1
|
Lobka M, Siekierska I, Chyży P, Burmistrz M, Macyszyn J, Grzela R, Wojciechowska M, Trylska J. Design, synthesis and evaluation of lysine- and leucine-rich hydrocarbon-stapled peptides as antibacterial agents. Eur J Med Chem 2025; 290:117445. [PMID: 40101449 DOI: 10.1016/j.ejmech.2025.117445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
To address the challenge of antimicrobial resistance, we investigated new antibacterial peptides based on lysine- and leucine-rich sequences. We stabilised their membrane-active secondary structures by applying hydrocarbon stapling at sequence positions i and i+4. Stapling improved peptide structural stability in both aqueous and lipid environments, regardless of the staple position. It also enhanced antibacterial efficiency against both gram-negative and gram-positive bacteria, including antibiotic-resistant strains, with minimum inhibitory concentrations (MICs) of 2-4 μM (2.5-5.5 μg/mL). The stapled peptides showed increased resistance to enzymatic degradation, particularly with staples incorporated near the N-terminus, and were not haemolytic or cytotoxic at their MICs. Molecular dynamics simulations revealed how stapling aids in (i) stabilising the membrane-active secondary structure of amphipathic peptides and (ii) accelerating their membrane insertion. Our results provide insight into peptide design for antimicrobial use. We show that hydrocarbon stapling of lysine- and leucine-rich short sequences may offer a pathway towards more stable and effective antibacterial agents.
Collapse
Affiliation(s)
- Małgorzata Lobka
- University of Warsaw, Centre of New Technologies, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Izabela Siekierska
- University of Warsaw, Centre of New Technologies, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Piotr Chyży
- University of Warsaw, Centre of New Technologies, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Michał Burmistrz
- University of Warsaw, Centre of New Technologies, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Julia Macyszyn
- University of Warsaw, Centre of New Technologies, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Renata Grzela
- University of Warsaw, Centre of New Technologies, S. Banacha 2c, 02-097, Warsaw, Poland; University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Division of Biophysics, 02-093, Warsaw, Poland
| | - Monika Wojciechowska
- University of Warsaw, Centre of New Technologies, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Trylska
- University of Warsaw, Centre of New Technologies, S. Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
2
|
Srinivasan H, Sharma VK, Mitra S. Breaking the Brownian barrier: models and manifestations of molecular diffusion in complex fluids. Phys Chem Chem Phys 2024. [PMID: 39584788 DOI: 10.1039/d4cp01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Over a century ago, Einstein formulated a precise mathematical model for describing Brownian motion. While this model adequately explains the diffusion of micron-sized particles in fluids, its limitations become apparent when applied to molecular self-diffusion in fluids. The foundational principles of Gaussianity and Markovianity, central to the Brownian diffusion paradigm, are insufficient for describing molecular diffusion, particularly in complex fluids characterized by intricate intermolecular interactions and hindered relaxation processes. This perspective delves into the nuanced behavior observed in diverse complex fluids, including molecular self-assembly systems, deep eutectic solvents, and ionic liquids, with a specific focus on modeling self-diffusion within these media. We explore the possibility of extending diffusion models to incorporate non-Gaussian and non-Markovian effects by augmenting the Brownian model using non-local diffusion equations. Furthermore, we validate the applicability of these models by utilizing them to describe results from quasielastic neutron scattering and MD simulations.
Collapse
Affiliation(s)
- Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
3
|
Sharma VK, Srinivasan H, Gupta J, Mitra S. Lipid lateral diffusion: mechanisms and modulators. SOFT MATTER 2024; 20:7763-7796. [PMID: 39315599 DOI: 10.1039/d4sm00597j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The lateral diffusion of lipids within a membrane is of paramount importance, serving as a central mechanism in numerous physiological processes including cell signaling, membrane trafficking, protein activity regulation, and energy transduction pathways. This review offers a comprehensive overview of lateral lipid diffusion in model biomembrane systems explored through the lens of neutron scattering techniques. We examine diverse models of lateral diffusion and explore the various factors influencing this fundamental process in membrane dynamics. Additionally, we offer a thorough summary of how different membrane-active compounds, including drugs, antioxidants, stimulants, and membrane proteins, affect lipid lateral diffusion. Our analysis unveils the intricate interplay between these additives and membranes, shedding light on their dynamic interactions. We elucidate that this interaction is governed by a complex combination of multiple factors including the physical state and charge of the membrane, the concentration of additives, the molecular architecture of the compounds, and their spatial distribution within the membrane. In conclusion, we briefly discuss the future directions and areas requiring further investigation in the realm of lateral lipid diffusion, highlighting the need to study more realistic membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
4
|
Osti NC, Jalarvo N, Mamontov E. Backscattering silicon spectrometer (BASIS): sixteen years in advanced materials characterization. MATERIALS HORIZONS 2024; 11:4535-4572. [PMID: 39162617 DOI: 10.1039/d4mh00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Quasielastic neutron scattering (QENS) is an experimental technique that can measure parameters of mobility, such as diffusion jump rate and jump length, as well as localized relaxations of chemical species (molecules, ions, and segments) at atomic and nanometer length scales. Due to the high penetrative power of neutrons and their sensitivity to neutron scattering cross-section of chemical species, QENS can effectively probe mobility inside most bulk materials. This review focuses on QENS experiments performed using a neutron backscattering silicon spectrometer (BASIS) to explore the dynamics in various materials and understand their structure-property relationship. BASIS is a time-of-flight near-backscattering inverted geometry spectrometer with very high energy resolution (approximately 0.0035 meV of full width at half maximum), allowing measurements of dynamics on nano to picosecond timescales. The science areas studied with BASIS are diverse, with a focus on soft matter topics, including traditional biological and polymer science experiments, as well as measurements of fluids ranging from simple hydrocarbons and aqueous solutions to relatively complex room-temperature ionic liquids and deep-eutectic solvents, either in the bulk state or confined. Additionally, hydrogen confined in various materials is routinely measured on BASIS. Other topics successfully investigated at BASIS include quantum fluids, spin glasses, and magnetism. BASIS has been in the user program since 2007 at the Spallation Neutron Source of the Oak Ridge National Laboratory, an Office of Science User Facility supported by the U.S. Department of Energy. Over the past sixteen years, BASIS has contributed to various scientific disciplines, exploring the structure and dynamics of many chemical species and their fabrication for practical applications. A comprehensive review of BASIS contributions and capabilities would be an asset to the materials science community, providing insights into employing the neutron backscattering technique for advanced materials characterization.
Collapse
Affiliation(s)
- Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Niina Jalarvo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
5
|
Ulmschneider JP, Ulmschneider MB. Melittin can permeabilize membranes via large transient pores. Nat Commun 2024; 15:7281. [PMID: 39179607 PMCID: PMC11343860 DOI: 10.1038/s41467-024-51691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Membrane active peptides are known to porate lipid bilayers, but their exact permeabilization mechanism and the structure of the nanoaggregates they form in membranes have often been difficult to determine experimentally. For many sequences at lower peptide concentrations, transient leakage is observed in experiments, suggesting the existence of transient pores. For two well-know peptides, alamethicin and melittin, we show here that molecular mechanics simulations i) can directly distinguish equilibrium poration and non-equilibrium transient leakage processes, and ii) can be used to observe the detailed pore structures and mechanism of permeabilization in both cases. Our results are in very high agreement with numerous experimental evidence for these two peptides. This suggests that molecular simulations can capture key membrane poration phenomena directly and in the future may develop to be a useful tool that can assist experimental peptide design.
Collapse
Affiliation(s)
- Jakob P Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
6
|
Sharma VK, Gupta J, Mitra JB, Srinivasan H, Sakai VG, Ghosh SK, Mitra S. The Physics of Antimicrobial Activity of Ionic Liquids. J Phys Chem Lett 2024; 15:7075-7083. [PMID: 38950375 DOI: 10.1021/acs.jpclett.4c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The bactericidal potency of ionic liquids (ILs) is well-established, yet their precise mechanism of action remains elusive. Here, we show evidence that the bactericidal action of ILs primarily involves the permeabilization of the bacterial cell membrane. Our findings reveal that ILs exert their effects by directly interacting with the lipid bilayer and enhancing the membrane dynamics. Lateral lipid diffusion is accelerated, which in turn augments membrane permeability, ultimately leading to bacterial death. Furthermore, our results establish a significant connection: an increase in the alkyl chain length of ILs correlates with a notable enhancement in both lipid lateral diffusion and antimicrobial potency. This underscores a compelling correlation between membrane dynamics and antimicrobial effectiveness, providing valuable insights for the rational design and optimization of IL-based antimicrobial agents in healthcare applications.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - J Bhatt Mitra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - V García Sakai
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - S K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar Uttar Pradesh 201314, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
7
|
Qian S, Nagy G, Zolnierczuk P, Mamontov E, Standaert R. Nonstereotypical Distribution and Effect of Ergosterol in Lipid Membranes. J Phys Chem Lett 2024; 15:4745-4752. [PMID: 38661394 DOI: 10.1021/acs.jpclett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ergosterol, found in fungi and some protist membranes, is understudied compared with cholesterol from animal membranes. Generally, ergosterol is assumed to modulate membranes in the same manner as cholesterol, based on their similar chemical structures. Here we reveal some fundamental structural and dynamical differences between them. Neutron diffraction shows that ergosterol is embedded in the lipid bilayer much shallower than cholesterol. Ergosterol does not change the membrane thickness as much as cholesterol does, indicating little condensation effect. Neutron spin echo shows that ergosterol can rigidify and soften membranes at different concentrations. The lateral lipid diffusion measured by quasielastic neutron scattering indicates that ergosterol promotes a jump diffusion of the lipid, whereas cholesterol keeps the same continuous lateral diffusion as the pure lipid membrane. Our results point to quite distinct interactions of ergosterol with membranes compared with cholesterol. These insights provide a basic understanding of membranes containing ergosterol with implications for phenomena such as lipid rafts and drug interactions.
