1
|
Kim Y, Sim M, Lee M, Kim S, Song S, Burke K, Sim E. Extending Density-Corrected Density Functional Theory to Large Molecular Systems. J Phys Chem Lett 2025; 16:939-947. [PMID: 39835411 DOI: 10.1021/acs.jpclett.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Practical density-corrected density functional theory (DC-DFT) calculations rely on Hartree-Fock (HF) densities, which can be computationally expensive for systems with over a hundred atoms. We extend the applicability of HF-DFT using the dual-basis method, where the density matrix from a smaller basis set is used to estimate the HF solution on a larger basis set. Benchmarks on many systems, including the GMTKN55 database for main-group chemistry, and the L7 and S6L data sets for large molecular systems demonstrate the efficacy of our approach. We apply the dual-basis method to both DNA and HIV systems and compare with the literature. The details of a recent reparameterization of HF-r2SCAN-DC4 are explained, showing no loss of performance.
Collapse
Affiliation(s)
- Youngsam Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Mingyu Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Minhyeok Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Sehun Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
2
|
Feng R, Zhang IY, Xu X. A cross-entropy corrected hybrid multiconfiguration pair-density functional theory for complex molecular systems. Nat Commun 2025; 16:235. [PMID: 39747131 PMCID: PMC11695591 DOI: 10.1038/s41467-024-55524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Hybrid density functionals, such as B3LYP and PBE0, have achieved remarkable success by substantially improving over their parent methods, namely Hartree-Fock and the generalized gradient approximation, and generally outperforming the second-order Møller-Plesset perturbation theory (MP2) that is more expensive. Here, we extend the linear scheme of hybrid multiconfiguration pair-density functional theory (HMC-PDFT) by incorporating a cross-entropy ingredient to balance the description of static and dynamic correlation effects, leading to a consistent improvement on both exchange and correlation energies. The B3LYP-like translated on-top functional (tB4LYP) developed along this line not only surpasses the accuracy of its parent methods, the complete active space self-consistent field (CASSCF) and the original MC-PDFT functionals (tBLYP and tB3LYP), but also outperforms the widely used complete active space second-order perturbation theory (CASPT2). Remarkably, while remaining satisfactory for general purpose, tB4LYP shows superior accuracy for challenging cases like the Cr2 dissociation and the associated low-lying vibrational energies, the ethylene torsional rotation and the ethyne diabatic colinear dissociations, with the significantly lower computational cost than CASPT2.
Collapse
Affiliation(s)
- Rulin Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
| |
Collapse
|
3
|
Lee M, Kim B, Sim M, Sogal M, Kim Y, Yu H, Burke K, Sim E. Correcting Dispersion Corrections with Density-Corrected DFT. J Chem Theory Comput 2024. [PMID: 39120872 DOI: 10.1021/acs.jctc.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Almost all empirical parametrizations of dispersion corrections in DFT use only energy errors, thereby mixing functional and density-driven errors. We introduce density and dispersion-corrected DFT (D2C-DFT), a dual-calibration approach that accounts for density delocalization errors when parametrizing dispersion interactions. We simply exclude density-sensitive reactions from the training data. We find a significant reduction in both errors and variation among several semilocal functionals and their global hybrids when tailored dispersion corrections are employed with Hartree-Fock densities.
Collapse
Affiliation(s)
- Minhyeok Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Byeongjae Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Mingyu Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Mihira Sogal
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Youngsam Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Hayoung Yu
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
4
|
Panchagnula K, Graf D, Johnson ER, Thom AJW. Targeting spectroscopic accuracy for dispersion bound systems from ab initio techniques: Translational eigenstates of Ne@C70. J Chem Phys 2024; 161:054308. [PMID: 39092939 DOI: 10.1063/5.0223298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
We investigate the endofullerene system Ne@C70 by constructing a three-dimensional Potential Energy Surface (PES) describing the translational motion of the Ne atom. This is constructed from electronic structure calculations from a plethora of methods, including MP2, SCS-MP2, SOS-MP2, RPA@PBE, and C(HF)-RPA, which were previously used for He@C60 in Panchagnula et al. [J. Chem. Phys. 160, 104303 (2024)], alongside B86bPBE-25X-XDM and B86bPBE-50X-XDM. The reduction in symmetry moving from C60 to C70 introduces a double well potential along the anisotropic direction, which forms a test of the sensitivity and effectiveness of the electronic structure methods. The nuclear Hamiltonian is diagonalized using a symmetrized double minimum basis set outlined in Panchagnula and Thom [J. Chem. Phys. 159, 164308 (2023)], with translational energies having error bars ±1 and ±2 cm-1. We find no consistency between electronic structure methods as they find a range of barrier heights and minima positions of the double well and different translational eigenspectra, which also differ from the Lennard-Jones (LJ) PES given in Mandziuk and Bačić [J. Chem. Phys. 101, 2126-2140 (1994)]. We find that generating effective LJ parameters for each electronic structure method cannot reproduce the full PES nor recreate the eigenstates, and this suggests that the LJ form of the PES, while simple, may not be best suited to describe these systems. Even though MP2 and RPA@PBE performed best for He@C60, due to the lack of concordance between all electronic structure methods, we require more experimental data in order to properly validate the choice.
Collapse
Affiliation(s)
- K Panchagnula
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - D Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry, University of Munich (LMU), Munich, Germany
| | - E R Johnson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry, Dalhousie University, 6243 Alumni Crescent, Halifax, Nova Scotia B3H 4R2, Canada
| | - A J W Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Li H, Briccolani-Bandini L, Tirri B, Cardini G, Brémond E, Sancho-García JC, Adamo C. Evaluating Noncovalent Interactions in Halogenated Molecules with Double-Hybrid Functionals and a Dedicated Small Basis Set. J Phys Chem A 2024. [PMID: 39067011 DOI: 10.1021/acs.jpca.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We present here an extension of our recently developed PBE-QIDH/DH-SVPD basis set to halogen atoms, with the aim of obtaining, for weakly interacting halogenated molecules, interaction energies close to those provided by a large basis set (def2-TZVPP) coupled to empirical dispersion potential. The core of our approach is the split-valence basis set, DH-SVPD, that has been developed for F, Cl, Br, and I atoms using a self-consistent formula, containing only energy terms computed for dimers and the corresponding monomers at the same level of theory. The basis set developed considering four systems, one for each halogen atoms, has been then tested on the X40, X4 × 10 benchmarks as well as on other two, less standard, data sets. Finally, a large system (380 atoms) has been also considered as a "crash" test. Our results show that the simple and nonempirical PBE-QIDH/DH-SVPD approach is able to provide accurate results for interaction energies of all the considered systems and can thus be considered as a cheaper alternative to DH functionals paired with empirical dispersion corrections and a large basis set of triple-ζ quality.
Collapse
Affiliation(s)
- Hanwei Li
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France
| | - Lorenzo Briccolani-Bandini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Bernardino Tirri
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France
| | - Gianni Cardini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Eric Brémond
- ITODYS, CNRS, Université de Paris, Paris F-75006, France
| | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France
| |
Collapse
|
6
|
Kaplan AD, Shahi C, Sah RK, Bhetwal P, Kanungo B, Gavini V, Perdew JP. How Does HF-DFT Achieve Chemical Accuracy for Water Clusters? J Chem Theory Comput 2024; 20:5517-5527. [PMID: 38937987 DOI: 10.1021/acs.jctc.4c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bolstered by recent calculations of exact functional-driven errors (FEs) and density-driven errors (DEs) of semilocal density functionals in the water dimer binding energy [Kanungo, B. J. Phys. Chem. Lett. 2024, 15, 323-328], we investigate approximate FEs and DEs in neutral water clusters containing up to 20 monomers, charged water clusters, and alkali- and halide-water clusters. Our proxy for the exact density is r2SCAN 50, a 50% global hybrid of exact exchange with r2SCAN, which may be less correct than r2SCAN for the compact water monomer but importantly more correct for long-range electron transfers in the noncompact water clusters. We show that SCAN makes substantially larger FEs for neutral water clusters than r2SCAN, while both make essentially the same DEs. Unlike the case for barrier heights, these FEs are small in a relative sense and become large in an absolute sense only due to an increase in cluster size. SCAN@HF, short for SCAN evaluated on the Hartree-Fock (HF) density, produces a cancellation of errors that makes it chemically accurate for predicting the absolute binding energies of water clusters. Likewise, adding a long-range dispersion correction to r2SCAN@HF, as in the composite method HF-r2SCAN-DC4, makes its FE more negative than in r2SCAN@HF, permitting a near-perfect cancellation of FE and DE. r2SCAN by itself (and even more so, r2SCAN evaluated on the r2SCAN 50 density), is almost perfect for the energy differences between water hexamers, and thus probably also for liquid water away from the boiling point. Thus, the accuracy of composite methods like SCAN@HF and HF-r2SCAN-DC4 is not due to the HF density being closer to the exact density, but to a compensation of errors from its greater degree of localization. We also give an argument for the approximate reliability of this unconventional error cancellation for diverse molecular properties. Finally, we confirm this unconventional error cancellation for the SCAN description of the water trimer via Kohn-Sham inversion of the CCSD(T) density.
