transition. It seems possible that D1-Glu65 is involved in the dominant pathway that proceeds from W1 via D1-Asp61 toward the thylakoid lumen, whereas D2-Glu312 and D1-Arg334 may be involved in alternative pathways in some mutants.
Collapse
Affiliation(s)
- Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Kawashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Kazuyo Ueda
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takuya Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ryo Ninomiya
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Chisato Hida
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| |
Collapse
|
36
|
Oxidation of iodide with a mononuclear manganese(IV) complex ion: Mechanistic investigation of autocatalytic behaviour. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Saito K, Nakagawa M, Ishikita H. pK a of the ligand water molecules in the oxygen-evolving Mn 4CaO 5 cluster in photosystem II. Commun Chem 2020; 3:89. [PMID: 36703312 PMCID: PMC9814768 DOI: 10.1038/s42004-020-00336-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/30/2020] [Indexed: 01/29/2023] Open
Abstract
Release of the protons from the substrate water molecules is prerequisite for O2 evolution in photosystem II (PSII). Proton-releasing water molecules with low pKa values at the catalytic moiety can be the substrate water molecules. In some studies, one of the ligand water molecules, W2, is regarded as OH-. However, the PSII crystal structure shows neither proton acceptor nor proton-transfer pathway for W2, which is not consistent with the assumption of W2 = OH-. Here we report the pKa values of the four ligand water molecules, W1 and W2 at Mn4 and W3 and W4 at Ca2+, of the Mn4CaO5 cluster. pKa(W1) ≈ pKa(W2) << pKa(W3) ≈ pKa(W4) in the Mn4CaO5 cluster in water. However, pKa(W1) ≈ pKa(D1-Asp61) << pKa(W2) in the PSII protein environment. These results suggest that in PSII, deprotonation of W2 is energetically disfavored as far as W1 exists.
Collapse
Affiliation(s)
- Keisuke Saito
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan
| | - Minesato Nakagawa
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan
| | - Hiroshi Ishikita
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan
| |
Collapse
|
38
|
Saito K, Mandal M, Ishikita H. Energetics of Ionized Water Molecules in the H-Bond Network near the Ca2+ and Cl– Binding Sites in Photosystem II. Biochemistry 2020; 59:3216-3224. [DOI: 10.1021/acs.biochem.0c00177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
39
|
Shimada Y, Kitajima-Ihara T, Nagao R, Noguchi T. Role of the O4 Channel in Photosynthetic Water Oxidation as Revealed by Fourier Transform Infrared Difference and Time-Resolved Infrared Analysis of the D1-S169A Mutant. J Phys Chem B 2020; 124:1470-1480. [DOI: 10.1021/acs.jpcb.9b11946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yuichiro Shimada
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomomi Kitajima-Ihara
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
40
|
Mandal M, Kawashima K, Saito K, Ishikita H. Redox Potential of the Oxygen-Evolving Complex in the Electron Transfer Cascade of Photosystem II. J Phys Chem Lett 2020; 11:249-255. [PMID: 31729876 DOI: 10.1021/acs.jpclett.9b02831] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In photosystem II (PSII), water oxidation occurs in the Mn4CaO5 cluster with the release of electrons via the redox-active tyrosine (TyrZ) to the reaction-center chlorophylls (PD1/PD2). Using a quantum mechanical/molecular mechanical approach, we report the redox potentials (Em) of these cofactors in the PSII protein environment. The Em values suggest that the Mn4CaO5 cluster, TyrZ, and PD1/PD2 form a downhill electron transfer pathway. Em for the first oxidation step, Em(S0/S1), is uniquely low (730 mV) and is ∼100 mV lower than that for the second oxidation step, Em(S1/S2) (830 mV) only when the O4 site of the Mn4CaO5 cluster is protonated in S0. The O4-water chain, which directly forms a low-barrier H-bond with the Mn4CaO5 cluster and mediates proton-coupled electron transfer in the S0 to S1 transition, explains why the second lowest oxidation state, S1, is the most stable and S0 is converted to S1 even in the dark.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8904 , Japan
| | - Keisuke Kawashima
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8654 , Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8904 , Japan
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8654 , Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8904 , Japan
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8654 , Japan
| |
Collapse
|
41
|
Fukunishi Y, Mashimo T, Kurosawa T, Wakabayashi Y, Nakamura HK, Takeuchi K. Prediction of Passive Membrane Permeability by Semi-Empirical Method Considering Viscous and Inertial Resistances and Different Rates of Conformational Change and Diffusion. Mol Inform 2020; 39:e1900071. [PMID: 31609549 PMCID: PMC7050510 DOI: 10.1002/minf.201900071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022]
Abstract
Membrane permeability is an important property of drugs in adsorption. Many prediction methods work well for small molecules, but the prediction of middle-molecule permeability is still difficult. In the present study, we modified a classical permeability model based on Fick's law to study passive membrane permeability. The model consisted of the distribution of solute from water to membrane and the diffusion of solute in each solvent. The diffusion coefficient is the inverse of the resistance, and we examined the inertial resistance in addition to the viscous resistance, the latter of which has been widely used in permeability prediction. Also, we examined three models changing the balance between the diffusion of solute in membrane and the conformational change of solute. The inertial resistance improved the prediction results in addition to the viscous resistance. The models worked well not only for small molecules but also for middle molecules, whose structures have more conformational freedom.