Collapse
Affiliation(s)
- Shuo Qian
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Gergely Nagy
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Robert Standaert
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Gupta J, Sharma VK, Srinivasan H, Bhatt H, Sakai VG, Mukhopadhyay R, Mitra S. Modulation of Phase Behavior and Microscopic Dynamics in Cationic Vesicles by 1-Decyl-3-methylimidazolium Bromide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:504-518. [PMID: 38126298 DOI: 10.1021/acs.langmuir.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Synthetic cationic lipids have garnered significant attention as promising candidates for gene/DNA transfection in therapeutic applications. The phase behavior of the vesicles formed by these lipids is intriguing, revealing intricate connections to the structure and dynamics of the membrane. These phenomena emerge from the complex interplay between hydrophobic and electrostatic interactions of the lipids. In this study, we explore the impact of an ionic liquid-based surfactant, 1-decyl-3-methylimidazolium bromide (DMIM[Br]), on the structural, dynamical, and phase behavior of cationic dihexadecyldimethylammonium bromide (DHDAB) vesicles. Our investigations indicate that the addition of DMIM[Br] increases the vesicle size while thinning the membrane. Further, DMIM[Br] also induces substantial changes in the membrane phase behavior. At 10 and 25 mol %, DMIM[Br] eliminates the pre-transition from coagel to intermediate crystalline (IC) phase and decreases the onset temperature of the main phase transition to the fluid phase. In the cooling cycle, the addition of DMIM[Br] further induces the formation of an intermediate gel phase. This behavior is reminiscent of the non-synchronous ordering observed in the DODAB membrane, a longer-chain counterpart of DHDAB. Interestingly, at 40 mol % of DMIM[Br], the formation of the intermediate gel phase is largely suppressed. Neutron scattering data provide evidence that the addition of DMIM[Br] enhances lipid mobility in coagel and fluid phases, suggesting that DMIM[Br] acts as a plasticizer, enhancing membrane fluidity across all of the phases. Our findings infer that DMIM[Br] modulates the membrane's phase behavior and fluidity, two essential ingredients for the efficient transport of cargo, by controlling the balance of electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Himal Bhatt
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
9
|
Mitra S, Sharma VK, Ghosh SK. Effects of ionic liquids on biomembranes: A review on recent biophysical studies. Chem Phys Lipids 2023; 256:105336. [PMID: 37586678 DOI: 10.1016/j.chemphyslip.2023.105336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Ionic liquids (ILs) have been emerged as a versatile class of compounds that can be easily tuned to achieve desirable properties for various applications. The ability of ILs to interact with biomembranes has attracted significant interest, as they have been shown to modulate membrane properties in ways that may have implications for various biological processes. This review provides an overview of recent studies that have investigated the interaction between ILs and biomembranes. We discuss the effects of ILs on the physical and chemical properties of biomembranes, including changes in membrane fluidity, permeability, and stability. We also explore the mechanisms underlying the interaction of ILs with biomembranes, such as electrostatic interactions, hydrogen bonding, and van der Waals forces. Additionally, we discuss the future prospects of this field.
Collapse
Affiliation(s)
- Saheli Mitra
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
10
|
Nakao H, Nagao M, Yamada T, Imamura K, Nozaki K, Ikeda K, Nakano M. Impact of transmembrane peptides on individual lipid motions and collective dynamics of lipid bilayers. Colloids Surf B Biointerfaces 2023; 228:113396. [PMID: 37311269 DOI: 10.1016/j.colsurfb.2023.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The fluid nature of lipid bilayers is indispensable for the dynamic regulation of protein function and membrane morphology in biological membranes. Membrane-spanning domains of proteins interact with surrounding lipids and alter the physical properties of lipid bilayers. However, there is no comprehensive view of the effects of transmembrane proteins on the membrane's physical properties. Here, we investigated the effects of transmembrane peptides with different flip-flop-promoting abilities on the dynamics of a lipid bilayer employing complemental fluorescence and neutron scattering techniques. The quasi-elastic neutron scattering and fluorescence experiments revealed that lateral diffusion of the lipid molecules and the acyl chain motions were inhibited by the inclusion of transmembrane peptides. The neutron spin-echo spectroscopy measurements indicated that the lipid bilayer became more rigid but more compressible and the membrane viscosity increased when the transmembrane peptides were incorporated into the membrane. These results suggest that the inclusion of rigid transmembrane structures hinders individual and collective lipid motions by slowing down lipid diffusion and increasing interleaflet coupling. The present study provides a clue for understanding how the local interactions between lipids and proteins change the collective dynamics of the lipid bilayers, and therefore, the function of biological membranes.
Collapse
Affiliation(s)
- Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Michihiro Nagao
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899-6102, USA; Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115, USA; Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Koki Imamura
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
11
|
MacDermott-Opeskin HI, Wilson KA, O'Mara ML. The Impact of Antimicrobial Peptides on the Acinetobacter baumannii Inner Membrane Is Modulated by Lipid Polyunsaturation. ACS Infect Dis 2023; 9:815-826. [PMID: 36920795 DOI: 10.1021/acsinfecdis.2c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The Gram-negative pathogen Acinetobacter baumannii is a primary contributor to nosocomial multi-drug-resistant (MDR) infections. To combat the rise of MDR infections, novel features of A. baumannii need to be considered for the development of new treatment options. One such feature is the preferential scavenging of exogenous lipids, including host-derived polyunsaturated fatty acids (PUFAs), for membrane phospholipid synthesis. These alterations in membrane composition impact both the lipid chemistry and the membrane biophysical properties. In this work we examine how antimicrobial peptides (AMPs) interact with the inner membranes of A. baumannii in the presence and absence of polyunsaturated phospholipids. Using coarse-grained molecular dynamics simulations of complex A. baumannii inner membrane models derived from lipidomes of bacteria grown in the presence and absence of PUFAs, we examine the impact of the adsorption of four prototypical AMPs (CAMEL, LL-37, pexiganan, and magainin-2) on the membrane biophysical properties. Our simulations reveal that the impact of AMP adsorption on the membrane biophysical properties was dependent on both the membrane composition and the specific AMP involved. Both lipid headgroup charge and tail unsaturation played important roles in driving the interactions that occurred both within the membrane and between the membrane and AMPs. The changes to the membrane biophysical properties also showed a complex relationship with the AMP's physical properties, such as AMP charge, chain length, and charge-to-mass ratio. Cumulatively, this work highlights the importance of studying AMPs using a complex membrane environment and provides insights into the mechanistic action of AMPs in polyunsaturated lipid-rich bacterial membranes.
Collapse
Affiliation(s)
- Hugo I MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Katie A Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7 Canada
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Sharma VK, Gupta J, Mamontov E. Lateral diffusion of lipids in the DMPG membrane across the anomalous melting regime: effects of NaCl. SOFT MATTER 2022; 19:57-68. [PMID: 36458871 DOI: 10.1039/d2sm01425d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The anionic dimyristoyl phosphatidylglycerol (DMPG) membrane in solvents with a low ionic strength is known to exhibit an unusually wide melting regime between the gel and fluid phase characterized by various anomalous macroscopic characteristics, such as low turbidity and high electrical conductivity and viscosity. A recent neutron spin echo study [Kelley, E. G. et al., Struct. Dyn., 7 (2020) 054704] revealed that during the extended melting phase transition the DMPG membrane becomes softer and exhibits faster collective bending fluctuation compared to the higher temperature fluid phase. In contrast, in the present work, using incoherent quasielastic neutron scattering through the anomalous phase transition regime we find that single-particle lateral and internal lipid motions in the DMPG membrane show regular temperature dependence, with no enhanced dynamics evident in the anomalous melting regime. Further, we find that incorporation of NaCl in DMPG suppresses the anomalous extended melting regime, concurrently enhancing the single-particle lipid dynamics, both the lateral diffusivity and (to a lesser extent) the internal lipid motion. This seems rather counterintuitive and in variance with the dynamic suppression effect exerted by a salt on a zwitterionic membrane. However, since incorporation of a salt in anionic DMPG leads to enhanced cooperativity, the disrupted cooperativity in the salt-free DMPG is associated with the baseline lipid dynamics that is suppressed to begin with, whereas addition of salt partially restores the cooperativity, thus enhancing lipid dynamics compared to the salt-free baseline DMPG membrane state. These results provide new insights into the ion-membrane interaction and divulge a correlation between microscopic dynamics and the structure of the lipid bilayer.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| |
Collapse
|
13
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
14
|
Leite WC, Wu Y, Pingali SV, Lieberman RL, Urban VS. Change in Morphology of Dimyristoylphosphatidylcholine/Bile Salt Derivative Bicelle Assemblies with Dodecylmaltoside in the Disk and Ribbon Phases. J Phys Chem Lett 2022; 13:9834-9840. [PMID: 36250687 DOI: 10.1021/acs.jpclett.2c02445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bicelles, composed of a mixture of long and short chain lipids, form nanostructured molecular assemblies that are attractive lipid-membrane mimics for in vitro studies of integral membrane proteins. Here we study the effect of a third component, the single chain detergent n-dodecyl-β-d-maltoside (DDM) on the morphology of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) below (10 °C) and above (38 °C) the phase transition. In the absence of DDM, bicelles convert from ellipsoidal disks at 10 °C to extended ribbon-like structures at 38 °C. The addition of DDM reshapes the ellipsoidal disc to a circular one and the flattened ribbon to a circular-cylinder worm-like micelle. Knowledge of the influence of the single chain detergent DDM on bicelle nanoscale morphology contributes toward comprehending lipid membrane self-organization and to the goal of optimizing lipid mimics for membrane biology research.