Collapse
Affiliation(s)
- Aaron D Kaplan
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chandra Shahi
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Raj K Sah
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Pradeep Bhetwal
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Bikash Kanungo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vikram Gavini
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John P Perdew
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
7
|
Belov K, Brel V, Sobornova V, Fedorova I, Khodov I. Conformational Analysis of 1,5-Diaryl-3-Oxo-1,4-Pentadiene Derivatives: A Nuclear Overhauser Effect Spectroscopy Investigation. Int J Mol Sci 2023; 24:16707. [PMID: 38069031 PMCID: PMC10706324 DOI: 10.3390/ijms242316707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
1,5-Diaryl-3-Oxo-1,4-Pentadiene derivatives are intriguing organic compounds with a unique structure featuring a pentadiene core, aryl groups, and a ketone group. This study investigates the influence of fluorine atoms on the conformational features of these derivatives in deuterated chloroform (CDCl3) solution. Through nuclear magnetic resonance (NMR) spectroscopy and quantum chemical calculations, we discerned variations in interatomic distances and established predominant conformer proportions. The findings suggest that the non-fluorinated entity exhibits a uniform distribution across various conformer groups. The introduction of a fluorine atom induces substantial alterations, resulting in the predominance of a specific conformer group. This structural insight may hold the key to their diverse anticancer activities, previously reported in the literature.
Collapse
Affiliation(s)
- Konstantin Belov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| | - Valery Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Valentina Sobornova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| | - Irina Fedorova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| | - Ilya Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| |
Collapse
|
8
|
Graf D, Thom AJW. Corrected density functional theory and the random phase approximation: Improved accuracy at little extra cost. J Chem Phys 2023; 159:174106. [PMID: 37921249 DOI: 10.1063/5.0168569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
We recently introduced an efficient methodology to perform density-corrected Hartree-Fock density functional theory [DC(HF)-DFT] calculations and an extension to it we called "corrected" HF DFT [C(HF)-DFT] [Graf and Thom, J. Chem. Theory Comput. 19 5427-5438 (2023)]. In this work, we take a further step and combine C(HF)-DFT, augmented with a straightforward orbital energy correction, with the random phase approximation (RPA). We refer to the resulting methodology as corrected HF RPA [C(HF)-RPA]. We evaluate the proposed methodology across various RPA methods: direct RPA (dRPA), RPA with an approximate exchange kernel, and RPA with second-order screened exchange. C(HF)-dRPA demonstrates very promising performance; for RPA with exchange methods, on the other hand, we often find over-corrections.
Collapse
Affiliation(s)
- Daniel Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Alex J W Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| |
Collapse
|
9
|
Park SM, Kwon CH. Conformational diversity and environmental implications of trans-2-pentenal. Phys Chem Chem Phys 2023; 25:28612-28620. [PMID: 37869992 DOI: 10.1039/d3cp04204a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
This study investigates the conformational intricacies of trans-2-pentenal (trans-2PA), a significant biogenic volatile organic compound. To unveil its potential implications in atmospheric chemistry and environmental pollution, we employ advanced infrared resonant vacuum ultraviolet mass-analysed threshold ionisation spectroscopy. Through this method, we identify the major conformers within trans-2PA, encompassing trans-s-trans (tt-) and trans-s-cis (tc-) structures with planar (cis) and non-planar (gauche) configurations introduced by a methyl group. In a pioneering spectroscopic examination, we analyze trans-2PA in both the neutral and cationic states. This approach allows us to gain a comprehensive understanding of its molecular behavior. Our conformer-specific vibrational spectra not only reveal the relative populations of the main conformers, notably tt-cis and tt-gauche conformers, but also shed light on atmospheric oxidation processes and lower tropospheric organic aerosol formation mechanisms. Our findings expand the understanding of the role of trans-2PA in environmental and biological contexts. Additionally, they contribute to a broader understanding of its influence on air quality, climate, and atmospheric dynamics. The collaboration between advanced experimental techniques and computational methods fortifies the scientific underpinning of this study, opening doors to further exploration in the realms of atmospheric chemistry and environmental science.
Collapse
Affiliation(s)
- Sung Man Park
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.
| | - Chan Ho Kwon
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
10
|
Park SM, Kwon CH. Unraveling the Conformational Preference of Morpholine: Insights from Infrared Resonant Vacuum Ultraviolet Photoionization Mass Spectroscopy. J Phys Chem Lett 2023; 14:9472-9478. [PMID: 37831631 PMCID: PMC10615077 DOI: 10.1021/acs.jpclett.3c02280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The preference for different conformations in morpholine has a notable effect on its behavior and reactivity in organic synthesis. Herein, we explored the intricate conformational properties of morpholines through a combination of advanced mass spectrometric techniques and theoretical calculations. Notably, we employed infrared (IR) resonant vacuum ultraviolet (VUV) mass-analyzed threshold ionization spectroscopy to measure the unique vibrational spectra of the distinct conformers (Chair-Eq and Chair-Ax) in morpholine for the first time. Through precise VUV photon energy adjustments to coincide with the vibrational excitation via IR absorption, we effectively pinpointed the adiabatic ionization thresholds corresponding to the Chair-Eq (65 442 ± 4 cm-1) and Chair-Ax (65 333 ± 4 cm-1) conformers. This allowed us to accurately determine the conformational stability between the two conformers (109 ± 4 cm-1). By shedding light on the conformational properties of morpholine, this study brings far-reaching implications to the fields of organic synthesis and pharmaceutical research.
Collapse
Affiliation(s)
- Sung Man Park
- Department of Chemistry and
Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Chan Ho Kwon
- Department of Chemistry and
Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
11
|
Yu H, Song S, Nam S, Burke K, Sim E. Density-Corrected Density Functional Theory for Open Shells: How to Deal with Spin Contamination. J Phys Chem Lett 2023; 14:9230-9237. [PMID: 37811877 DOI: 10.1021/acs.jpclett.3c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Density functional theory (DFT) is usually used self-consistently to predict chemical properties, but the use of the Hartree-Fock (HF) density improves energetics in certain, well-characterized cases. Density-corrected (DC) DFT provides the theory behind this, but unrestricted Hartree-Fock (UHF) densities yield poor energetics in cases of strong spin contamination. Here we compare with restricted open-shell HF (ROHF) across 13 different functionals and two DC-DFT methods. For significant spin contamination, ROHF densities outperform UHF densities by as much as a factor of 3, depending on the energy functional, and ROHF-DFT improves over self-consistent DFT for most of the tested functionals. We refine the DC(HF)-DFT algorithm to use ROHF densities in cases of severe spin contamination.
