1
|
Thupakula U, Soe WH, Faria J, Sarkar PK, Okano AO, Sakurai M, Joachim C. Low-temperature UHV scanning tunneling microscope double sample holder for in situ exchangeable clean room processed samples. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:043701. [PMID: 40167394 DOI: 10.1063/5.0228294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
A generalization of the double sample holder (DSH) concept is presented for an ultra-high vacuum (UHV) low-temperature (LT) multi-probe scanning tunneling microscope (STM). In UHV, the DSH is carrying, side-by-side, a reference metal sample [Au(111) single crystal for STM tip apex preparation] and an ancillary stand-alone small sample holder (for samples originating from a clean room) that can be mounted in situ in/out of the DSH plate. STM tip navigation on both sample surfaces is performed using a UHV scanning electron microscope positioned above the STM stage. For demonstration, clean room nanofabricated graphene nano-gears (diameter down to 25 nm) on a sapphire sample are characterized using STM. The STM tip apices are cleaned on the atomically precise and UHV cleaned Au(111) reference sample surface. Using our new DSH plate and in situ STM tip apex re-preparation on the reference metallic sample, we demonstrate how a clean room originating sample can be imaged at the atomic resolution using our LT-UHV 4-STM.
Collapse
Affiliation(s)
- Umamahesh Thupakula
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES), Centre National de la Recherche Scientifique (CNRS), 29 Rue J. Marvig, BP 4347, 31055 Toulouse Cedex, France
| | - We-Hyo Soe
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES), Centre National de la Recherche Scientifique (CNRS), 29 Rue J. Marvig, BP 4347, 31055 Toulouse Cedex, France
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jimmy Faria
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES), Centre National de la Recherche Scientifique (CNRS), 29 Rue J. Marvig, BP 4347, 31055 Toulouse Cedex, France
| | - Piyush Kanti Sarkar
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES), Centre National de la Recherche Scientifique (CNRS), 29 Rue J. Marvig, BP 4347, 31055 Toulouse Cedex, France
| | - A Omura Okano
- Tsukuba University, Tsukuba, Ibaraki 305-8577, Japan
| | - Makoto Sakurai
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Christian Joachim
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES), Centre National de la Recherche Scientifique (CNRS), 29 Rue J. Marvig, BP 4347, 31055 Toulouse Cedex, France
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
2
|
Li C, Lu Y, Li R, Wang L, Weismann A, Berndt R. Mechanically Interlocked Molecular Rotors on Pb(100). NANO LETTERS 2025; 25:1504-1511. [PMID: 39806267 PMCID: PMC11783589 DOI: 10.1021/acs.nanolett.4c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The mechanical coupling between molecules represents a promising route for the development of molecular machines. Constructing molecular gears requires easily rotatable and mutually interlocked pinions. Using scanning tunneling microscopy (STM), it is demonstrated that aluminum phthalocyanine (AlPc) molecules on Pb(100) exhibit these properties. Unlike other phthalocyanines on this substrate, isolated AlPc molecules fluctuate between two azimuthal orientations. Density functional theory (DFT) calculations confirm two stable orientations of single molecules and indicate a relatively low rotation barrier. In STM-constructed dimers and trimers, fluctuations diminish, and various molecular orientations are stabilized. Induced collective rotation of all molecules in the trimers is observed, demonstrating their mechanical interlocking. Potential functions describing angle and distance dependencies of intermolecular and molecule-substrate interactions are derived from DFT calculations of dimers; 52 experimentally determined trimer geometries are reproduced using these potentials. This intuitive approach may prove to be useful in modeling larger structures beyond the scope of quantum mechanical descriptions.