Collapse
Affiliation(s)
- Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Yuqi Wu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Syryamina VN, Afanasyeva EF, Dzuba SA, Formaggio F, De Zotti M. Peptide-membrane binding is not enough to explain bioactivity: A case study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183978. [PMID: 35659865 DOI: 10.1016/j.bbamem.2022.183978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Membrane-active peptides are a promising class of antimicrobial and anticancer therapeutics. For this reason, their molecular mechanisms of action are currently actively investigated. By exploiting Electron Paramagnetic Resonance, we study the membrane interaction of two spin-labeled analogs of the antimicrobial and cytotoxic peptide trichogin GA IV (Tri), with opposite bioactivity: Tri(Api8), able to selectively kill cancer cells, and Tri(Leu4), which is completely nontoxic. In our attempt to determine the molecular basis of their different biological activity, we investigate peptide impact on the lateral organization of lipid membranes, peptide localization and oligomerization, in the zwitter-ionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model membrane We show that, despite their divergent bioactivity, both peptide analogs (i) are membrane-bound, (ii) display a weak tendency to oligomerization, and (iii) do not induce significant lipid rearrangement. Conversely, literature data show that the parent peptide trichogin, which is cytotoxic without any selectivity, is strongly prone to dimerization and affects the reorganization of POPC membranes. Its dimers are involved in the rotation around the peptide helix, as observed at cryogenic temperatures in the millisecond timescale. Since this latter behavior is not observed for the inactive Tri(Leu4), we propose that for short-length peptides as trichogin oligomerization and molecular motions are crucial for bioactivity, and membrane binding alone is not enough to predict or explain it. We envisage that small changes in the peptide sequence that affect only their ability to oligomerize, or their molecular motions inside the membrane, can tune the peptide activity on membranes of different compositions.
Collapse
Affiliation(s)
- Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation.
| | - Ekaterina F Afanasyeva
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation; Department of Physics, Novosibirsk State University,630090 Novosibirsk, Russian Federation
| | - Fernando Formaggio
- ICB-CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Marta De Zotti
- ICB-CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
16
|
Sharma VK, Mamontov E. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Prog Lipid Res 2022; 87:101179. [PMID: 35780913 DOI: 10.1016/j.plipres.2022.101179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
The plasma membrane is one of the principal structural components of the cell and, therefore, one of the key components of the cellular life. Because the membrane's dynamics links the membrane's structure and function, the complexity and the broad range of the membrane's motions are essential for the enormously diverse functionality of the cell membrane. Even for the main membrane component, the lipid bilayer, considered alone, the range and complexity of the lipid motions are remarkable. Spanning the time scale from sub-picosecond to minutes and hours, the lipid motion in a bilayer is challenging to study even when a broad array of dynamic measurement techniques is employed. Neutron scattering plays a special role among such dynamic measurement techniques, particularly, because it involves the energy transfers commensurate with the typical intra- and inter- molecular dynamics and the momentum transfers commensurate with intra- and inter-molecular distances. Thus, using neutron scattering-based techniques, the spatial and temporal information on the lipid motion can be obtained and analysed simultaneously. Protium vs. deuterium sensitivity and non-destructive character of the neutron probe add to the remarkable prowess of neutron scattering for elucidating the lipid dynamics. Herein we present an overview of the neutron scattering-based studies of lipid dynamics in model membranes, with a discussion of the direct relevance and implications to the real-life cell membranes. The latter are much more complex systems than simple model membranes, consisting of heterogeneous non-stationary domains composed of lipids, proteins, and other small molecules, such as carbohydrates. Yet many fundamental aspects of the membrane behavior and membrane interactions with other molecules can be understood from neutron scattering measurements of the model membranes. For example, such studies can provide a great deal of information on the interactions of antimicrobial compounds with the lipid matrix of a pathogen membrane, or the interactions of drug molecules with the plasma membrane. Finally, we briefly discuss the recently emerging field of neutron scattering membrane studies with a reach far beyond the model membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
17
|
Benedetto A, Kelley EG. Absorption of the [bmim][Cl] Ionic Liquid in DMPC Lipid Bilayers across Their Gel, Ripple, and Fluid Phases. J Phys Chem B 2022; 126:3309-3318. [PMID: 35472281 PMCID: PMC9082605 DOI: 10.1021/acs.jpcb.2c00710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Lipid bilayers are a key component of cell membranes and play a crucial role in life and in bio-nanotechnology. As a result, controlling their physicochemical properties holds the promise of effective therapeutic strategies. Ionic liquids (ILs)─a vast class of complex organic electrolytes─have shown a high degree of affinity with lipid bilayers and can be exploited in this context. However, the chemical physics of IL absorption and partitioning into lipid bilayers is yet to be fully understood. This work focuses on the absorption of the model IL [bmim][Cl] into 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers across their gel, ripple, and fluid phases. Here, by small-angle neutron scattering, we show that (i) the IL cations are absorbed in the lipid bilayer in all its thermodynamic phases and (ii) the amount of IL inserted into the lipid phase increased with increasing temperature, changing from three to four IL cations per 10 lipids with increasing temperature from 10 °C in the gel phase to 40 °C in the liquid phase, respectively. An explicative hypothesis, based on the entropy gain coming from the IL hydration water, is presented to explain the observed temperature trend. The ability to control IL absorption with temperature can be used as a handle to tune the effect of ILs on biomembranes and can be exploited in bio-nanotechnological applications.
Collapse
Affiliation(s)
- Antonio Benedetto
- Department
of Science, University of Roma Tre, 00146 Rome, Italy
- School
of Physics, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
- Laboratory
for Neutron Scattering, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Elizabeth G. Kelley
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
18
|
Marquezin CA, Lamy MT, de Souza ES. Molecular collisions or resonance energy transfer in lipid vesicles? A methodology to tackle this question. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Cisse A, Marquette A, Altangerel M, Peters J, Bechinger B. Investigation of the Action of Peptides on Lipid Membranes. J Phys Chem B 2021; 125:10213-10223. [PMID: 34464136 DOI: 10.1021/acs.jpcb.1c06388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calorimetric and incoherent neutron scattering methods were employed to investigate the action of magainin 2 and PGLa peptides on the phase behavior and molecular dynamics of lipids mimicking cytoplasmic membranes of Gram-negative bacteria. The impact of the peptides, tested individually and cooperatively by differential scanning calorimetry, presented a broadened peak, sometimes with a second shoulder, depicting the phase transition temperature around 21 °C. Neutron scattering revealed a small but significant variation of the membrane dynamics due to the peptides in both in-plane and out-of-plane directions. Although we did not find a clear hint for synergy in the interplay of the two peptides, the calorimetric and neutron data give compatible results in terms of a decrease of the enthalpy due to the presence of the peptides, which destabilize the membrane. The dynamics in the two directions was differentiated when the individual peptides were added to the membranes, but the impact was smaller when both peptides were added together.
Collapse
Affiliation(s)
- Aline Cisse
- Univ. Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France.,Institut Laue-Langevin, 38000 Grenoble, France
| | - Arnaud Marquette
- University of Strasbourg/CNRS, Chemistry Institute, Membrane Biophysics and NMR, UMR7177 Strasbourg, France
| | - Munkhtuguldur Altangerel
- Univ. Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France.,Institut Laue-Langevin, 38000 Grenoble, France
| | - Judith Peters
- Univ. Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France.,Institut Laue-Langevin, 38000 Grenoble, France.,Institut Universitaire de France, 75231 Paris, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, Chemistry Institute, Membrane Biophysics and NMR, UMR7177 Strasbourg, France.,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
20
|
Abstract
Cell membranes - primarily composed of lipids, sterols, and proteins - form a dynamic interface between living cells and their environment. They act as a mechanical barrier around the cell while selectively facilitating material transport, signal transduction, and various other functions necessary for the cell viability. The complex functionality of cell membranes and the hierarchical motions and responses they exhibit demand a thorough understanding of the origin of different membrane dynamics and how they are influenced by molecular additives and environmental cues. These dynamic modes include single-molecule diffusion, thermal fluctuations, and large-scale membrane deformations, to name a few. This review highlights advances in investigating structure-driven dynamics associated with model cell membranes, with a particular focus on insights gained from neutron scattering and spectroscopy experiments. We discuss the uniqueness of neutron contrast variation and its remarkable potential in probing selective membrane structure and dynamics on spatial and temporal scales over which key biological functions occur. We also present a summary of current and future opportunities in synergistic combinations of neutron scattering with molecular dynamics (MD) simulations to gain further understanding of the molecular mechanisms underlying complex membrane functions.