Collapse
Affiliation(s)
- Hayoung Yu
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Seungsoo Nam
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
12
|
Daas KJ, Kooi DP, Peters NC, Fabiano E, Della Sala F, Gori-Giorgi P, Vuckovic S. Regularized and Opposite Spin-Scaled Functionals from Møller-Plesset Adiabatic Connection─Higher Accuracy at Lower Cost. J Phys Chem Lett 2023; 14:8448-8459. [PMID: 37721318 DOI: 10.1021/acs.jpclett.3c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Noncovalent interactions (NCIs) play a crucial role in biology, chemistry, material science, and everything in between. To improve pure quantum-chemical simulations of NCIs, we propose a methodology for constructing approximate correlation energies by combining an interpolation along the Møller-Plesset adiabatic connection (MP AC) with a regularization and spin-scaling strategy applied to MP2 correlation energies. This combination yields cosκos-SPL2, which exhibits superior accuracy for NCIs compared to any of the individual strategies. With the N4 formal scaling, cosκos-SPL2 is competitive or often outperforms more expensive dispersion-corrected double hybrids for NCIs. The accuracy of cosκos-SPL2 particularly shines for anionic halogen bonded complexes, where it surpasses standard dispersion-corrected DFT by a factor of 3 to 5.
Collapse
Affiliation(s)
- Kimberly J Daas
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P Kooi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Nina C Peters
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Fabio Della Sala
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Paola Gori-Giorgi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Stefan Vuckovic
- Department of Chemistry, Faculty of Science and Medicine, Université de Fribourg/Universität Freiburg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Graf D, Thom AJW. Simple and Efficient Route toward Improved Energetics within the Framework of Density-Corrected Density Functional Theory. J Chem Theory Comput 2023; 19:5427-5438. [PMID: 37525457 PMCID: PMC10448722 DOI: 10.1021/acs.jctc.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Indexed: 08/02/2023]
Abstract
The crucial step in density-corrected Hartree-Fock density functional theory (DC(HF)-DFT) is to decide whether the density produced by the density functional for a specific calculation is erroneous and, hence, should be replaced by, in this case, the HF density. We introduce an indicator, based on the difference in noninteracting kinetic energies between DFT and HF calculations, to determine when the HF density is the better option. Our kinetic energy indicator directly compares the self-consistent density of the analyzed functional with the HF density, is size-intensive, reliable, and most importantly highly efficient. Moreover, we present a procedure that makes best use of the computed quantities necessary for DC(HF)-DFT by additionally evaluating a related hybrid functional and, in that way, not only "corrects" the density but also the functional itself; we call that procedure corrected Hartree-Fock density functional theory (C(HF)-DFT).
Collapse
Affiliation(s)
- Daniel Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
14
|
Belleflamme F, Hutter J. Radicals in aqueous solution: assessment of density-corrected SCAN functional. Phys Chem Chem Phys 2023; 25:20817-20836. [PMID: 37497572 DOI: 10.1039/d3cp02517a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We study self-interaction effects in solvated and strongly-correlated cationic molecular clusters, with a focus on the solvated hydroxyl radical. To address the self-interaction issue, we apply the DC-r2SCAN method, with the auxiliary density matrix approach. Validating our method through simulations of bulk liquid water, we demonstrate that DC-r2SCAN maintains the structural accuracy of r2SCAN while effectively addressing spin density localization issues. Extending our analysis to solvated cationic molecular clusters, we find that the hemibonded motif in the [CH3S∴CH3SH]+ cluster is disrupted in the DC-r2SCAN simulation, in contrast to r2SCAN that preserves the (three-electron-two-center)-bonded motif. Similarly, for the [SH∴SH2]+ cluster, r2SCAN restores the hemibonded motif through spin leakage, while DC-r2SCAN predicts a weaker hemibond formation influenced by solvent-solute interactions. Our findings demonstrate the potential of DC-r2SCAN combined with the auxiliary density matrix method to improve electronic structure calculations, providing insights into the properties of solvated cationic molecular clusters. This work contributes to the advancement of self-interaction corrected electronic structure theory and offers a computational framework for modeling condensed phase systems with intricate correlation effects.
Collapse
Affiliation(s)
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Morgante P, Autschbach J. Density-Corrected Density Functional Theory for Molecular Properties. J Phys Chem Lett 2023:4983-4989. [PMID: 37220345 DOI: 10.1021/acs.jpclett.3c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Density-corrected (DC) density functional theory (DFT) has been proposed to overcome difficulties related to the self-interaction error. The procedure uses the Hartree-Fock electron density (matrix) non-self-consistently in conjunction with an approximate functional. DC-DFT has so far mainly been tested for total energy differences, whereas other types of molecular properties have not been evaluated systematically. This work focuses on the performance of DC-DFT for molecular properties, namely, dipole moments, static polarizabilities, and electric field gradients (EFGs) at atomic nuclei. Accurate reference data were generated from coupled-cluster theory to assess the performance of DC and self-consistent DFT calculations for twelve molecules, including diatomics with transition metals. DC-DFT does no harm in dipole moment calculations, but it negatively impacts the polarizability in at least one case. DC-DFT performs well for EFGs, even for the difficult case of CuCl.
Collapse
Affiliation(s)
- Pierpaolo Morgante
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
16
|
Morera-Boado C, Bernal-Uruchurtu MI. Interaction energy of Cl 2 and Br 2 with H 2 O: Exchange, dispersion and density the crucial ingredients. J Comput Chem 2023; 44:1073-1087. [PMID: 36578228 DOI: 10.1002/jcc.27066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/10/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022]
Abstract
Modern Density Functional Theory models are now suitable for many molecular and condensed phase studies. The study of noncovalent interactions, a well-known drawback, is no longer an insurmountable obstacle through design and empirical corrections. However, using empirical corrections as in the DFT-D methods might not be an all-in-one solution. This work uses a simple system, X2 -H2 O with X = Cl or Br, with two different interactions, halogen-bonded (XB) and hydrogen-halogen (HX), to investigate the capability of current density functional approximations (DFA) in predicting interaction energies with eight different exchange-correlation functionals. SAPT(DFT) provides, for all the studied cases, better predictions than the widely used supermolecular approach. In addition, the components of the interaction energy suggest where some of the shortcomings originate in each DFA. The analysis of the functionals used confirms that PBE0 and ω-B97X-D have a physically correct behavior. Using SAPT(DFT) and PBE0, and ω-B97X-D, we obtained the interaction energy of Cl2 and Br2 inside different clathrate cages and satisfactorily compared with wavefunction results; hence, the lower and upper limits of this value are defined: Cl2 @512 , -5.3 ± 0.3 kcal/mol; Cl2 @512 62 , -5.5 ± 0.1 kcal/mol; Br2 @512 62 , -7.6 ± 1.0 kcal/mol; Br2 @512 63 , -10.6 ± 1.0 kcal/mol; Br2 @512 64 , -10.9 ± 0.8 kcal/mol.
Collapse
Affiliation(s)
- Cercis Morera-Boado
- CONACYT - Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.,Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | |
Collapse
|
17
|
Kshirsagar AR, Poloni R. Assessing the Role of the Kohn-Sham Density in the Calculation of the Low-Lying Bethe-Salpeter Excitation Energies. J Phys Chem A 2023; 127:2618-2627. [PMID: 36913525 DOI: 10.1021/acs.jpca.2c07526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
We adopt the GW many-body perturbation theory in conjunction with the Bethe-Salpeter equation (BSE) to compute 57 excitation energies of a set of 37 molecules. By using the PBEh global hybrid functional and a self-consistent scheme on the eigenvalues in GW, we show a strong dependence of the BSE energy on the starting Kohn-Sham (KS) density functional. This arises from both the quasiparticle energies and the spatial localization of the frozen KS orbitals employed to compute the BSE. In order to address the arbitrariness in the mean field choice, we adopt an orbital-tuning scheme where the amount of Fock exchange, α, is tuned to impose that the KS HOMO matches the GW quasiparticle eigenvalue, thus fulfilling the ionization potential theorem in DFT. The performance of the proposed scheme yields excellent results and it is similar to M06-2X and PBEh with α = 75%, consistent with tuned values of α ranging between 60% and 80%.
