1
|
Glover C, Fairbanks S, Robertson CC, Richard Keene F, Green NH, Thomas JA. An optical ratiometric approach using enantiopure luminescent metal complexes indicates changes in the average quadruplex DNA content as primary cells undergo multiple divisions. Dalton Trans 2025. [PMID: 40100080 DOI: 10.1039/d4dt03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The three stereoisomers of a previously reported dinuclear ruthenium(II) complex have been quantitatively separated using cation-exchange chromatography and the individual crystal structures of the racemic pair are reported. Cell-based studies on the three stereoisomers disclosed differences in the rate of uptake of the two chiral forms of the rac diastereoisomer with the ΛΛ-enantiomer being taken up noticeably more rapidly than the ΔΔ-form. Cell viability studies reveal that the three cations show identical cytotoxicity over 24 hours, but over more extended exposure periods, the meso-ΔΛ stereoisomer becomes slightly less active. More significantly, microscopy studies revealed that although both isomers display a near infra-red "light-switch" effect associated with binding to duplex DNA on binding to chromatin in live MCF7 and L5178-R cells, only the ΛΛ enantiomer displays a distinctive, blue-shifted component associated with binding to quadruplex DNA. An analysis of the ratio of "quadruplex emission" compared to "duplex emission" for the ΛΛ-enantiomer indicated that there was a decrease in the average quadruplex DNA content within live primary cells as they undergo multiple cell divisions.
Collapse
Affiliation(s)
- Caroline Glover
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Simon Fairbanks
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Craig C Robertson
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - F Richard Keene
- Discipline of Chemistry, School of Chemistry, Physics & Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicola H Green
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Jim A Thomas
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
2
|
Shao J, Chen J, Ke RX, Huang CH, Tang TS, Liu ZS, Mao JY, Huang R, Zhu BZ. Enantioselectively generating imidazolone dIz by the chiral DNA intercalating and "light-switching" Ru(II) polypyridyl complex via a novel flash-quench method. Free Radic Biol Med 2024; 225:157-163. [PMID: 39343181 DOI: 10.1016/j.freeradbiomed.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The 2-aminoimidazolone is a major and ubiquitous in vitro product of guanine oxidation. The flash-quench method, combining spectroscopy and product analysis, offers a novel and tunable approach to study guanine oxidation on double helical DNA. Herein we found that imidazolone dIz (2-amino-5-[(2-deoxy-β-D-erythro-pentofuranosyl)amino]-4H-imidazole-4-one) and dZ (2,2-diamino-5-[2-deoxy-β-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone) were the major oxidation products of double-strand DNA from the visible-light irradiation of the well-known DNA intercalating and light-switching Ru(OP)2dppz2+ (OP = 1,10-phenanthroline, dppz = dipyrido [3,2-a:2',3'-c]phenazine) in the presence of a typical quencher methyl viologen (MV2+). Using ESR spin-trapping method, the radical intermediate MV•+ with typical hyperfine pattern was detected which indicated the successful formation of the corresponding Ru3+ intercalated oxidant. The formation of dIz and dZ decreased markedly with the addition of nitrotetrazolium blue chloride (NBT), a typical O2•- reactant. With a more specific and highly sensitive O2•- probe CT02-H, its ESR signal decayed rapidly in the presence of Ru(OP)2dppz2+ and MV2+, suggesting that O2•- was indeed produced. More interestingly, enantio-selective generation of oxidation products from dsDNA was observed with the two chiral forms of Ru(OP)2dppz2+. This represents the first report that the flash-quench technique with MV2+ as the quencher can oxidize dsDNA effectively to form dIz and dZ via the Ru3+/O2•- mediated mechanism. Our new findings provide a novel method to generate two radicals simultaneously, G (-H)• and O2•-, in close proximity to one another in dsDNA.