Collapse
Affiliation(s)
- Chao Li
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Yan Lu
- Department
of Physics, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Ruoning Li
- CAS
Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS
Research/Education Center for Excellence in Molecular Sciences, Beijing
National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Li Wang
- Department
of Physics, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Alexander Weismann
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Richard Berndt
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
3
|
Subramaniam JD, Hattori Y, Asanoma F, Nishino T, Yasuhara K, Martin CJ, Rapenne G. Synthesis of Ce(IV) Heteroleptic Double-Decker Complex with a New Helical Naphthalocyanine as a Potential Gearing Subunit. Chemistry 2024; 30:e202402470. [PMID: 39073203 DOI: 10.1002/chem.202402470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
This paper describes the synthesis of a cerium(IV)-based molecular gear composed of a thioether functionalized phthalocyanine anchoring ligand, and a helical naphthalocyanine rotating cogwheel functionalized with four carbazoles. The naphthalocyanine ligand 9 was obtained after eleven steps (overall yield of 0.2 %) as a mixture of three geometrical isomers, two of which are chiral and exhibit high levels of steric hindrance, as shown by DFT calculations. Their attributions have been made using 1H-NMR based on their different symmetry groups. The ratio of isomers was also determined and the prochiral C4h naphthalocyanine shown to be the major compound (55 %). Its heteroleptic complexation with cerium (IV) and the anchoring phthalocyanine ligand 10 gave the targeted molecular gear in a 16 % yield.
Collapse
Affiliation(s)
- Jeevithra Dewi Subramaniam
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Yohei Hattori
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Fumio Asanoma
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Toshio Nishino
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Colin J Martin
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| |
Collapse
|
4
|
Gnannt F, Gerwien A, Waldmannstetter S, Gracheva S, Dube H. Directional Bias in Molecular Photogearing Evidenced by LED-Coupled Chiral Cryo-HPLC. Angew Chem Int Ed Engl 2024; 63:e202405299. [PMID: 38958449 DOI: 10.1002/anie.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Molecular gearing systems are technomimetic nanoscale analogues to complex geared machinery in the macroscopic world. They are defined as systems incorporating intermeshed movable parts which perform correlated rotational motions by mechanical engagement. Only recently, new methods to actively drive molecular gearing motions instead of relying on passive thermal activation have been developed. Further progress in this endeavor will pave the way for unidirectional molecular gearing devices with a distinct type of molecular machine awaiting its realization. Within this work an essential step towards this goal is achieved by evidencing directional biases for the light-induced rotations in our molecular photogear system. Using a custom-designed LED-coupled chiral cryo-HPLC setup for the in situ irradiation of enantiomeric analytes, an intrinsic selectivity for clockwise or counterclockwise rotations was elucidated experimentally. Significant directional biases in the photogearing processes and light-induced single bond rotations (SBRs) are observed for our photogear with directional preferences of up to 4.8 : 1. Harnessing these effects will allow to rationally design and construct a fully directional molecular gearing motor in the future.
Collapse
Affiliation(s)
- Frederik Gnannt
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Aaron Gerwien
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Sven Waldmannstetter
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Sofia Gracheva
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Sakurai M, Okano AO, Iwasaki T, Joachim C. Cutting nanodisks in graphene down to 20 nm in diameter. NANOTECHNOLOGY 2024; 35:315301. [PMID: 38640905 DOI: 10.1088/1361-6528/ad40b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
A direct focused He+beam direct machining is presented to fabricate solid-state nano-disk at the surface of a graphene multilayer micro-flake deposited on an Au/Ti/sapphire surface. At irradiation doses larger than 5.0 × 1017ions cm-2and with a beam size well below 1 nm, graphene disks down to 20 nm in diameter have been machined with for nano-disk down to 50 nm in diameter, a central hole for preparing the positioning of a rotation axle. The local heat generated by this irradiation is inducing a partial graphene amorphization and deformation, leading to a complete graphene nano-disk vaporization at doses larger than 5 × 1018ions cm-2. A dry transfer printing technique followed by a graphene surface cleaning was used to transfer the nano-disks from its initial surface to a fresh and clean surface. Tapping mode atomic force micrograph have been recorded to follow the vaporization as a function of the He+dose to confirm the graphene solid-state nano-disk fabrication limit to about 20 nm with this process.