Collapse
Affiliation(s)
| | - Roberta Poloni
- Université Grenoble Alpes, CNRS, Grenoble-INP, SIMaP, 38000 Grenoble, France
| |
Collapse
|
18
|
Song S, Vuckovic S, Kim Y, Yu H, Sim E, Burke K. Extending density functional theory with near chemical accuracy beyond pure water. Nat Commun 2023; 14:799. [PMID: 36781855 PMCID: PMC9925738 DOI: 10.1038/s41467-023-36094-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
Density functional simulations of condensed phase water are typically inaccurate, due to the inaccuracies of approximate functionals. A recent breakthrough showed that the SCAN approximation can yield chemical accuracy for pure water in all its phases, but only when its density is corrected. This is a crucial step toward first-principles biosimulations. However, weak dispersion forces are ubiquitous and play a key role in noncovalent interactions among biomolecules, but are not included in the new approach. Moreover, naïve inclusion of dispersion in HF-SCAN ruins its high accuracy for pure water. Here we show that systematic application of the principles of density-corrected DFT yields a functional (HF-r2SCAN-DC4) which recovers and not only improves over HF-SCAN for pure water, but also captures vital noncovalent interactions in biomolecules, making it suitable for simulations of solutions.
Collapse
Affiliation(s)
- Suhwan Song
- grid.15444.300000 0004 0470 5454Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722 Korea ,grid.266093.80000 0001 0668 7243Department of Chemistry, University of California, Irvine, CA 92697 USA
| | - Stefan Vuckovic
- grid.472716.10000 0004 1758 7362Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy ,grid.12380.380000 0004 1754 9227Departments of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Youngsam Kim
- grid.15444.300000 0004 0470 5454Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722 Korea
| | - Hayoung Yu
- grid.15444.300000 0004 0470 5454Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722 Korea
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea.
| | - Kieron Burke
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California, Irvine, CA 92697 USA ,grid.266093.80000 0001 0668 7243Departments of Physics & Astronomy, University of California, Irvine, CA 92697 USA
| |
Collapse
|
19
|
Lonsdale DR, Goerigk L. One-electron self-interaction error and its relationship to geometry and higher orbital occupation. J Chem Phys 2023; 158:044102. [PMID: 36725505 DOI: 10.1063/5.0129820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Density Functional Theory (DFT) sees prominent use in computational chemistry and physics; however, problems due to the self-interaction error (SIE) pose additional challenges to obtaining qualitatively correct results. As an unphysical energy an electron exerts on itself, the SIE impacts most practical DFT calculations. We conduct an in-depth analysis of the one-electron SIE in which we replicate delocalization effects for simple geometries. We present a simple visualization of such effects, which may help in future qualitative analysis of the one-electron SIE. By increasing the number of nuclei in a linear arrangement, the SIE increases dramatically. We also show how molecular shape impacts the SIE. Two- and three-dimensional shapes show an even greater SIE stemming mainly from the exchange functional with some error compensation from the one-electron error, which we previously defined [D. R. Lonsdale and L. Goerigk, Phys. Chem. Chem. Phys. 22, 15805 (2020)]. Most tested geometries are affected by the functional error, while some suffer from the density error. For the latter, we establish a potential connection with electrons being unequally delocalized by the DFT methods. We also show how the SIE increases if electrons occupy higher-lying atomic orbitals; seemingly one-electron SIE free methods in a ground are no longer SIE free in excited states, which is an important insight for some popular, non-empirical density functional approximations (DFAs). We conclude that the erratic behavior of the SIE in even the simplest geometries shows that robust DFAs are needed. Our test systems can be used as a future benchmark or contribute toward DFT development.
Collapse
Affiliation(s)
- Dale R Lonsdale
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
20
|
Rana B, Beran GJO, Herbert JM. Correcting π-delocalisation errors in conformational energies using density-corrected DFT, with application to crystal polymorphs. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2138789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | | | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Santra G, Calinsky R, Martin JML. Benefits of Range-Separated Hybrid and Double-Hybrid Functionals for a Large and Diverse Data Set of Reaction Energies and Barrier Heights. J Phys Chem A 2022; 126:5492-5505. [PMID: 35930677 PMCID: PMC9393870 DOI: 10.1021/acs.jpca.2c03922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Indexed: 11/28/2022]
Abstract
To better understand the thermochemical kinetics and mechanism of a specific chemical reaction, an accurate estimation of barrier heights (forward and reverse) and reaction energies is vital. Because of the large size of reactants and transition state structures involved in real-life mechanistic studies (e.g., enzymatically catalyzed reactions), density functional theory remains the workhorse for such calculations. In this paper, we have assessed the performance of 91 density functionals for modeling the reaction energies and barrier heights on a large and chemically diverse data set (BH9) composed of 449 organic chemistry reactions. We have shown that range-separated hybrid functionals perform better than the global hybrids for BH9 barrier heights and reaction energies. Except for the PBE-based range-separated nonempirical double hybrids, range separation of the exchange term helps improve the performance for barrier heights and reaction energies. The 16-parameter Berkeley double hybrid, ωB97M(2), performs remarkably well for both properties. However, our minimally empirical range-separated double hybrid functionals offer marginally better accuracy than ωB97M(2) for BH9 barrier heights and reaction energies.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Rivka Calinsky
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
22
|
Bryenton KR, Adeleke AA, Dale SG, Johnson ER. Delocalization error: The greatest outstanding challenge in density‐functional theory. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle R. Bryenton
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
| | | | - Stephen G. Dale
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland Australia
| | - Erin R. Johnson
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
- Department of Chemistry Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
23
|
Sim E, Song S, Vuckovic S, Burke K. Improving Results by Improving Densities: Density-Corrected Density Functional Theory. J Am Chem Soc 2022; 144:6625-6639. [PMID: 35380807 DOI: 10.1021/jacs.1c11506] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Density functional theory (DFT) calculations have become widespread in both chemistry and materials, because they usually provide useful accuracy at much lower computational cost than wavefunction-based methods. All practical DFT calculations require an approximation to the unknown exchange-correlation energy, which is then used self-consistently in the Kohn-Sham scheme to produce an approximate energy from an approximate density. Density-corrected DFT is simply the study of the relative contributions to the total energy error. In the vast majority of DFT calculations, the error due to the approximate density is negligible. But with certain classes of functionals applied to certain classes of problems, the density error is sufficiently large as to contribute to the energy noticeably, and its removal leads to much better results. These problems include reaction barriers, torsional barriers involving π-conjugation, halogen bonds, radicals and anions, most stretched bonds, etc. In all such cases, use of a more accurate density significantly improves performance, and often the simple expedient of using the Hartree-Fock density is enough. This Perspective explains what DC-DFT is, where it is likely to improve results, and how DC-DFT can produce more accurate functionals. We also outline challenges and prospects for the field.
Collapse
Affiliation(s)
- Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Stefan Vuckovic
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni,Campus Unisalento, 73100 Lecce, Italy.,Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
24
|
Kalita B, Pederson R, Chen J, Li L, Burke K. How Well Does Kohn-Sham Regularizer Work for Weakly Correlated Systems? J Phys Chem Lett 2022; 13:2540-2547. [PMID: 35285630 DOI: 10.1021/acs.jpclett.2c00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Kohn-Sham regularizer (KSR) is a differentiable machine learning approach to finding the exchange-correlation functional in Kohn-Sham density functional theory that works for strongly correlated systems. Here we test KSR for a weak correlation. We propose spin-adapted KSR (sKSR) with trainable local, semilocal, and nonlocal approximations found by minimizing density and total energy loss. We assess the atoms-to-molecules generalizability by training on one-dimensional (1D) H, He, Li, Be, and Be2+ and testing on 1D hydrogen chains, LiH, BeH2, and helium hydride complexes. The generalization error from our semilocal approximation is comparable to other differentiable approaches, but our nonlocal functional outperforms any existing machine learning functionals, predicting ground-state energies of test systems with a mean absolute error of 2.7 mH.