Collapse
Affiliation(s)
- Jie Shao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Jing Chen
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Ruo-Xian Ke
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Zhi-Sheng Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Jiao-Yan Mao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Rong Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, PR China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Chemical Resource Engineering, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
4
|
Huang R, Huang CH, Chen J, Yan ZY, Tang M, Shao J, Cai K, Zhu BZ. Unprecedented enantio-selective live-cell mitochondrial DNA super-resolution imaging and photo-sensitizing by the chiral ruthenium polypyridyl DNA "light-switch". Nucleic Acids Res 2023; 51:11981-11998. [PMID: 37933856 PMCID: PMC10711558 DOI: 10.1093/nar/gkad799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is known to play a critical role in cellular functions. However, the fluorescent probe enantio-selectively targeting live-cell mtDNA is rare. We recently found that the well-known DNA 'light-switch' [Ru(phen)2dppz]Cl2 can image nuclear DNA in live-cells with chlorophenolic counter-anions via forming lipophilic ion-pairing complex. Interestingly, after washing with fresh-medium, [Ru(phen)2dppz]Cl2 was found to re-localize from nucleus to mitochondria via ABC transporter proteins. Intriguingly, the two enantiomers of [Ru(phen)2dppz]Cl2 were found to bind enantio-selectively with mtDNA in live-cells not only by super-resolution optical microscopy techniques (SIM, STED), but also by biochemical methods (mitochondrial membrane staining with Tomo20-dronpa). Using [Ru(phen)2dppz]Cl2 as the new mtDNA probe, we further found that each mitochondrion containing 1-8 mtDNA molecules are distributed throughout the entire mitochondrial matrix, and there are more nucleoids near nucleus. More interestingly, we found enantio-selective apoptotic cell death was induced by the two enantiomers by prolonged visible light irradiation, and in-situ self-monitoring apoptosis process can be achieved by using the unique 'photo-triggered nuclear translocation' property of the Ru complex. This is the first report on enantio-selective targeting and super-resolution imaging of live-cell mtDNA by a chiral Ru complex via formation and dissociation of ion-pairing complex with suitable counter-anions.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Environmental Science and Technology, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
5
|
Saeed HK, Jarman PJ, Sreedharan S, Mowll R, Auty AJ, Chauvet AAP, Smythe CGW, de la Serna JB, Thomas JA. From Chemotherapy to Phototherapy - Changing the Therapeutic Action of a Metallo-Intercalating Ru II -Re I Luminescent System by Switching its Sub-Cellular Location. Chemistry 2023; 29:e202300617. [PMID: 37013945 PMCID: PMC10946911 DOI: 10.1002/chem.202300617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/05/2023]
Abstract
The synthesis of a new heterodinuclear ReI RuII metallointercalator containing RuII (dppz) and ReI (dppn) moieties is reported. Cell-free studies reveal that the complex has similar photophysical properties to its homoleptic M(dppz) analogue and it also binds to DNA with a similar affinity. However, the newly reported complex has very different in-cell properties to its parent. In complete contrast to the homoleptic system, the RuII (dppz)/ReI (dppn) complex is not intrinsically cytotoxic but displays appreciable phototoxic, despite both complexes displaying very similar quantum yields for singlet oxygen sensitization. Optical microscopy suggests that the reason for these contrasting biological effects is that whereas the homoleptic complex localises in the nuclei of cells, the RuII (dppz)/ReI (dppn) complex preferentially accumulates in mitochondria. These observations illustrate how even small structural changes in metal based therapeutic leads can modulate their mechanism of action.
Collapse
Affiliation(s)
- Hiwa K. Saeed
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Sreejesh Sreedharan
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
- School of Human ScienceUniversity of DerbyDerbyDE22 1GBUK
| | - Rachel Mowll
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | | | | | - Carl G. W. Smythe
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Jorge Bernardino de la Serna
- Faculty of MedicineNational Heart and Lung InstituteImperial CollegeLondonSW7 2AZUK
- Central Laser FacilityRutherford Appleton LaboratoryMRC-Research Complex at Harwell Science and Technology Facilities CouncilHarwellOX11 0FAUK
| | - Jim A. Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
6
|
Qin M, Shao B, Lin L, Zhang ZQ, Sheng ZG, Qin L, Shao J, Zhu BZ. Molecular mechanism of the unusual biphasic effects of the natural compound hinokitiol on iron-induced cellular DNA damage. Free Radic Biol Med 2023; 194:163-171. [PMID: 36476568 DOI: 10.1016/j.freeradbiomed.2022.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hinokitiol is a natural monoterpene compound found in the heartwood of cupressaceous plants that have anticancer and anti-inflammatory properties. However, few studies have focused on its effect on iron-mediated cellular DNA damage. Here we show that hinokitiol exhibited unusual biphasic effects on iron-induced DNA damage in a molar ratio (hinokitiol/iron) dependent manner in HeLa cells. Under low ratios (<3:1), hinokitiol markedly enhanced DNA damage induced by Fe(II) or Fe(II)-H2O2; However, when the ratios increased over 3:1, the DNA damage was progressively inhibited. We found that the total cytoplasmic and nuclear iron concentration increased as the ratios of hinokitiol/iron increased. However, the cellular level of labile iron pool (LIP) only increased at ratios lower than 3, and the ROS generation is consistent with LIP change. Hinokitiol was found to interact with iron to form lipophilic hinokitiol-iron complexes with different stoichiometry and redox-activity by complementary applications of various analytical methods. Taken together, we propose that the enhancement of iron-induced cellular DNA damage by hinokitiol at low ratios (<3:1) was due to formation of lipophilic and redox-active iron complexes which facilitated cellular iron uptake and •OH production, while the inhibition at ratios higher than 3 was due to formation of redox-inactive iron complexes. These new findings will help us to design more effective drugs for the prevention and treatment of a series of iron-related diseases via regulating the two critical physicochemical factors (lipophilicity and redox activity of iron complexes) by simple natural compounds with iron-chelating properties.