Collapse
Affiliation(s)
- Sudipta Gupta
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
21
|
Zhu L, Shi Y, Xiong Y, Ba L, Li Q, Qiu M, Zou Z, Peng G. Emerging self-assembling peptide nanomaterial for anti-cancer therapy. J Biomater Appl 2021; 36:882-901. [PMID: 34180306 DOI: 10.1177/08853282211027882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently it is mainly focused on anti-tumor comprehensive treatments like finding target tumor cells or activating immune cells to inhibit tumor recurrence and metastasis. At present, chemotherapy and molecular-targeted drugs can inhibit tumor cell growth to a certain extent. However, multi-drug resistance and immune escape often make it difficult for new drugs to achieve expected effects. Peptide hydrogel nanoparticles is a new type of biological material with functional peptide chains as the core and self-assembling peptide (SAP) as the framework. It has a variety of significant biological functions, including effective local inflammation suppression and non-drug-resistant cell killing. Besides, it can induce immune activation more persistently in an adjuvant independent manner when compared with simple peptides. Thus, SAP nanomaterial has great potential in regulating cell physiological functions, drug delivery and sensitization, vaccine design and immunotherapy. Not only that, it is also a potential way to focus on some specific proteins and cells through peptides, which has already been examined in previous research. A full understanding of the function and application of SAP nanoparticles can provide a simple and practical strategy for the development of anti-tumor drugs and vaccine design, which contributes to the historical transition of peptide nanohydrogels from bench to bedside and brings as much survival benefits as possible to cancer patients.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ba
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Sharma V, Srinivasan H, Mukhopadhyay R, Sakai VG, Mitra S. Microscopic insights on the structural and dynamical aspects of Imidazolium-based surface active ionic liquid micelles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Melittin exerts opposing effects on short- and long-range dynamics in bicontinuous microemulsions. J Colloid Interface Sci 2021; 590:94-102. [PMID: 33524724 DOI: 10.1016/j.jcis.2021.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 01/10/2021] [Indexed: 11/24/2022]
Abstract
Bicontinuous microemulsions (BμEs) are a promising biomembrane mimetic system for investigating the behavior of antimicrobial peptides (AMPs) and their delivery to open wounds to combat antibiotic-resistant microorganisms. The properties of the BμE host are in turn affected by the guest AMP and can deviate from those of the unperturbed BμEs, especially at higher AMP concentrations. Here we report the effect of an archetypal AMP, melittin, over a wide range of concentrations, on the nanoscopic dynamics of BμEs formed by water/sodium dodecyl sulfate (SDS)/1-pentanol/dodecane, investigated using quasi-elastic neutron scattering (QENS). Two distinct motions are observed, namely, (i) the lateral motion of the surfactant on the surface of the oil channels and (ii) the internal motion of the surfactants. It is found that melittin restricts both the lateral and the internal motion, thereby acting as a stiffening agent. The lateral motion is more strongly affected, at low concentration of melittin. The lateral diffusion coefficient decreased sharply, approaching a constant value at higher melittin concentration. These results are in sharp contrast with the recent dynamic light scattering and neutron spin echo results which showed that at the length and time scales longer than those probed in the current work, melittin enhanced the long-range collective and local undulation motions of BμEs. Considered together, our results indicate that incorporation of melittin modulates the dynamics differently depending on the spatial and temporal regimes, in which the dynamics are being probed. The addition of melittin at low concentrations increased the magnitude of the zeta potential, but further increase of the melittin concentration decreased it. This suggests that addition of melittin at low concentrations led to increase in the surfactant concentration, but did not affect the negative charge per surfactant molecule, while further addition of melittin led to ion pairing of melittin with the oppositely charged surfactant. This study therefore demonstrates how the addition of melittin hinders the lateral motion of surfactants as a result of the strong association between melittin and SDS, suggesting that the release of AMPs from BμE-based delivery vehicles may be hindered.
Collapse
|
24
|
Discerning perturbed assembly of lipids in a model membrane in presence of violacein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183647. [PMID: 33989532 DOI: 10.1016/j.bbamem.2021.183647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Violacein is a naturally found pigment that is used by some gram negative bacteria to defend themselves from various gram positive bacteria. As a result, this molecule has caught attention for its potential biomedical applications and has already shown promising outcomes as an antiviral, an antibacterial, and an anti-tumor agent. Understanding the interaction of this molecule with a cellular membrane is an essential step to extend its use in the pharmaceutical paradigm. Here, the interaction of violacein with a lipid monolayer formed at the air-water interface is found to depend on electrostatic nature of lipids. In presence of violacein, the two dimensional (2D) pressure-area isotherms of lipids have exhibited changes in their phase transition pressure and in-plane elasticity. To gain insights into the out-of-plane structural organization of lipids in a membrane, X-ray reflectivity (XRR) study on a solid supported lipid monolayer on a hydrophilic substrate has been performed. It has revealed that the increase in membrane thickness is more pronounced in the zwitterionic and positively charged lipids compared to the negatively charged one. Further, the lipid molecules are observed to decrease their tilt angle made with the normal of lipid membrane along with an alteration in their in-plane ordering. This has been quantified by grazing incidence X-ray diffraction (GIXD) experiments on the multilayer membrane formed in an environment with controlled humidity. The structural reorganization of lipid molecules in presence of violacein can be utilized to provide a detailed mechanism of the interaction of this molecule with cellular membrane.
Collapse
|
25
|
Birdsall ER, Petti MK, Saraswat V, Ostrander JS, Arnold MS, Zanni MT. Structure Changes of a Membrane Polypeptide under an Applied Voltage Observed with Surface-Enhanced 2D IR Spectroscopy. J Phys Chem Lett 2021; 12:1786-1792. [PMID: 33576633 PMCID: PMC8162810 DOI: 10.1021/acs.jpclett.0c03706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The structures of many membrane-bound proteins and polypeptides depend on the membrane potential. However, spectroscopically studying their structures under an applied field is challenging, because a potential is difficult to generate across more than a few bilayers. We study the voltage-dependent structures of the membrane-bound polypeptide, alamethicin, using a spectroelectrochemical cell coated with a rough, gold film to create surface plasmons. The plasmons sufficiently enhance the 2D IR signal to measure a single bilayer. The film is also thick enough to conduct current and thereby apply a potential. The 2D IR spectra resolve features from both 310- and α-helical structures and cross-peaks connecting the two. We observe changes in the peak intensity, not their frequencies, upon applying a voltage. A similar change occurs with pH, which is known to alter the angle of alamethicin relative to the surface normal. The spectra are modeled using a vibrational exciton Hamiltonian, and the voltage-dependent spectra are consistent with a change in angle of the 310- and α-helices in the membrane from 55 to 44°and from 31 to 60°, respectively. The 310- and α-helices are coupled by approximately 10 cm-1. These experiments provide new structural information about alamethicin under a potential difference and demonstrate a technique that might be applied to voltage-gated membrane proteins and compared to molecular dynamics structures.
Collapse
Affiliation(s)
- Erin R Birdsall
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Vivek Saraswat
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Indiana Wesleyan University, Marion, Indiana 46953, United States
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Qian S, Sharma VK, Clifton LA. Understanding the Structure and Dynamics of Complex Biomembrane Interactions by Neutron Scattering Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15189-15211. [PMID: 33300335 DOI: 10.1021/acs.langmuir.0c02516] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The membrane is one of the key structural materials of biology at the cellular level. Composed predominantly of a bilayer of lipids with embedded and bound proteins, it defines the boundaries of the cell and many organelles essential to life and therefore is involved in almost all biological processes. Membrane-specific interactions, such as drug binding to a membrane receptor or the interactions of an antimicrobial compound with the lipid matrix of a pathogen membrane, are of interest across the scientific disciplines. Herein we present a review, aimed at nonexperts, of the major neutron scattering techniques used in membrane studies: small-angle neutron scattering, neutron membrane diffraction, neutron reflectometry, quasielastic neutron scattering, and neutron spin echo. Neutron scattering techniques are well suited to studying biological membranes. The nondestructive nature of cold neutrons means that samples can be measured for long periods without fear of beam damage from ultraviolet, electron, or X-ray radiation, and neutron beams are highly penetrating, thus offering flexibility in samples and sample environments. Most important is the strong difference in neutron scattering lengths between the two most abundant forms of hydrogen, protium and deuterium. Changing the relative amounts of protium/deuterium in a sample allows the production of a series of neutron scattering data sets, enabling the observation of differing components within complex membrane architectures. This approach can be as simple as using the naturally occurring neutron contrast between different biomolecules to study components in a complex by changing the solution H2O/D2O ratio or as complex as selectively labeling individual components with hydrogen isotopes. This review presents an overview of each experimental technique with the neutron instrument configuration, related sample preparation and sample environment, and data analysis, highlighted by a special emphasis on using prominent neutron contrast to understand structure and dynamics. This review gives researchers a practical introduction to the often enigmatic suite of neutron beamlines, thereby lowering the barrier to taking advantage of these large-facility techniques to achieve new understandings of membranes and their interactions with other molecules.