Collapse
Affiliation(s)
- Bhupalee Kalita
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Ryan Pederson
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Jielun Chen
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Li Li
- Google Research, Mountain View, California 94043, United States
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
25
|
Song S, Vuckovic S, Sim E, Burke K. Density-Corrected DFT Explained: Questions and Answers. J Chem Theory Comput 2022; 18:817-827. [DOI: 10.1021/acs.jctc.1c01045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Stefan Vuckovic
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, Lecce, 73100, Italy
- Department of Chemistry&Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam, 1081HV, The Netherlands
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
26
|
Santra G, Martin JML. Pure and Hybrid SCAN, rSCAN, and r 2SCAN: Which One Is Preferred in KS- and HF-DFT Calculations, and How Does D4 Dispersion Correction Affect This Ranking? Molecules 2021; 27:141. [PMID: 35011372 PMCID: PMC8746565 DOI: 10.3390/molecules27010141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Abstract
Using the large and chemically diverse GMTKN55 dataset, we have tested the performance of pure and hybrid KS-DFT and HF-DFT functionals constructed from three variants of the SCAN meta-GGA exchange-correlation functional: original SCAN, rSCAN, and r2SCAN. Without any dispersion correction involved, HF-SCANn outperforms the two other HF-DFT functionals. In contrast, among the self-consistent variants, SCANn and r2SCANn offer essentially the same performance at lower percentages of HF-exchange, while at higher percentages, SCANn marginally outperforms r2SCANn and rSCANn. However, with D4 dispersion correction included, all three HF-DFT-D4 variants perform similarly, and among the self-consistent counterparts, r2SCANn-D4 outperforms the other two variants across the board. In view of the much milder grid dependence of r2SCAN vs. SCAN, r2SCAN is to be preferred across the board, also in HF-DFT and hybrid KS-DFT contexts.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | | |
Collapse
|
27
|
Pure and Hybrid SCAN, rSCAN, and r2SCAN: Which One Is Preferred in KS- and HF-DFT Calculations, and How Does D4 Dispersion Correction Affect This Ranking? Molecules 2021. [DOI: 10.3390/molecules27010141 https://www.mdpi.com/1420-3049/27/1/141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Using the large and chemically diverse GMTKN55 dataset, we have tested the performance of pure and hybrid KS-DFT and HF-DFT functionals constructed from three variants of the SCAN meta-GGA exchange-correlation functional: original SCAN, rSCAN, and r2SCAN. Without any dispersion correction involved, HF-SCANn outperforms the two other HF-DFT functionals. In contrast, among the self-consistent variants, SCANn and r2SCANn offer essentially the same performance at lower percentages of HF-exchange, while at higher percentages, SCANn marginally outperforms r2SCANn and rSCANn. However, with D4 dispersion correction included, all three HF-DFT-D4 variants perform similarly, and among the self-consistent counterparts, r2SCANn-D4 outperforms the other two variants across the board. In view of the much milder grid dependence of r2SCAN vs. SCAN, r2SCAN is to be preferred across the board, also in HF-DFT and hybrid KS-DFT contexts.
Collapse
|
28
|
Park SM, Kwon CH. Identification of individual conformers in C 4H 6O isomers using conformer-specific vibrational spectroscopy. RSC Adv 2021; 11:38240-38246. [PMID: 35498109 PMCID: PMC9044234 DOI: 10.1039/d1ra07397d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
We measured the conformer-specific vibrational spectra of C4H6O isomers in neutral and cationic states using IR resonant vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy for the first time. Notably, the measured IR dip and hole-burn VUV-MATI spectra for each isomer represent the identifiable vibrational spectra of individual conformers in both states. Furthermore, we estimated the relative populations of individual conformers in crotonaldehyde (CA) and methyl vinyl ketone (MVK) isomers using the IR dip intensity, the corresponding Franck-Condon factor, and the IR absorption cross section. Our analysis revealed that the compositional ratio of s-trans to s-cis conformers in the CA isomer remained at 95.8 : 4.2 even under supersonic expansion, whereas that in the MVK isomer was determined as 90.6 : 9.4, which is consistent with previous research. These findings reveal that the conformational stability of each isomer depends on the position of the methyl group relative to the carbonyl group.
Collapse
Affiliation(s)
- Sung Man Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Korea
| | - Chan Ho Kwon
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Korea
| |
Collapse
|
29
|
Park SM, Kwon CH. Development and Verification of Conformer-Specific Vibrational Spectroscopy. J Phys Chem A 2021; 125:9251-9258. [PMID: 34628860 DOI: 10.1021/acs.jpca.1c07162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conformers have similar vibrational structures both in neutral (S0) and cationic (D0) states owing to the comparable force fields between their nuclei. Nevertheless, there is a continuous development of vibrational spectroscopic techniques to rigorously identify individual conformers in the designated molecule but only in the S0 state. We developed an inventive conformer-specific vibrational spectroscopic technique to measure identifiable vibrational spectra of individual conformers in both S0 and D0 states. We measured isomer-specific vibrational spectra in both states for gas-phase acetone and oxetane isomers from a solution with azeotropic composition to verify the proposed techniques that are based on infrared (IR) resonant vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. The measured IR dip VUV-MATI and IR hole-burn VUV-MATI spectra for each isomer, which correspond to isomer-specific vibrational spectra in both states, can be represented by IR-resonant VUV photoionization and one-photon VUV-MATI spectra of the binary mixture, respectively, under supersonic expansion conditions. The partial pressures of the individual isomers in the binary mixture with different mole fractions estimated according to the relative peak intensities in the measured spectra provide insights on solute-solvent interactions. We suggest that the verified IR-resonant VUV-MATI spectroscopy can form the basis of effective schemes toward conformational chemistry.
Collapse
Affiliation(s)
- Sung Man Park
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Chan Ho Kwon
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
30
|
Lambros E, Dasgupta S, Palos E, Swee S, Hu J, Paesani F. General Many-Body Framework for Data-Driven Potentials with Arbitrary Quantum Mechanical Accuracy: Water as a Case Study. J Chem Theory Comput 2021; 17:5635-5650. [PMID: 34370954 DOI: 10.1021/acs.jctc.1c00541] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a general framework for the development of data-driven many-body (MB) potential energy functions (MB-QM PEFs) that represent the interactions between small molecules at an arbitrary quantum-mechanical (QM) level of theory. As a demonstration, a family of MB-QM PEFs for water is rigorously derived from density functionals belonging to different rungs across Jacob's ladder of approximations within density functional theory (MB-DFT) and from Møller-Plesset perturbation theory (MB-MP2). Through a systematic analysis of individual MB contributions to the interaction energies of water clusters, we demonstrate that all MB-QM PEFs preserve the same accuracy as the corresponding ab initio calculations, with the exception of those derived from density functionals within the generalized gradient approximation (GGA). The differences between the DFT and MB-DFT results are traced back to density-driven errors that prevent GGA functionals from accurately representing the underlying molecular interactions for different cluster sizes and hydrogen-bonding arrangements. We show that this shortcoming may be overcome, within the MB formalism, by using density-corrected functionals (DC-DFT) that provide a more consistent representation of each individual MB contribution. This is demonstrated through the development of a MB-DFT PEF derived from DC-PBE-D3 data, which more accurately reproduce the corresponding ab initio results.
Collapse
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Steven Swee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
31
|
Price AJA, Bryenton KR, Johnson ER. Requirements for an accurate dispersion-corrected density functional. J Chem Phys 2021; 154:230902. [PMID: 34241263 DOI: 10.1063/5.0050993] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Post-self-consistent dispersion corrections are now the norm when applying density-functional theory to systems where non-covalent interactions play an important role. However, there is a wide range of base functionals and dispersion corrections available from which to choose. In this work, we opine on the most desirable requirements to ensure that both the base functional and dispersion correction, individually, are as accurate as possible for non-bonded repulsion and dispersion attraction. The base functional should be dispersionless, numerically stable, and involve minimal delocalization error. Simultaneously, the dispersion correction should include finite damping, higher-order pairwise dispersion terms, and electronic many-body effects. These criteria are essential for avoiding reliance on error cancellation and obtaining correct results from correct physics.