Collapse
Affiliation(s)
- Miao Qin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bo Shao
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Li Lin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Shao B, Mao L, Tang M, Yan ZY, Shao J, Huang CH, Sheng ZG, Zhu BZ. Caffeic Acid Phenyl Ester (CAPE) Protects against Iron-Mediated Cellular DNA Damage through Its Strong Iron-Binding Ability and High Lipophilicity. Antioxidants (Basel) 2021; 10:antiox10050798. [PMID: 34069954 PMCID: PMC8157578 DOI: 10.3390/antiox10050798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) and its structurally-related caffeic acid (CA), ferulic acid (FA) and ethyl ferulate (EF) are constituents of honeybee propolis that have important pharmacological activities. This study found that CAPE—but not CA, FA, and EF—could effectively prevent cellular DNA damage induced by overloaded iron through decreasing the labile iron pool (LIP) levels in HeLa cells. Interestingly, CAPE was found to be more effective than CA in protecting against plasmid DNA damage induced by Fe(II)–H2O2 or Fe(III)–citrate–ascorbate-H2O2 via the inhibition of hydroxyl radical (•OH) production. We further provided more direct and unequivocal experimental evidences for the formation of inactive CAPE/CA–iron complexes. CAPE was found to have a stronger iron-binding ability and a much higher lipophilicity than CA. Taken together, we propose that the esterification of the carboxylic moiety with phenethyl significantly enhanced the iron-binding ability and lipophilicity of CAPE, which is also responsible for its potent protection against iron-mediated cellular DNA damage. A study on the iron coordination mechanism of such natural polyphenol antioxidants will help to design more effective antioxidants for the treatment and prevention of diseases caused by metal-induced oxidative stress, as well as help to understand the structure–activity relationships of these compounds.
Collapse
Affiliation(s)
- Bo Shao
- Department of Public Health, Jining Medical University, Jining 272067, China;
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
- Correspondence: (L.M.); (B.-Z.Z.); Tel.: +86-10-62849030 (B.-Z.Z.)
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
- Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing 100085/Hong Kong 999077, China
- Correspondence: (L.M.); (B.-Z.Z.); Tel.: +86-10-62849030 (B.-Z.Z.)
| |
Collapse
|
8
|
Devereux SJ, Poynton FE, Baptista FR, Gunnlaugsson T, Cardin CJ, Sazanovich IV, Towrie M, Kelly JM, Quinn SJ. Caught in the Loop: Binding of the [Ru(phen) 2 (dppz)] 2+ Light-Switch Compound to Quadruplex DNA in Solution Informed by Time-Resolved Infrared Spectroscopy. Chemistry 2020; 26:17103-17109. [PMID: 32725823 DOI: 10.1002/chem.202002165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 01/05/2023]
Abstract
Ultrafast time-resolved infrared (TRIR) is used to report on the binding site of the [Ru(phen)2 (dppz)]2+ "light-switch" complex with both bimolecular (Oxytricha nova telomere) and intramolecular (human telomere) guanine-quadruplex structures in both K+ and Na+ containing solutions. TRIR permits the simultaneous monitoring both of the "dark" and "bright" states of the complex and of the quadruplex nucleobase bases, the latter via a Stark effect induced by the excited state of the complex. These data are used to establish the contribution of guanine base stacking and loop interactions to the binding site of this biologically relevant DNA structure in solution. A particularly striking observation is the strong thymine signal observed for the Na+ form of the human telomere sequence, which is expected to be in the anti-parallel conformation.