Collapse
Affiliation(s)
- Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Luke A Clifton
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, U.K. OX11 0QX
| |
Collapse
|
27
|
Sharma VK, Ghosh SK, García Sakai V, Mukhopadhyay R. Enhanced Microscopic Dynamics of a Liver Lipid Membrane in the Presence of an Ionic Liquid. Front Chem 2020; 8:577508. [PMID: 33330366 PMCID: PMC7710540 DOI: 10.3389/fchem.2020.577508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Ionic liquids (ILs) are an important class of emerging compounds, owing to their widespread industrial applications in high-performance lubricants for food and cellulose processing, despite their toxicity to living organisms. It is believed that this toxicity is related to their actions on the cellular membrane. Hence, it is vital to understand the interaction of ILs with cell membranes. Here, we report on the effects of an imidazolium-based IL, 1-decyl-3-methylimidazolium tetrafluoroborate (DMIM[BF4]), on the microscopic dynamics of a membrane formed by liver extract lipid, using quasielastic neutron scattering (QENS). The presence of significant quasielastic broadening indicates that stochastic molecular motions of the lipids are active in the system. Two distinct molecular motions, (i) lateral motion of the lipid within the membrane leaflet and (ii) localized internal motions of the lipid, are found to contribute to the QENS broadening. While the lateral motion could be described assuming continuous diffusion, the internal motion is explained on the basis of localized translational diffusion. Incorporation of the IL into the liver lipid membrane is found to enhance the membrane dynamics by accelerating both lateral and internal motions of the lipids. This indicates that the IL induces disorder in the membrane and enhances the fluidity of lipids. This could be explained on the basis of its location in the lipid membrane. Results are compared with various other additives and we provide an indication of a possible correlation between the effects of guest molecules on the dynamics of the membrane and its location within the membrane.
Collapse
Affiliation(s)
- Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Victoria García Sakai
- Rutherford Appleton Laboratory, ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| | - R Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
28
|
Ebersberger L, Schindler T, Kirsch SA, Pluhackova K, Schambony A, Seydel T, Böckmann RA, Unruh T. Lipid Dynamics in Membranes Slowed Down by Transmembrane Proteins. Front Cell Dev Biol 2020; 8:579388. [PMID: 33195218 PMCID: PMC7649217 DOI: 10.3389/fcell.2020.579388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Lipids and proteins, as essential components of biological cell membranes, exhibit a significant degree of freedom for different kinds of motions including lateral long-range mobility. Due to their interactions, they not only preserve the cellular membrane but also contribute to many important cellular functions as e.g., signal transport or molecular exchange of the cell with its surrounding. Many of these processes take place on a short time (up to some nanoseconds) and length scale (up to some nanometers) which is perfectly accessible by quasielastic neutron scattering (QENS) experiments and molecular dynamics (MD) simulations. In order to probe the influence of a peptide, a transmembrane sequence of the transferrin receptor (TFRC) protein, on the dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) large unilamellar vesicles (LUVs) on a nanosecond time scale, high-resolution QENS experiments and complementary MD simulations have been utilized. By using different scattering contrasts in the experiment (chain-deuterated lipids and protonated lipids, respectively), a model could be developed which allows to examine the lipid and peptide dynamics separately. The experimental results revealed a restricted lipid lateral mobility in the presence of the TFRC transmembrane peptides. Also the apparent self-diffusion coefficient of the lateral movement of the peptide molecules could be determined quantitatively for the probed short-time regime. The findings could be confirmed very precisely by MD simulations. Furthermore, the article presents an estimation for the radius of influence of the peptides on the lipid long-range dynamics which could be determined by consistently combining results from experiment and simulation.
Collapse
Affiliation(s)
- Lisa Ebersberger
- Physics Department, Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Torben Schindler
- Physics Department, Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sonja A Kirsch
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Schambony
- Department Biology, Chair of Developmental Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tilo Seydel
- Science Division, Institut Laue-Langevin, Grenoble, France
| | - Rainer A Böckmann
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Unruh
- Physics Department, Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Physics Department, Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Paternò GM, Bondelli G, Sakai VG, Sesti V, Bertarelli C, Lanzani G. The Effect of an Intramembrane Light-Actuator on the Dynamics of Phospholipids in Model Membranes and Intact Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11517-11527. [PMID: 32903010 DOI: 10.1021/acs.langmuir.0c01846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The noncovalent intercalation of amphiphilic molecules in the lipid membrane can be exploited to modulate efficiently the physical status of the membrane. Such effects are largely employed in a range of applications, spanning from drug-delivery to therapeutics. In this context, we have very recently developed an intramembrane photo-actuator consisting of an amphiphilic azobenzene molecule, namely ZIAPIN2. The selective photo-isomerization occurring in the lipid bilayer induces a photo-triggered change in the membrane thickness and capacitance, eventually permitting to evoke light-induced neuronal firing both in vitro and in vivo. Here, we present a study on the dynamical perturbation in the lipid membrane caused by ZIAPIN2 and its vehicle solvent, dimethyl sulfoxide. Effects on the dynamics occurring in the picosecond time range and at the molecular level are probed using quasi-elastic neutron scattering. By coupling experiments carried out both on model membranes and intact cells, we found that DMSO leads to a general retardation of the dynamics within a more dynamically ordered landscape, a result that we attribute to the dehydration at the interface. On the other hand, ZIAPIN2 partitioning produces a general softening of the bilayer owing to its interaction with the lipids. These data are in agreement with our recent studies, which indicate that the efficacy of ZIAPIN2 in triggering cellular signalling stems from its ability to mechanically perturb the bilayer as a whole, by forming light-sensitive membrane spanning dimers.
Collapse
Affiliation(s)
- Giuseppe M Paternò
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 10, 20133 Milano, Italy
| | - Gaia Bondelli
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 10, 20133 Milano, Italy
| | - Victoria Garcia Sakai
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, U.K
| | - Valentina Sesti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ″Giulio Natta″, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Chiara Bertarelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ″Giulio Natta″, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 10, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
30
|
Sharma VK, Srinivasan H, García Sakai V, Mitra S. Dioctadecyldimethylammonium bromide, a surfactant model for the cell membrane: Importance of microscopic dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:051301. [PMID: 32984433 PMCID: PMC7511241 DOI: 10.1063/4.0000030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 05/11/2023]
Abstract
Cationic lipid membranes have recently attracted huge attention both from a fundamental point of view and due to their practical applications in drug delivery and gene therapy. The dynamical behavior of the lipids in the membrane is a key parameter controlling various physiological processes and drug release kinetics. Here, we review the dynamical and thermotropic phase behavior of an archetypal cationic lipid membrane, dioctadecyldimethylammonium bromide (DODAB), as studied using neutron scattering and molecular dynamics simulation techniques. DODAB membranes exhibit interesting phase behavior, specifically showing coagel, gel, and fluid phases in addition to a large hysteresis when comparing heating and cooling cycles. The dynamics of the lipid membrane is strongly dependent on the physical state of the bilayer. Lateral diffusion of the lipids is faster, by an order of magnitude, in the fluid phase than in the ordered phase. It is not only the characteristic times but also the nature of the segmental motions that differ between the ordered and fluid phases. The effect of different membrane active molecules including drugs, stimulants, gemini surfactants, and unsaturated lipids, on the dynamical and thermotropic phase behavior of the DODAB membrane, is also discussed here. Various interesting features such as induced synchronous ordering between polar head groups and tails, sub diffusive behavior, etc., are observed. The results shed light on the interaction between these additives and the membrane, which is found to be a complex interplay between the physical state of the membrane, charge, concentration, molecular architecture of the additives, and their location within the membrane.
Collapse
Affiliation(s)
- V. K. Sharma
- Author to whom correspondence should be addressed: and . Phone: +91-22-25594604
| | | | - V. García Sakai
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | |
Collapse
|
31
|
Deng Z, Lu X, Xu C, Yuan B, Yang K. Lipid-specific interactions determine the organization and dynamics of membrane-active peptide melittin. SOFT MATTER 2020; 16:3498-3504. [PMID: 32215386 DOI: 10.1039/d0sm00046a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cell membranes of different cells deviate significantly in lipid compositions and thus provide varying biological environments to modulate the diffusion, organization and the resultant function of biomacromolecules. However, the detailed modulation mechanism remains elusive especially in consideration of the current overuse of the simplified membrane models such as the pure phosphatidylcholine (PC) membrane. In this work, with the typical membrane-active peptide melittin, we demonstrated that a more complicated membrane environment, such as the bacterial (IME) or plasma membrane (PM), would significantly change the organization and dynamics of melittin, by using molecular dynamics simulations as a "computational microscope". It was found that in these membrane systems, adding melittin would cause a varying degree of reduction in the lateral diffusion of lipids due to the different assembly states of peptides. Melittin tended to aggregate to oligomers in the pure PC membrane, mostly as a tetramer or trimer, while in IME or PM, its degree of oligomerization was significantly reduced. More surprisingly, melittin displayed a strong affinity with ganglioside GM3 in PM, leading to the formation of melittin-GM3 nanoclusters, which hindered its diffusion and further oligomerization. Additionally, small changes in the residue sequence of melittin could modulate the degree or structure of the peptide oligomer. Our work provides a typical example of a study on the organization and dynamics of pore-forming peptides in specific membrane environments and has great significance on the optimization of peptide sequences and the design of helix bundles in the membrane for target biological function.