Collapse
Affiliation(s)
- Alastair J A Price
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd., Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle R Bryenton
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Rd., Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd., Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
32
|
Martín-Fernández C, Harvey JN. On the Use of Normalized Metrics for Density Sensitivity Analysis in DFT. J Phys Chem A 2021; 125:4639-4652. [PMID: 34018759 DOI: 10.1021/acs.jpca.1c01290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past years, there has been a discussion about how the errors in density functional theory might be related to errors in the self-consistent densities obtained from different density functional approximations. This, in turn, brings up the discussion about the different ways in which we can measure such errors and develop metrics that assess the sensitivity of calculated energies to changes in the density. It is important to realize that there cannot be a unique metric in order to look at this density sensitivity, simultaneously needing size-extensive and size-intensive metrics. In this study, we report two metrics that are widely applicable to any density functional approximation. We also show how they can be used to classify different chemical systems of interest with respect to their sensitivity to small variations in the density.
Collapse
Affiliation(s)
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan, 200F 3001 Leuven, Belgium
| |
Collapse
|
33
|
Daas T, Fabiano E, Della Sala F, Gori-Giorgi P, Vuckovic S. Noncovalent Interactions from Models for the Møller-Plesset Adiabatic Connection. J Phys Chem Lett 2021; 12:4867-4875. [PMID: 34003655 PMCID: PMC8280728 DOI: 10.1021/acs.jpclett.1c01157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/13/2021] [Indexed: 05/08/2023]
Abstract
Given the omnipresence of noncovalent interactions (NCIs), their accurate simulations are of crucial importance across various scientific disciplines. Here we construct accurate models for the description of NCIs by an interpolation along the Møller-Plesset adiabatic connection (MP AC). Our interpolation approximates the correlation energy, by recovering MP2 at small coupling strengths and the correct large-coupling strength expansion of the MP AC, recently shown to be a functional of the Hartree-Fock density. Our models are size consistent for fragments with nondegenerate ground states, have the same cost as double hybrids, and require no dispersion corrections to capture NCIs accurately. These interpolations greatly reduce large MP2 errors for typical π-stacking complexes (e.g., benzene-pyridine dimers) and for the L7 data set. They are also competitive with state-of-the-art dispersion enhanced functionals and can even significantly outperform them for a variety of data sets, such as CT7 and L7.
Collapse
Affiliation(s)
- Timothy
J. Daas
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (LE), Italy
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (LE), Italy
| | - Paola Gori-Giorgi
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Stefan Vuckovic
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Physical
and Theoretical Chemistry, University of
Saarland, 66123 Saarbrücken, Germany
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
34
|
Mariano LA, Vlaisavljevich B, Poloni R. Improved Spin-State Energy Differences of Fe(II) Molecular and Crystalline Complexes via the Hubbard U-Corrected Density. J Chem Theory Comput 2021; 17:2807-2816. [PMID: 33831303 DOI: 10.1021/acs.jctc.1c00034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently showed that the DFT+U approach with a linear-response U yields adiabatic energy differences biased toward high spin [Mariano et al. J. Chem. Theory Comput. 2020, 16, 6755-6762]. Such bias is removed here by employing a density-corrected DFT approach where the PBE functional is evaluated on the Hubbard U-corrected density. The adiabatic energy differences of six Fe(II) molecular complexes computed using this approach, named PBE[U] here, are in excellent agreement with coupled cluster-corrected CASPT2 values for both weak- and strong-field ligands resulting in a mean absolute error (MAE) of 0.44 eV, smaller than that of the recently proposed Hartree-Fock density-corrected DFT (1.22 eV) and any other tested functional, including the best performer TPSSh (0.49 eV). We take advantage of the computational efficiency of this approach and compute the adiabatic energy differences of five molecular crystals using PBE[U] with periodic boundary conditions. The results show, again, an excellent agreement (MAE = 0.07 eV) with experimentally extracted values and a superior performance compared with the best performers M06-L (MAE = 0.08 eV) and TPSSh (MAE = 0.31 eV) computed on molecular fragments.
Collapse
Affiliation(s)
- Lorenzo A Mariano
- University Grenoble Alpes, CNRS, Grenoble-INP, SIMaP, F-38042 Grenoble, France
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Roberta Poloni
- University Grenoble Alpes, CNRS, Grenoble-INP, SIMaP, F-38042 Grenoble, France
| |
Collapse
|
35
|
Mehta N, Fellowes T, White JM, Goerigk L. CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions? J Chem Theory Comput 2021; 17:2783-2806. [PMID: 33881869 DOI: 10.1021/acs.jctc.1c00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present the CHAL336 benchmark set-the most comprehensive database for the assessment of chalcogen-bonding (CB) interactions. After careful selection of suitable systems and identification of three high-level reference methods, the set comprises 336 dimers each consisting of up to 49 atoms and covers both σ- and π-hole interactions across four categories: chalcogen-chalcogen, chalcogen-π, chalcogen-halogen, and chalcogen-nitrogen interactions. In a subsequent study of DFT methods, we re-emphasize the need for using proper London dispersion corrections when treating noncovalent interactions. We also point out that the deterioration of results and systematic overestimation of interaction energies for some dispersion-corrected DFT methods does not hint at problems with the chosen dispersion correction but is a consequence of large density-driven errors. We conclude this work by performing the most detailed DFT benchmark study for CB interactions to date. We assess 109 variations of dispersion-corrected and dispersion-uncorrected DFT methods and carry out a detailed analysis of 80 of them. Double-hybrid functionals are the most reliable approaches for CB interactions, and they should be used whenever computationally feasible. The best three double hybrids are SOS0-PBE0-2-D3(BJ), revDSD-PBEP86-D3(BJ), and B2NCPLYP-D3(BJ). The best hybrids in this study are ωB97M-V, PW6B95-D3(0), and PW6B95-D3(BJ). We do not recommend using the popular B3LYP functional nor the MP2 approach, which have both been frequently used to describe CB interactions in the past. We hope to inspire a change in computational protocols surrounding CB interactions that leads away from the commonly used, popular methods to the more robust and accurate ones recommended herein. We would also like to encourage method developers to use our set for the investigation and reduction of density-driven errors in new density functional approximations.
Collapse
Affiliation(s)
- Nisha Mehta
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Thomas Fellowes
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
36
|
de Azevedo Santos L, Ramalho TC, Hamlin TA, Bickelhaupt FM. Chalcogen bonds: Hierarchical ab initio benchmark and density functional theory performance study. J Comput Chem 2021; 42:688-698. [PMID: 33543482 PMCID: PMC7986859 DOI: 10.1002/jcc.26489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022]
Abstract
We have performed a hierarchical ab initio benchmark and DFT performance study of D2 Ch•••A- chalcogen bonds (Ch = S, Se; D, A = F, Cl). The ab initio benchmark study is based on a series of ZORA-relativistic quantum chemical methods [HF, MP2, CCSD, CCSD(T)], and all-electron relativistically contracted variants of Karlsruhe basis sets (ZORA-def2-SVP, ZORA-def2-TZVPP, ZORA-def2-QZVPP) with and without diffuse functions. The highest-level ZORA-CCSD(T)/ma-ZORA-def2-QZVPP counterpoise-corrected complexation energies (ΔECPC ) are converged within 1.1-3.4 kcal mol-1 and 1.5-3.1 kcal mol-1 with respect to the method and basis set, respectively. Next, we used the ZORA-CCSD(T)/ma-ZORA-def2-QZVPP (ΔECPC ) as reference data for analyzing the performance of 13 different ZORA-relativistic DFT approaches in combination with the Slater-type QZ4P basis set. We find that the three-best performing functionals are M06-2X, B3LYP, and M06, with mean absolute errors (MAE) of 4.1, 4.2, and 4.3 kcal mol-1 , respectively. The MAE for BLYP-D3(BJ) and PBE amount to 8.5 and 9.3 kcal mol-1 , respectively.