Collapse
Affiliation(s)
| | - Fergus E Poynton
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland.,Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, 2, Ireland
| | | | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland.,Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, 2, Ireland
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | | | - Michael Towrie
- Rutherford Appleton Laboratory, STFC, Harwell Campus, OX11 0FA, UK
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin, 4, Ireland
| |
Collapse
|
9
|
Huang R, Feng FP, Huang CH, Mao L, Tang M, Yan ZY, Shao B, Qin L, Xu T, Xue YH, Zhu BZ. Chiral Os(II) Polypyridyl Complexes as Enantioselective Nuclear DNA Imaging Agents Especially Suitable for Correlative High-Resolution Light and Electron Microscopy Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3465-3473. [PMID: 31913004 DOI: 10.1021/acsami.9b19776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The high-resolution technique transmission electron microscopy (TEM), with OsO4 as the traditional fixative, is an essential tool for cell biology and medicine. Although OsO4 has been extensively used, it is far from perfect because of its high volatility and toxicity. Os(II) polypyridyl complexes like [Os(phen)2(dppz)]2+ (phen = 1,10-phenanthroline; dppz = dipyridophenazine) are not only the well-known molecular DNA "light-switches" but also the potential ideal candidates for TEM studies. Here, we report that the cell-impermeable cationic [Os(phen)2(dppz)]2+ can be preferentially delivered into the live-cell nucleus through ion-pairing with chlorophenolate counter-anions, where it functions as an unparalleled enantioselective nuclear DNA imaging reagent especially suitable for correlative light and electron microscopy (CLEM) studies in both living and fixed cells, which can clearly visualize chromosome aggregation and decondensation during mitosis simultaneously. We propose that the chiral Os(II) polypyridyl complexes can be used as a distinctive group of enantioselective high-resolution CLEM imaging probes for live-cell nuclear DNA studies.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Feng-Ping Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Bo Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Tao Xu
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Yan-Hong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- Joint Institute for Environmental Science , Research Center for Eco-Environmental Sciences and Hong Kong Baptist University , Kowloon 999077 , Hong Kong
| |
Collapse
|
10
|
Huang R, Zhu JQ, Tang M, Huang CH, Zhang ZH, Sheng ZG, Liu S, Zhu BZ. Unexpected reversible and controllable nuclear uptake and efflux of the DNA “light-switching” Ru(ii)-polypyridyl complex in living cellsviaion-pairing with chlorophenolate counter-anions. J Mater Chem B 2020; 8:10327-10336. [DOI: 10.1039/d0tb00821d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An in-depth understanding of the mechanisms of cellular uptake and efflux would facilitate the design of metal complexes with not only better functionality and targeted theranostic efficiency, but also with controlled toxicity.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Beijing
- China
| | - Jian-Qiang Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Beijing
- China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Beijing
- China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhi-Hui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Beijing
- China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Beijing
- China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
11
|
Huang R, Huang CH, Shao J, Zhu BZ. Enantioselective and Differential Fluorescence Lifetime Imaging of Nucleus and Nucleolus by the Two Enantiomers of Chiral Os(II) Polypyridyl Complex. J Phys Chem Lett 2019; 10:5909-5916. [PMID: 31538789 DOI: 10.1021/acs.jpclett.9b02075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nucleolus is an important subnuclear structure, but very few dyes are available for nucleolar imaging. Here we show that the Λ-enantiomer of [Os(phen)2(dppz)]Cl2 can differentially distinguish the nucleolus from nucleus in living cells with tetrachlorophenolate as counteranion, while the Δ-enantiomer can do so in fixed cells by FLIM imaging. Further studies with three specific metabolic inhibitors for nucleolar protein synthesis found that the lifetime changes of the two enantiomers in the nucleolus can reflect the alteration of the cellular microenvironment, which is related to the general pathological status of the nucleolus. We then observed dynamical architecture changes of the nucleolus, chromosome and spindle apparatus during cell differentiation by these two enantiomers. The chiral Os(II) complex shows many advantages as compared to the commercially available nucleolus dye Syto 9: it displays a much larger Stokes shift value with a near-red emission and a longer lifetime, it can image spindle apparatus during mitosis, and more importantly, it is enantioselective.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
- Linus Pauling Institute , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|