Collapse
Affiliation(s)
- Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery (molprof)National Institute of Advanced Industrial Science and Technology (AIST)2-3-26, Aomi, Koto-kuTokyo135-0064Japan
| | - Tadaaki Mashimo
- Technology Research Association for Next-Generation Natural Products Chemistry2-3-26, Aomi, Koto-kuTokyo135-0064Japan
- IMSBIO Co., Ltd.Owl Tower, 4–21-1, Higashi-Ikebukuro, Toshima-kuTokyo170-0013Japan
| | - Takashi Kurosawa
- Technology Research Association for Next-Generation Natural Products Chemistry2-3-26, Aomi, Koto-kuTokyo135-0064Japan
- Hitachi Solutions East Japan, 12–1 Ekimaehoncho, Kawasaki-ku, KawasakiKanagawa210-0007Japan
| | | | - Hironori K. Nakamura
- Biomodeling Research Co., Ltd.1-704-2 Uedanishi, Tenpaku-ku, NagoyaAichi468-0058Japan
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery (molprof)National Institute of Advanced Industrial Science and Technology (AIST)2-3-26, Aomi, Koto-kuTokyo135-0064Japan
| |
Collapse
|
42
|
|
43
|
Mechanism of protonation of the over-reduced Mn4CaO5 cluster in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148059. [DOI: 10.1016/j.bbabio.2019.148059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/18/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023]
|
44
|
Ogata K, Hatakeyama M, Sakamoto Y, Nakamura S. Investigation of a Pathway for Water Delivery in Photosystem II Protein by Molecular Dynamics Simulation. J Phys Chem B 2019; 123:6444-6452. [DOI: 10.1021/acs.jpcb.9b04838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Koji Ogata
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Hatakeyama
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Sakamoto
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichiro Nakamura
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
45
|
Ghosh I, Banerjee G, Kim CJ, Reiss K, Batista VS, Debus RJ, Brudvig GW. D1-S169A Substitution of Photosystem II Perturbs Water Oxidation. Biochemistry 2019; 58:1379-1387. [DOI: 10.1021/acs.biochem.8b01184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ipsita Ghosh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gourab Banerjee
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
46
|
Abstract
Photosystem II (PSII) uses water as the terminal electron donor, producing oxygen in the Mn4CaO5 oxygen evolving complex (OEC), while cytochrome c oxidase (CcO) reduces O2 to water in its heme–Cu binuclear center (BNC). Each protein is oriented in the membrane to add to the proton gradient. The OEC, which releases protons, is located near the P-side (positive, at low-pH) of the membrane. In contrast, the BNC is in the middle of CcO, so the protons needed for O2 reduction must be transferred from the N-side (negative, at high pH). In addition, CcO pumps protons from N- to P-side, coupled to the O2 reduction chemistry, to store additional energy. Thus, proton transfers are directly coupled to the OEC and BNC redox chemistry, as well as needed for CcO proton pumping. The simulations that study the changes in proton affinity of the redox active sites and the surrounding protein at different states of the reaction cycle, as well as the changes in hydration that modulate proton transfer paths, are described.
Collapse
|
47
|
Shamsipur M, Pashabadi A. Latest advances in PSII features and mechanism of water oxidation. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Kim CJ, Bao H, Burnap RL, Debus RJ. Impact of D1-V185 on the Water Molecules That Facilitate O2 Formation by the Catalytic Mn4CaO5 Cluster in Photosystem II. Biochemistry 2018; 57:4299-4311. [DOI: 10.1021/acs.biochem.8b00630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Han Bao
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Robert L. Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
49
|
Yu D, Du R, Xiao JC, Xu S, Rong C, Liu S. Theoretical Study of pKa Values for Trivalent Rare-Earth Metal Cations in Aqueous Solution. J Phys Chem A 2018; 122:700-707. [DOI: 10.1021/acs.jpca.7b12074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Donghai Yu
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education of China), College of Chemistry and Chemical
Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ruobing Du
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shengming Xu
- Institute
of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chunying Rong
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shubin Liu
- Research
Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| |
Collapse
|
50
|
Kishi S, Saito K, Kato Y, Ishikita H. Redox potentials of ubiquinone, menaquinone, phylloquinone, and plastoquinone in aqueous solution. PHOTOSYNTHESIS RESEARCH 2017; 134:193-200. [PMID: 28831654 PMCID: PMC5645442 DOI: 10.1007/s11120-017-0433-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/11/2017] [Indexed: 05/24/2023]
Abstract
Quinones serve as redox active cofactors in bacterial photosynthetic reaction centers: photosystem I, photosystem II, cytochrome bc 1, and cytochrome b 6 f. In particular, ubiquinone is ubiquitous in animals and most bacteria and plays a key role in several cellular processes, e.g., mitochondrial electron transport. Their experimentally measured redox potential values for one-electron reduction E m(Q/Q·-) were already reported in dimethylformamide (DMF) versus saturated calomel electrode but not in water versus normal hydrogen electrode (NHE). We calculated E m(Q/Q·-) of 1,4-quinones using a quantum chemical approach. The calculated energy differences of reduction of Q to Q·- in DMF and water for 1,4-quinone derivatives correlated highly with the experimentally measured E m(Q/Q·-) in DMF and water, respectively. E m(Q/Q·-) were calculated to be -163 mV for ubiquinone, -260 mV for menaquinone and phylloquinone, and -154 mV for plastoquinone in water versus NHE.
Collapse
Affiliation(s)
- Shinnosuke Kishi
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yuki Kato
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|