Collapse
Affiliation(s)
- Lucas de Azevedo Santos
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamAmsterdamNetherlands
- Department of Chemistry, Institute of Natural SciencesFederal University of LavrasLavrasBrazil
| | - Teodorico C. Ramalho
- Department of Chemistry, Institute of Natural SciencesFederal University of LavrasLavrasBrazil
- Center for Basic and Applied ResearchUniversity Hradec KraloveHradec KraloveCzech Republic
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamAmsterdamNetherlands
- Institute for Molecules and MaterialsRadboud University NijmegenNijmegenNetherlands
| |
Collapse
|
37
|
Nam S, Cho E, Sim E, Burke K. Explaining and Fixing DFT Failures for Torsional Barriers. J Phys Chem Lett 2021; 12:2796-2804. [PMID: 33710903 DOI: 10.1021/acs.jpclett.1c00426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most torsional barriers are predicted with high accuracies (about 1 kJ/mol) by standard semilocal functionals, but a small subset was found to have much larger errors. We created a database of almost 300 carbon-carbon torsional barriers, including 12 poorly behaved barriers, that stem from the Y═C-X group, where Y is O or S and X is a halide. Functionals with enhanced exchange mixing (about 50%) worked well for all barriers. We found that poor actors have delocalization errors caused by hyperconjugation. These problematic calculations are density-sensitive (i.e., DFT predictions change noticeably with the density), and using HF densities (HF-DFT) fixes these issues. For example, conventional B3LYP performs as accurately as exchange-enhanced functionals if the HF density is used. For long-chain conjugated molecules, HF-DFT can be much better than exchange-enhanced functionals. We suggest that HF-PBE0 has the best overall performance.
Collapse
Affiliation(s)
- Seungsoo Nam
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, South Korea
| | - Eunbyol Cho
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, South Korea
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, South Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
38
|
Santra G, Martin JML. What Types of Chemical Problems Benefit from Density-Corrected DFT? A Probe Using an Extensive and Chemically Diverse Test Suite. J Chem Theory Comput 2021; 17:1368-1379. [PMID: 33625863 PMCID: PMC8028055 DOI: 10.1021/acs.jctc.0c01055] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
For the large and
chemically diverse GMTKN55 benchmark suite, we
have studied the performance of density-corrected density functional
theory (HF-DFT), compared to self-consistent DFT, for several pure
and hybrid GGA and meta-GGA exchange–correlation (XC) functionals
(PBE, BLYP, TPSS, and SCAN) as a function of the percentage of HF
exchange in the hybrid. The D4 empirical dispersion correction has
been added throughout. For subsets dominated by dynamical correlation,
HF-DFT is highly beneficial, particularly at low HF exchange percentages.
This is especially true for noncovalent interactions where the electrostatic
component is dominant, such as hydrogen and halogen bonds: for π-stacking,
HF-DFT is detrimental. For subsets with significant nondynamical correlation
(i.e., where a Hartree–Fock determinant is not a good zero-order
wavefunction), HF-DFT may do more harm than good. While the self-consistent
series show optima at or near 37.5% (i.e., 3/8) for all four XC functionals—consistent
with Grimme’s proposal of the PBE38 functional—HF-BnLYP-D4, HF-PBEn-D4, and HF-TPSSn-D4 all exhibit minima nearer 25% (i.e., 1/4) as the use
of HF orbitals greatly mitigates the error at 25% for barrier heights.
Intriguingly, for HF-SCANn-D4, the minimum is near
10%, but the weighted mean absolute error (WTMAD2) for GMTKN55 is
only barely lower than that for HF-SCAN-D4 (i.e., where the post-HF
step is a pure meta-GGA). The latter becomes an attractive option,
only slightly more costly than pure Hartree–Fock, and devoid
of adjustable parameters other than the three in the dispersion correction.
Moreover, its WTMAD2 is only surpassed by the highly empirical M06-2X
and by the combinatorially optimized empirical range-separated hybrids
ωB97X-V and ωB97M-V.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Jan M L Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
39
|
Abstract
Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to H2+ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimme's D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 data sets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost by using Hartree-Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect.
Collapse
Affiliation(s)
- Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Stefan Vuckovic
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
40
|
Feng X, Becke AD, Johnson ER. Theoretical investigation of polymorph- and coformer-dependent photoluminescence in molecular crystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00383f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel density-functional approach provides accurate predictions for the colour zoning of ROY polymorphs and the fluorescence energies of a family of 9-acetylanthracene cocrystals.
Collapse
Affiliation(s)
- Xibo Feng
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | - Axel D. Becke
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | | |
Collapse
|
41
|
Park SM, Choi J, Kim HL, Kwon CH. Conformer-specific VUV-MATI spectroscopy of methyl vinyl ketone: stabilities and cationic structures of the s- trans and s- cis conformers. Phys Chem Chem Phys 2020; 22:28383-28392. [PMID: 33300923 DOI: 10.1039/d0cp05782g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methyl vinyl ketone (MVK), a volatile compound with photochemical activity, has received considerable attention in the fields of environmental chemistry and atmospheric chemistry. We explored the conformational stabilities of MVK in the neutral S0 and the cationic D0 states using conformer-specific vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy, which provided identifiable vibrational spectra for cationic MVK conformers. Based on the origin bands of the two individual conformers of MVK identified in the MATI spectra under different supersonic expansion conditions, the accurate adiabatic ionization energies of the s-trans and the s-cis conformers were determined to be 77 867 ± 4 (9.6543 ± 0.0005 eV) and 78 222 ± 4 cm-1 (9.6983 ± 0.0005 eV), respectively. The identifiable vibrational spectra of the two cationic conformers were further confirmed using vibrational assignments based on the Franck-Condon fit. Accordingly, precise cationic structures of the MVK conformers could be determined. The structural changes of the two conformers upon ionization could be attributed to the removal of an electron from the highest occupied molecular orbital of each conformer, which consists of nonbonding molecular orbitals on the oxygen atom in the carbonyl group interacting with the σ orbitals in the molecular plane. Consequently, the s-trans conformer was preferred by 48 ± 18 and 403 ± 18 cm-1 in the neutral ground S0 and the cationic D0 states, respectively, which was supported by density-corrected density functional theory calculations and natural bond orbital analysis.
Collapse
Affiliation(s)
- Sung Man Park
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.
| | | | | | | |
Collapse
|
42
|
Nam S, Song S, Sim E, Burke K. Measuring Density-Driven Errors Using Kohn-Sham Inversion. J Chem Theory Comput 2020; 16:5014-5023. [PMID: 32667787 DOI: 10.1021/acs.jctc.0c00391] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kohn-Sham (KS) inversion, that is, the finding of the exact KS potential for a given density, is difficult in localized basis sets. We study the precision and reliability of several inversion schemes, finding estimates of density-driven errors at a useful level of accuracy. In typical cases of substantial density-driven errors, Hartree-Fock density functional theory (HF-DFT) is almost as accurate as DFT evaluated on CCSD(T) densities. A simple approximation in practical HF-DFT also makes errors much smaller than the density-driven errors being calculated. Two paradigm examples, stretched NaCl and the HO·Cl- radical, illustrate just how accurate HF-DFT is.