Collapse
Affiliation(s)
- Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Xuemei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China. and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China. and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
32
|
Peng Y, Li L, Yuan Q, Gu P, You Z, Zhuang A, Bi X. Effect of Bifunctional β Defensin 2-Modified Scaffold on Bone Defect Reconstruction. ACS OMEGA 2020; 5:4302-4312. [PMID: 32149260 PMCID: PMC7057706 DOI: 10.1021/acsomega.9b04249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/07/2020] [Indexed: 05/05/2023]
Abstract
Bone tissue engineering has emerged as an effective alternative treatment to the problem of bone defect. To repair a bone defect, antibiosis and osteogenesis are two essential aspects of the repair process. By searching the literature and performing exploratory experiments, we found that β defensin 2 (BD2), with bifunctional properties of antibiosis and osteogenesis, was a feasible alternative for traditional growth factors. The antimicrobial ability of BD2 against Staphylococcus aureus and Escherichia coli was studied by the spread plate and live/dead staining methods (low effective concentration of 20 ng/mL). BD2 was also demonstrated to enhance osteogenesis, with higher messenger RNA (mRNA) and protein expression of the osteogenic markers collagen I (Col1), runt-related transcription factor 2 (Runx2), osteopontin (Opn), and osteocalcin (Ocn) in vitro (1.5-2.5-fold increase compared with the control group in the most effective concentration group), which was consistent with the alkaline phosphatase (ALP) and alizarin red S (ARS) staining results. We implanted poly(sebacoyl diglyceride) (PSeD) combined with BD2 and rat bone tissue-derived mesenchymal stem cells (rBMSCs) under the back skin of rats and found that the inflammatory response was significantly lower with this combination than with the PSeD/rBMSCs scaffold without BD2 and the pure PSeD group and was similar to the control group. Importantly, when assessed in a critical-sized in vivo rat 8 m diameter calvaria defect model, a scaffold we developed combining bifunctional BD2 with porous organic polymer displayed an osteogenic effect that was 160-200% greater than the control group. The in vivo study results revealed a significant osteogenic response and antimicrobial effect and were consistent with the in vitro results. In summary, BD2 displayed a great potential of simultaneously promoting bone regeneration and preventing infection and could provide a viable alternative to traditional growth factors applied in bone defect repair.
Collapse
Affiliation(s)
- Yiyu Peng
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Lunhao Li
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Qingyue Yuan
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Ping Gu
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of
Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint
Laboratory of Advanced Fiber and Low-dimension Materials (Donghua
University), College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
- E-mail: . Tel: 18930843344. Fax: +8621-63134218 (A.Z.)
| | - Xiaoping Bi
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
- E-mail: . Tel: +8621-63135606. Fax: +8621-63134218 (X.B.)
| |
Collapse
|
33
|
Xie CZ, Chang SM, Mamontov E, Stingaciu LR, Chen YF. Uncoupling between the lipid membrane dynamics of differing hierarchical levels. Phys Rev E 2020; 101:012416. [PMID: 32069643 DOI: 10.1103/physreve.101.012416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 11/07/2022]
Abstract
Diverse biological functions of biomembranes are made possible by their rich dynamic behaviors across multiple scales. While the potential coupling between the dynamics of differing scales may underlie the machineries regulating the biomembrane-involving processes, the mechanism and even the existence of this coupling remain an open question, despite the latter being taken for granted. Via inelastic neutron scattering, we examined dynamics across multiple scales for the lipid membranes whose dynamic behaviors were perturbed by configurational changes at two membrane regions. Surprisingly, the dynamic behavior of individual lipid molecules and their collective motions were not always coupled. This suggests that the expected causal relation between the dynamics of the differing hierarchical levels does not exist and that an apparent coupling can emerge by manipulating certain membrane configurations. The findings provide insight on biomembrane modeling and how cells might individually or concertedly control the multiscale membrane dynamics to regulate their functions.
Collapse
Affiliation(s)
- Cheng-Zhi Xie
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shih-Min Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Laura R Stingaciu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yi-Fan Chen
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
34
|
Bakshi K, Mitra S, Sharma VK, Jayadev MSK, Sakai VG, Mukhopadhyay R, Gupta A, Ghosh SK. Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183103. [DOI: 10.1016/j.bbamem.2019.183103] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
|
35
|
Sharma V, Mamontov E, Tyagi M. Effects of NSAIDs on the nanoscopic dynamics of lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183100. [DOI: 10.1016/j.bbamem.2019.183100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/16/2019] [Accepted: 09/19/2019] [Indexed: 01/30/2023]
|
36
|
Bhatt Mitra J, Sharma VK, Mukherjee A, Garcia Sakai V, Dash A, Kumar M. Ubiquicidin-Derived Peptides Selectively Interact with the Anionic Phospholipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:397-408. [PMID: 31793791 DOI: 10.1021/acs.langmuir.9b03243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ubiquicidin (UBI)/ribosomal protein S30 (RS30) is an intracellular protein with antimicrobial activities against various pathogens. UBI (29-41) and UBI (31-38) are two crucial peptides derived from Ubiquicidin, which have shown potential as infection imaging probes. Here, we report the interactions of UBI-derived peptides with anionic and zwitterionic phospholipid membranes. Our isothermal titration calorimetry results show that both peptides selectively interact with the anionic phospholipid membrane (a model bacterial membrane) and reside mainly on the membrane surface. The interaction of UBI-derived peptides with the anionic phospholipid membrane is exothermic and driven by both enthalpy (ΔH) and entropy (ΔS), with the entropic term TΔS being greater than ΔH. This large entropic term can be a result of the aggregation of the anionic vesicles, which is confirmed by dynamic light scattering (DLS) measurements. DLS data show that vesicle aggregation is enhanced with increasing peptide-to-lipid molar ratios (P/L) and is found to be more pronounced in the case of UBI (29-41). DLS results are found to be consistent with independent transmission measurements. To study the effects of UBI-derived peptides on the microscopic dynamics of the model bacterial membrane, quasielastic neutron scattering (QENS) measurements have been carried out. The QENS results show that both peptides restrict the lateral motion of the lipid within the leaflet. UBI (29-41) acts as a stronger stiffening agent, hindering the lateral diffusion of lipids more efficiently than UBI (31-38). To our knowledge, this is the first report illustrating the mechanism of interaction of UBI-derived peptides with model membranes. This study also has implications for the improvement and design of antimicrobial peptide-based infection imaging probes.
Collapse
Affiliation(s)
| | | | - Archana Mukherjee
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - V Garcia Sakai
- ISIS Facility, Science and Technology Facilities Council , Rutherford Appleton Laboratory , Didcot OX11 0QX , U.K
| | - Ashutosh Dash
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - Mukesh Kumar
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| |
Collapse
|
37
|
Mitra S, Das R, Singh A, Mukhopadhyay MK, Roy G, Ghosh SK. Surface Activities of a Lipid Analogue Room-Temperature Ionic Liquid and Its Effects on Phospholipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:328-339. [PMID: 31826620 DOI: 10.1021/acs.langmuir.9b02716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There are great efforts of synthesizing imidazolium-based ionic liquids (ILs) for developing new antibiotics as these molecules have shown strong antibacterial activities. Compared to a single-hydrocarbon-chained IL, the lipid analogues (LAs) with two chains are more effective. In the present study, the LA molecule MeIm(COOH)Me(Oleylamine)Iodide has been synthesized and its surface activities along with the effectiveness in restructuring of a model cellular membrane have been quantified. The molecule is found to be highly surface active as estimated from the area-pressure isotherm of a monolayer of the molecules formed at the air-water interface. The X-ray reflectivity (XRR) studies of a monolayer dip-coated on a hydrophilic substrate have shown the structural properties of the layer which resembles to those of unsaturated phospholipids. The LA molecules are observed to fluidize a phospholipid bilayer formed by the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). At a lower surface pressure, the lipid monolayer of DPPC has exhibited a thickening effect at a low concentration of added LA and a thinning effect at higher concentration. However, at a high surface pressure of the monolayer, the thickness is found to decrease monotonically. The in-plane pressure-dependent interaction of LA molecules with model cellular membrane and the corresponding perturbation in the structure and physical properties of the membrane may be linked to the strong lysing effect of these types of molecules.