Collapse
Affiliation(s)
- Makoto Sakurai
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | - Takuya Iwasaki
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Christian Joachim
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES), Centre National de la Recherche Scientifique (CNRS), 29 Rue J. Marvig, BP 4347, 31055 Toulouse Cedex, France
| |
Collapse
|
6
|
Ariga K, Song J, Kawakami K. Molecular machines working at interfaces: physics, chemistry, evolution and nanoarchitectonics. Phys Chem Chem Phys 2024; 26:13532-13560. [PMID: 38654597 DOI: 10.1039/d4cp00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
7
|
Ariga K. 2D Materials Nanoarchitectonics for 3D Structures/Functions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:936. [PMID: 38399187 PMCID: PMC10890396 DOI: 10.3390/ma17040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
It has become clear that superior material functions are derived from precisely controlled nanostructures. This has been greatly accelerated by the development of nanotechnology. The next step is to assemble materials with knowledge of their nano-level structures. This task is assigned to the post-nanotechnology concept of nanoarchitectonics. However, nanoarchitectonics, which creates intricate three-dimensional functional structures, is not always easy. Two-dimensional nanoarchitectonics based on reactions and arrangements at the surface may be an easier target to tackle. A better methodology would be to define a two-dimensional structure and then develop it into a three-dimensional structure and function. According to these backgrounds, this review paper is organized as follows. The introduction is followed by a summary of the three issues; (i) 2D to 3D dynamic structure control: liquid crystal commanded by the surface, (ii) 2D to 3D rational construction: a metal-organic framework (MOF) and a covalent organic framework (COF); (iii) 2D to 3D functional amplification: cells regulated by the surface. In addition, this review summarizes the important aspects of the ultimate three-dimensional nanoarchitectonics as a perspective. The goal of this paper is to establish an integrated concept of functional material creation by reconsidering various reported cases from the viewpoint of nanoarchitectonics, where nanoarchitectonics can be regarded as a method for everything in materials science.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
8
|
Arpa EM, Stafström S, Durbeej B. A Proof-of-Principle Design for Through-Space Transmission of Unidirectional Rotary Motion by Molecular Photogears. Chemistry 2024; 30:e202303191. [PMID: 37906675 DOI: 10.1002/chem.202303191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
The construction of molecular photogears that can achieve through-space transmission of the unidirectional double-bond rotary motion of light-driven molecular motors onto a remote single-bond axis is a formidable challenge in the field of artificial molecular machines. Here, we present a proof-of-principle design of such photogears that is based on the possibility of using stereogenic substituents to control both the relative stabilities of two helical forms of the photogear and the double-bond photoisomerization reaction that connects them. The potential of the design was verified by quantum-chemical modeling through which photogearing was found to be a favorable process compared to free-standing single-bond rotation ("slippage"). Overall, our study unveils a surprisingly simple approach to realizing unidirectional photogearing.
Collapse
Affiliation(s)
- Enrique M Arpa
- Division of Theoretical Chemistry, IFM, Linköping University, 58183, Linköping, Sweden
| | - Sven Stafström
- Division of Theoretical Physics, IFM, Linköping University, 58183, Linköping, Sweden
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM, Linköping University, 58183, Linköping, Sweden
| |
Collapse
|
9
|
Ariga K. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:271. [PMID: 38204123 PMCID: PMC10780059 DOI: 10.3390/ma17010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
10
|
Omoto K, Shi M, Yasuhara K, Kammerer C, Rapenne G. Extended Tripodal Hydrotris(indazol-1-yl)borate Ligands as Ruthenium-Supported Cogwheels for On-Surface Gearing Motions. Chemistry 2023; 29:e202203483. [PMID: 36695199 DOI: 10.1002/chem.202203483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
This paper reports the synthesis of ruthenium-based molecular gear prototypes composed of a brominated or non-brominated pentaphenylcyclopentadienyl ligand as an anchoring unit and a tripodal ligand with aryl-functionalized indazoles as a rotating cogwheel. Single crystal structures of the ruthenium complexes revealed that the appended aryl groups increase the apparent diameter of the cogwheel rendering them larger than the diameter of the anchoring units and consequently making them suitable for intermolecular gearing motions once the complexes will be adsorbed on a surface.