Collapse
Affiliation(s)
- Seungsoo Nam
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
43
|
Lonsdale DR, Goerigk L. The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems. Phys Chem Chem Phys 2020; 22:15805-15830. [PMID: 32458849 DOI: 10.1039/d0cp01275k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-interaction error (SIE), i.e. unphysical interactions of electrons with themselves, has plagued developers and users of Density Functional Approximations (DFAs) since the inception of Density Functional Theory (DFT). Formally, it can be separated into the one-electron and many-electron SIE; herein we present one of the most comprehensive studies of the first. While we focus mostly on the total SIE, we also make use of two different decompositions. The first is a separation into functional and density-driven errors as championed by Sim, Burke and co-workers [J. Phys. Chem. Lett., 2018, 9, 6385-6392]; the second separates the error into exchange, correlation, and one-electron components, with the latter being a density error that has not been discussed in this form before. After investigating the familiar hydrogen atom and dihydrogen cation, we establish a relationship between the SIE and the nuclear charge with the help of a series of heavier hydrogenic analogues. For the mononuclear systems and the diatomics at the dissociation limit, this relationship is linear in nature with prominent exceptions, mostly belonging to the Minnesota and range-separated (double-)hybrid DFAs. For the first time, we also show how the magnitude of the SIE depends on the underlying atomic-orbital basis set and how DFAs that rely on a popular van-der-Waals DFT type London-dispersion term exhibit "self-dispersion". We find that range separation is not a panacea for solving the one-electron SIE. DFAs that have been developed to be one-electron SIE free for one system, such as the hydrogen atom, show larger errors for heavier hydrogenic systems. Often, one-electron SIE-free DFAs rely on fortuitous error cancellation between their exchange and correlation components. An analysis of the most robust methods for general applications to date reveals that they suffer moderately from the one-electron SIE, while DFAs that are nearly SIE-free do not perform well in applications. Implicit in the continued existence of the one-electron SIE is that well-performing DFAs continue to suffer insufficiencies at their fundamental levels that are being compensated for by the SIE. Our analysis includes more than 250 000 datapoints, resulting in multiple insights that may drive future developments of new DFAs or SIE corrections.
Collapse
Affiliation(s)
- Dale R Lonsdale
- School of Chemistry, The University of Melbourne, Parkville, Australia.
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
44
|
Fellowes T, Harris BL, White JM. Experimental evidence of chalcogen bonding at oxygen. Chem Commun (Camb) 2020; 56:3313-3316. [PMID: 32076691 DOI: 10.1039/c9cc09896h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An o-nitro-O-aryl oxime was observed to exhibit a short OO contact, which exhibited characteristics consistent with a chalcogen bond. The O-N bond length of the oxime was appreciably longer than the expected value, and NBO calculations indicated the presence of a n(O) → σ(O-N) orbital delocalisation. Topological analysis of the experimental electron density of two analogues shows the presence of a bond path between the two oxygen atoms, with ρ(r) and ∇2ρ(r) values consistent with an electrostatic interaction. Finally, electrostatic potential calculations indicate the presence of a σ-hole, the "smoking gun" indicating a Ch-bond. These results are unusual as oxygen is not typically considered to be a Ch-bond donor, especially in unactivated systems such as oximes.
Collapse
Affiliation(s)
- Thomas Fellowes
- School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Benjamin L Harris
- School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jonathan M White
- School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
45
|
Vuckovic S, Song S, Kozlowski J, Sim E, Burke K. Density Functional Analysis: The Theory of Density-Corrected DFT. J Chem Theory Comput 2019; 15:6636-6646. [DOI: 10.1021/acs.jctc.9b00826] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Vuckovic
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| | - Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - John Kozlowski
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
46
|
Laplaza R, Polo V, Contreras-García J. Localizing electron density errors in density functional theory. Phys Chem Chem Phys 2019; 21:20927-20938. [PMID: 31517339 DOI: 10.1039/c9cp02806d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accuracy of different density functional approximations is assessed through the use of quantum chemical topology on molecular electron densities. In particular, three simple yet ever-important systems are studied: N2, CO and ethane. Our results exemplify how real-space descriptors can help understand the sources of errors in density functional theory, avoiding unwanted error compensation present in simplified statistical metrics. Errors in "well-built" functionals are shown to be concentrated in chemically meaningful regions of space, and hence they are predictable. Conversely, strongly parametrized functionals show isotropic errors that cannot be traced back to chemically transferable units. Moreover, we will show that energetic corrections are mapped back into improvements in the density in chemically meaningful regions. These results point at the relevance of real-space perspectives when parametrizing or relating energy and density errors.
Collapse
Affiliation(s)
- Rubén Laplaza
- Sorbonne Université, CNRS, Laboratoire de Chimie Thèorique, LCT, F. 75005 Paris, France and Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, E. 50009, Zaragoza, Spain
| | - Victor Polo
- Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, E. 50009, Zaragoza, Spain
| | - Julia Contreras-García
- Sorbonne Université, CNRS, Laboratoire de Chimie Thèorique, LCT, F. 75005 Paris, France.
| |
Collapse
|
47
|
Remsing RC, Klein ML. Halogen Bond Structure and Dynamics from Molecular Simulations. J Phys Chem B 2019; 123:6266-6273. [PMID: 31266300 DOI: 10.1021/acs.jpcb.9b04820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Halogen bonding has emerged as an important noncovalent interaction in a myriad of applications, including drug design, supramolecular assembly, and catalysis. The current understanding of the halogen bond is informed by electronic structure calculations on isolated molecules and/or crystal structures that are not readily transferable to liquids and disordered phases. To address this issue, we present a first-principles simulation-based approach for quantifying halogen bonds in molecular systems rooted in an understanding of nuclei-nuclei and electron-nuclei spatial correlations. We then demonstrate how this approach can be used to quantify the structure and dynamics of halogen bonds in condensed phases, using solid and liquid molecular chlorine as prototypical examples with high concentrations of halogen bonds. We close with a discussion of how the knowledge generated by our first-principles approach may inform the development of classical empirical models, with a consistent representation of halogen bonding.
Collapse
Affiliation(s)
- Richard C Remsing
- Institute for Computational Molecular Science and Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Michael L Klein
- Institute for Computational Molecular Science and Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
48
|
Jiao Y, Weinhold F. What Is the Nature of Supramolecular Bonding? Comprehensive NBO/NRT Picture of Halogen and Pnicogen Bonding in RPH 2···IF/FI Complexes (R = CH 3, OH, CF 3, CN, NO 2). Molecules 2019; 24:molecules24112090. [PMID: 31159347 PMCID: PMC6600247 DOI: 10.3390/molecules24112090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 11/16/2022] Open
Abstract
We employ a variety of natural bond orbital (NBO) and natural resonance theory (NRT) tools to comprehensively investigate the nature of halogen and pnicogen bonding interactions in RPH2···IF/FI binary complexes (R = CH3, OH, CF3, CN, and NO2) and the tuning effects of R-substituents. Though such interactions are commonly attributed to “sigma-hole”-type electrostatic effects, we show that they exhibit profound similarities and analogies to the resonance-type 3-center, 4-electron (3c/4e) donor-acceptor interactions of hydrogen bonding, where classical-type “electrostatics” are known to play only a secondary modulating role. The general 3c/4e resonance perspective corresponds to a continuous range of interatomic A···B bond orders (bAB), spanning both the stronger “covalent” interactions of the molecular domain (say, bAB ≥ ½) and the weaker interactions (bAB ˂ ½, often misleadingly termed “noncovalent”) that underlie supramolecular complexation phenomena. We show how a unified NBO/NRT-based description of hydrogen, halogen, pnicogen, and related bonding yields an improved predictive utility and intuitive understanding of empirical trends in binding energies, structural geometry, and other measurable properties that are expected to be manifested in all such supramolecular interaction phenomena.
Collapse
Affiliation(s)
- Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
49
|
Abstract
Halogen bonds are prevalent in many areas of chemistry, physics, and biology. We present a statistical model for the interaction energies of halogen-bonded systems at equilibrium based on high-accuracy ab initio benchmark calculations for a range of complexes. Remarkably, the resulting model requires only two fitted parameters, X and B—one for each molecule—and optionally the equilibrium separation, R e , between them, taking the simple form E = X B / R e n . For n = 4 , it gives negligible root-mean-squared deviations of 0.14 and 0.28 kcal mol - 1 over separate fitting and validation data sets of 60 and 74 systems, respectively. The simple model is shown to outperform some of the best density functionals for non-covalent interactions, once parameters are available, at essentially zero computational cost. Additionally, we demonstrate how it can be transferred to completely new, much larger complexes and still achieve accuracy within 0.5 kcal mol - 1 . Using a principal component analysis and symmetry-adapted perturbation theory, we further show how the model can be used to predict the physical nature of a halogen bond, providing an efficient way to gain insight into the behavior of halogen-bonded systems. This means that the model can be used to highlight cases where induction or dispersion significantly affect the underlying nature of the interaction.
Collapse
|