Collapse
Affiliation(s)
| | | | - A Singh
- Surface Physics and Material Science Division , Saha Institute of Nuclear Physics , AF Block, Bidhannagar , Kolkata 700064 , India
| | - M K Mukhopadhyay
- Surface Physics and Material Science Division , Saha Institute of Nuclear Physics , AF Block, Bidhannagar , Kolkata 700064 , India
| | | | | |
Collapse
|
38
|
Sharma VK, Mitra S, Mukhopadhyay R. Dynamic Landscape in Self-Assembled Surfactant Aggregates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14151-14172. [PMID: 30730752 DOI: 10.1021/acs.langmuir.8b03596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A process in which a disordered system of pre-existing molecules generates an organized structure through specific, local interactions among the molecules themselves is termed molecular self-assembly. Micelles, microemulsions, and vesicles are examples of such self-assembled systems where amphiphilic molecules are involved. As the functional properties of these systems (such as wetting and emulsification, release of solubilized drugs, etc.) are dictated by the dynamic behavior of the surfactants at the molecular level, it is of immense interest to investigate these systems for the same. The dynamics in soft matter systems is quite complex, involving different time and length scales. We used a combination of neutron scattering and molecular dynamics simulation studies in probing the dynamic landscape in various self-assembled surfactant aggregates. Neutron scattering experiments were carried out using several spectrometers covering a wide dynamic range to probe motions on different time scales. The interaction between the surfactants can be varied by changing the molecular architecture, counterion concentration, temperature, and so forth. It is important to study the effect of these parameters on the dynamics of surfactants in these aggregates. We have carried out experiments on various ionic (anionic as well as cationic) micelles with varied counterion concentrations, vesicles, and lipid bilayers to unravel the complex dynamic features present in these systems. In this feature article, we will discuss some important results of our recent work on dynamics in these self-assembled surfactant aggregates.
Collapse
Affiliation(s)
| | - Subhankur Mitra
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| | - Ramaprosad Mukhopadhyay
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| |
Collapse
|
39
|
Sharma VK, Nagao M, Rai DK, Mamontov E. Membrane softening by nonsteroidal anti-inflammatory drugs investigated by neutron spin echo. Phys Chem Chem Phys 2019; 21:20211-20218. [PMID: 31486459 DOI: 10.1039/c9cp03767e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In spite of their well-known side effects, the nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most commonly prescribed medications for their antipyretic and anti-inflammatory actions. Interaction of NSAIDs with the plasma membrane plays a vital role in their therapeutic actions and defines many of their side effects. In the present study, we investigate the effects of three NSAIDs, aspirin, ibuprofen, and indomethacin, on the structure and dynamics of a model plasma membrane using a combination of small angle neutron scattering (SANS) and neutron spin echo (NSE) techniques. The SANS and NSE measurements were carried out on a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane, with and without NSAIDs, at two different temperatures, 11 °C and 37 °C, where the DMPC membrane is in the gel and fluid phase, respectively. SANS data analysis shows that incorporation of NSAIDs leads to bilayer thinning of the membrane in both the phases. The dynamic properties of the membrane are represented by the intermediate scattering functions for NSE data, which are successfully described by the Zilman and Granek model. NSE data analysis shows that in both gel and fluid phases, addition of NSAIDs results in a decrease in the bending rigidity and compressibility modulus of the membrane, which is more prominent when the membrane is in the gel phase. The magnitude of the effect of NSAIDs on the bending rigidity and compressibility modulus of the membrane in the gel phase follows an order of ibuprofen > aspirin > indomethacin, whereas in the fluid phase, it is in the order of aspirin > ibuprofen > indomethacin. We find that the interaction between NSAIDs and phospholipid membranes is strongly dependent on the chemical structure of the drugs and physical state of the membrane. Mechanical properties of the membrane can be quantified by the membrane's bending rigidity. Hence, the present study reveals that incorporation of NSAIDs modulates the mechanical properties of the membrane, which may affect several physiological processes, particularly those linked to the membrane curvature.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | | | | | | |
Collapse
|
40
|
Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores. Biophys J 2019; 114:2865-2874. [PMID: 29925023 DOI: 10.1016/j.bpj.2018.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 11/21/2022] Open
Abstract
Melittin is a short cationic peptide that exerts cytolytic effects on bacterial and eukaryotic cells. Experiments suggest that in zwitterionic membranes, melittin forms transmembrane toroidal pores supported by four to eight peptides. A recently constructed melittin variant with a reduced cationic charge, MelP5, is active at 10-fold lower concentrations. In previous work, we performed molecular dynamics simulations on the microsecond timescale to examine the supramolecular pore structure of a melittin tetramer in zwitterionic and partially anionic membranes. We now extend that study to include the effects of peptide charge, initial orientation, and number of monomers on the pore formation and stabilization processes. Our results show that parallel transmembrane orientations of melittin and MelP5 are more consistent with experimental data. Whereas a MelP5 parallel hexamer forms a large stable pore during the 5-μs simulation time, a melittin hexamer and an octamer are not fully stable, with several monomers dissociating during the simulation time. Interaction-energy analysis shows that this difference in behavior between melittin and MelP5 is not due to stronger electrostatic repulsion between neighboring melittin peptides but to peptide-lipid interactions that disfavor the isolated MelP5 transmembrane monomer. The ability of melittin monomers to diffuse freely in the 1,2-dimyristoyl-SN-glycero-3-phosphocholine membrane leads to dynamic pores with varying molecularity.
Collapse
|
41
|
|
42
|
Devanand T, Krishnaswamy S, Vemparala S. Interdigitation of Lipids Induced by Membrane–Active Proteins. J Membr Biol 2019; 252:331-342. [DOI: 10.1007/s00232-019-00072-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
|
43
|
Singh P, Sharma VK, Singha S, García Sakai V, Mukhopadhyay R, Das R, Pal SK. Unraveling the Role of Monoolein in Fluidity and Dynamical Response of a Mixed Cationic Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4682-4692. [PMID: 30807692 DOI: 10.1021/acs.langmuir.9b00043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The maintenance of cell membrane fluidity is of critical importance for various cellular functions. At lower temperatures when membrane fluidity decreases, plants and cyanobacteria react by introducing unsaturation in the lipids, so that the membranes return to a more fluidic state. To probe how introduction of unsaturation leads to reduced membrane fluidity, a model cationic lipid dioctadecyldimethylammonium bromide (DODAB) has been chosen, and the effects of an unsaturated lipid monoolein (MO) on the structural dynamics and phase behavior of DODAB have been monitored by quasielastic neutron scattering and time-resolved fluorescence measurements. In the coagel phase, fluidity of the lipid bilayer increases significantly in the presence of MO relative to pure DODAB vesicles and becomes manifest in significantly enhanced dynamics of the constituent lipids along with faster hydration and orientational relaxation dynamics of a fluorophore. On the contrary, MO restricts both lateral and internal motions of the lipid molecules in the fluid phase (>330 K), which is consistent with relatively slow hydration and orientational relaxation dynamics of the fluorophore embedded in the mixed lipid bilayer. The present study illustrates how incorporation of an unsaturated lipid at lower temperatures (below the phase transition) assists the model lipid (DODAB) in regulating fluidity via enhancement of dynamics of the constituent lipids.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemical, Biological & Macromolecular Sciences , S. N. Bose National Centre for Basic Sciences , Block JD, Sector III , Salt Lake, Kolkata 700106 , India
| | | | - Subhankar Singha
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Nam-Gu, Pohang , Gyungbuk 37673 , Republic of Korea
| | - Victoria García Sakai
- ISIS Pulsed Neutron and Muon Facility, Rutherford Appleton Laboratory , Science and Technology Facilities Council , Didcot OX11 0DE , U.K
| | | | - Ranjan Das
- Department of Chemistry , West Bengal State University , Barasat, Kolkata 700126 , India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences , S. N. Bose National Centre for Basic Sciences , Block JD, Sector III , Salt Lake, Kolkata 700106 , India
| |
Collapse
|
44
|
Sharma VK, Qian S. Effect of an Antimicrobial Peptide on Lateral Segregation of Lipids: A Structure and Dynamics Study by Neutron Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4152-4160. [PMID: 30720281 DOI: 10.1021/acs.langmuir.8b04158] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides are one of the most promising classes of antibiotic agents for drug-resistant bacteria. Although the mechanisms of their action are not fully understood, many of them are found to interact with the target bacterial membrane, causing different degrees of perturbations. In this work, we directly observed that a short peptide disturbs membranes by inducing lateral segregation of lipids without forming pores or destroying membranes. Aurein 1.2 (aurein) is a 13-amino acid antimicrobial peptide discovered in the frog Litoria genus that exhibits high antibiotic efficacy. Being cationic and amphiphilic, it binds spontaneously to a membrane surface with or without charged lipids. With a small-angle neutron scattering contrast matching technique that is sensitive to lateral heterogeneity in membrane, we found that aurein induces significant lateral segregation in an initially uniform lipid bilayer composed of zwitterionic lipid and anionic lipid. More intriguingly, the lateral segregation was similar to the domain formed below the order-disorder phase-transition temperature. To our knowledge, this is the first direct observation of lateral segregation caused by a peptide. With quasi-elastic neutron scattering, we indeed found that the lipid lateral motion in the fluid phase was reduced even at low aurein concentrations. The reduced lateral mobility makes the membrane prone to additional stresses and defects that change membrane properties and impede membrane-related biological processes. Our results provide insights into how a short peptide kills bacteria at low concentrations without forming pores or destroying membranes. With a better understanding of the interaction, more effective and economically antimicrobial peptides may be designed.
Collapse
Affiliation(s)
- Veerendra K Sharma
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - Shuo Qian
- Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| |
Collapse
|
45
|
Dubey PS, Sharma VK, Srinivasan H, Mitra S, Sakai VG, Mukhopadhyay R. Effects of NSAIDs on the Dynamics and Phase Behavior of DODAB Bilayers. J Phys Chem B 2018; 122:9962-9972. [PMID: 30351108 DOI: 10.1021/acs.jpcb.8b07093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite well-known side effects, nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most prescribed drugs worldwide for their anti-inflammatory and antipyretic properties. Here, we report the effects of two NSAIDs, aspirin and indomethacin, on the thermotropic phase behavior and the dynamics of a dioctadecyldimethylammonium bromide (DODAB) lipid bilayer as studied using neutron scattering techniques. Elastic fixed window scans showed that the addition of aspirin and indomethacin affects the phase behavior of a DODAB bilayer in both heating and cooling cycles. Upon heating, there is a change in the coagel- to fluid-phase transition temperature from 327 K for pure DODAB bilayer to 321 and 323 K in the presence of aspirin and indomethacin, respectively. More strikingly, upon cooling, the addition of NSAIDs suppresses the formation of the intermediate gel phase observed in pure DODAB. The suppression of the gel phase on addition of the NSAIDs evidences the synchronous ordering of a lipid headgroup and chain. Analysis of quasi-elastic neutron scattering data showed that only localized internal motion exists in the coagel phase, whereas both internal and lateral motions exist in the fluid phase. The internal motion is described by a fractional uniaxial rotational diffusion model in the coagel phase and by a localized translation diffusion model in the fluid phase. In the coagel phase, the rotational diffusion coefficient of DODAB is found to be almost twice for the addition of the drugs, whereas the mobility fraction did not change for indomethacin but becomes twice for aspirin. In the fluid phase, the lateral motion, described well by a continuous diffusion model, is found to be slower by about ∼30% for indomethacin but almost no change for aspirin. For the internal motion, addition of aspirin leads to enhancement of the internal motion, whereas indomethacin did not show significant effect. This study shows that the effect of different NSAIDs on the dynamics of the lipid membrane is not the same; hence, one must consider these NSAIDs individually while studying their action mechanism on the cell membrane.
Collapse
Affiliation(s)
- P S Dubey
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - V K Sharma
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - H Srinivasan
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - S Mitra
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - V García Sakai
- ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council , Rutherford Appleton Laboratory , Didcot OX11 0QX , U.K
| | - R Mukhopadhyay
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| |
Collapse
|
46
|
Nanda H, García Sakai V, Khodadadi S, Tyagi MS, Schwalbach EJ, Curtis JE. Relaxation dynamics of saturated and unsaturated oriented lipid bilayers. SOFT MATTER 2018; 14:6119-6127. [PMID: 29998268 PMCID: PMC6262841 DOI: 10.1039/c7sm01720k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present experimental measurements and analysis of the dynamics and the phase behaviour of saturated DMPC and unsaturated DOPC oriented multi-lamellar bilayers. Elastic and inelastic neutron scattering were used to directly probe the dynamical processes of these membrane systems on time and length scales relevant to the internal and localized motion of lipid monomers. Mobility in this regime can be informative in elucidating the local interactions responsible for material properties of these fluid lipid systems. DMPC and DOPC are structurally similar in terms of their membrane hydrophobic thickness; however, they exhibit different mechanical properties in terms of both elastic compressibility and bending moduli. The analyses suggest that the constraint imposed by the double bonds in DOPC acyl chains restricts atomic motion in both liquid and gel phases compared to DMPC. We discuss applications of molecular dynamics to further elucidate the atomic details of the dynamical processes. Such an understanding may suggest how membrane properties can be tuned using a variety of different lipid species.
Collapse
Affiliation(s)
- Hirsh Nanda
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Sharma VK, Mukhopadhyay R. Deciphering interactions of ionic liquids with biomembrane. Biophys Rev 2018; 10:721-734. [PMID: 29549587 DOI: 10.1007/s12551-018-0410-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/27/2018] [Indexed: 12/24/2022] Open
Abstract
Ionic liquids (ILs) are a special class of low-temperature (typically < 100 °C) molten salts, which have huge upsurge interest in the field of chemical synthesis, catalysis, electrochemistry, pharmacology, and biotechnology, mainly due to their highly tunable nature and exceptional properties. However, practical uses of ILs are restricted mainly due to their adverse actions on organisms. Understanding interactions of ILs with biomembrane is prerequisite to assimilate the actions of these ionic compounds on the organism. Here, we review different biophysical methods to characterize interactions between ILs and phospholipid membrane, a model biomembrane. All these studies indicate that ILs interact profoundly with the lipid bilayer and modulate the structure, microscopic dynamics, and phase behavior of the membrane, which could be the fundamental cause of the observed toxicity of ILs. Effects of ILs on the membrane are found to be strongly dependent on the lipophilicity of the IL and are found to increase with the alkyl chain length of IL. This can be correlated with the observed higher toxicity of IL with the longer alkyl chain length. These informations would be useful to tune the toxicity of IL which is required in designing environment-friendly nontoxic solvents of the so-called green chemistry for various practical applications.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - R Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
48
|
Abstract
Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1 K.
Collapse
|
49
|
Dynamical Transitions and Diffusion Mechanism in DODAB Bilayer. Sci Rep 2018; 8:1862. [PMID: 29382881 PMCID: PMC5789887 DOI: 10.1038/s41598-018-19899-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
Dioctadecyldimethylammonium bromide (DODAB), a potential candidate for applications in drug transport or DNA transfection, forms bilayer in aqueous media exhibiting a rich phase behavior. Here, we report the detailed dynamical features of DODAB bilayer in their different phases (coagel, gel and fluid) as studied by neutron scattering techniques. Elastic intensity scans show dynamical transitions at 327 K in the heating and at 311 K and 299 K during cooling cycle. These results are consistent with calorimetric studies, identified as coagel-fluid phase transition during heating, and fluid-gel and gel-coagel phase transitions during cooling. Quasielastic Neutron Scattering (QENS) data analysis showed presence of only localized internal motion in the coagel phase. However, in the gel and fluid phases, two distinct motions appear, namely lateral motion of the DODAB monomers and a faster localized internal motion of the monomers. The lateral motion of the DODAB molecule is described by a continuous diffusion model and is found to be about an order of magnitude slower in the gel phase than in the fluid phase. To gain molecular insights, molecular dynamics simulations of DODAB bilayer have also been carried out and the results are found to be in agreement with the experiment.
Collapse
|
50
|
Sharma VK, Ghosh SK, Mandal P, Yamada T, Shibata K, Mitra S, Mukhopadhyay R. Effects of ionic liquids on the nanoscopic dynamics and phase behaviour of a phosphatidylcholine membrane. SOFT MATTER 2017; 13:8969-8979. [PMID: 29152634 DOI: 10.1039/c7sm01799e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ionic liquids (ILs) are potential candidates for new antimicrobials due to their tunable antibacterial and antifungal properties that are required to keep pace with the growing challenge of bacterial resistance. To a great extent their antimicrobial actions are related to the interactions of ILs with cell membranes. Here, we report the effects of ILs on the nanoscopic dynamics and phase behaviour of a dimyristoylphosphatidylcholine (DMPC) membrane, a model cell membrane, as studied using neutron scattering techniques. Two prototypical imidazolium-based ILs 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM[BF4]) and 1-decyl-3-methylimidazolium tetrafluoroborate (DMIM[BF4]), which differ only in terms of the alkyl chain length of cations, have been used for the present study. Fixed Elastic Window Scan (FEWS) shows that the incorporation of ILs affects the phase behaviour of the phospholipid membrane significantly and the transition from a solid gel to a fluid phase shifts to lower temperature. This is found to be consistent with our differential scanning calorimetry measurements. DMIM[BF4], which has a longer alkyl chain cation, affects the phase behaviour more strongly in comparison to BMIM[BF4]. The pressure-area isotherms of the DMPC monolayer measured at the air-water interface show that in the presence of ILs, isotherms shift towards higher area-per lipid molecule. DMIM[BF4] is found to shift the isotherm to a greater extent compared to BMIM[BF4]. Quasielastic neutron scattering (QENS) data show that both ILs act as a plasticizer, which enhances the fluidity of the membrane. DMIM[BF4] is found to be a stronger plasticizing agent in comparison to BMIM[BF4] that has a cation with a shorter alkyl chain. The incorporation of DMIM[BF4] enhances not only the long range lateral motion but also the localised internal motion of the lipids. On the other hand, BMIM[BF4] acts weakly in comparison to DMIM[BF4] and mainly alters the localised internal motion of the lipids. Any subtle change in the dynamical properties of the membrane can profoundly affect the stability of the cell. Hence, the dominant effect of the IL with the longer chain length on the dynamics of the phospholipid membrane might be correlated with its cytotoxic activity. QENS data analysis has provided a quantitative description of the effects of the two imidazolium-based ILs on the dynamical and phase behaviour of the model cell membrane, which is essential for a detailed understanding of their action mechanism.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | | | | | |
Collapse
|