Collapse
Affiliation(s)
- Kenichiro Omoto
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Menghua Shi
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan.,Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan.,CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| |
Collapse
|
11
|
Ariga K. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. MICROMACHINES 2022; 14:mi14010025. [PMID: 36677086 PMCID: PMC9860627 DOI: 10.3390/mi14010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 05/14/2023]
Abstract
This review will focus on micromachines and microrobots, which are objects at the micro-level with similar machine functions, as well as nano-level objects such as molecular machines and nanomachines. The paper will initially review recent examples of molecular machines and microrobots that are not limited to interfaces, noting the diversity of their functions. Next, examples of molecular machines and micromachines/micro-robots functioning at the air-water interface will be discussed. The behaviors of molecular machines are influenced significantly by the specific characteristics of the air-water interface. By placing molecular machines at the air-water interface, the scientific horizon and depth of molecular machine research will increase dramatically. On the other hand, for microrobotics, more practical and advanced systems have been reported, such as the development of microrobots and microswimmers for environmental remediations and biomedical applications. The research currently being conducted on the surface of water may provide significant basic knowledge for future practical uses of molecular machines and microrobots.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
12
|
Shen X, Song J, Kawakami K, Ariga K. Molecule-to-Material-to-Bio Nanoarchitectonics with Biomedical Fullerene Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5404. [PMID: 35955337 PMCID: PMC9369991 DOI: 10.3390/ma15155404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nanoarchitectonics integrates nanotechnology with various other fields, with the goal of creating functional material systems from nanoscale units such as atoms, molecules, and nanomaterials. The concept bears strong similarities to the processes and functions seen in biological systems. Therefore, it is natural for materials designed through nanoarchitectonics to truly shine in bio-related applications. In this review, we present an overview of recent work exemplifying how nanoarchitectonics relates to biology and how it is being applied in biomedical research. First, we present nanoscale interactions being studied in basic biology and how they parallel nanoarchitectonics concepts. Then, we overview the state-of-the-art in biomedical applications pursuant to the nanoarchitectonics framework. On this basis, we take a deep dive into a particular building-block material frequently seen in nanoarchitectonics approaches: fullerene. We take a closer look at recent research on fullerene nanoparticles, paying special attention to biomedical applications in biosensing, gene delivery, and radical scavenging. With these subjects, we aim to illustrate the power of nanomaterials and biomimetic nanoarchitectonics when applied to bio-related applications, and we offer some considerations for future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| |
Collapse
|
13
|
Lin HH, Croy A, Gutierrez R, Joachim C, Cuniberti G. A nanographene disk rotating a single molecule gear on a Cu(111) surface. NANOTECHNOLOGY 2022; 33:175701. [PMID: 35026738 DOI: 10.1088/1361-6528/ac4b4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
On Cu(111) surface and in interaction with a single hexa-tert-butylphenylbenzene molecule-gear, the rotation of a graphene nanodisk was studied using the large-scale atomic/molecular massively parallel simulator molecular dynamics simulator. To ensure a transmission of rotation to the molecule-gear, the graphene nanodisk is functionalized on its circumference bytert-butylphenyl chemical groups. The rotational motion can be categorized underdriving, driving and overdriving regimes calculating the locking coefficient of this mechanical machinery as a function of external torque applied to the nanodisk. The rotational friction with the surface of both the phononic and electronic contributions is investigated. For small size graphene nanodisks, the phononic friction is the main contribution. Electronic friction dominates for the larger disks putting constrains on the experimental way of achieving the transfer of rotation from a graphene nanodisk to a single molecule-gear.
Collapse
Affiliation(s)
- H-H Lin
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, D-01069 Dresden, Germany
| | - A Croy
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, D-01069 Dresden, Germany
| | - R Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, D-01069 Dresden, Germany
| | - C Joachim
- GNS and MANA Satellite, CEMES-CNRS, 29 rue J. Marvig, F-31055 Toulouse Cedex, France
| | - G Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, D-01069 Dresden, Germany
| |
Collapse
|
14
|
Lin HH, Heinze J, Croy A, Gutiérrez R, Cuniberti G. Effect of lubricants on the rotational transmission between solid-state gears. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:54-62. [PMID: 35059276 PMCID: PMC8744455 DOI: 10.3762/bjnano.13.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Lubricants are widely used in macroscopic mechanical systems to reduce friction and wear. However, on the microscopic scale, it is not clear to what extent lubricants are beneficial. Therefore, in this study, we consider two diamond solid-state gears at the nanoscale immersed in different lubricant molecules and perform classical MD simulations to investigate the rotational transmission of motion. We find that lubricants can help to synchronize the rotational transmission between gears regardless of the molecular species and the center-of-mass distance. Moreover, the influence of the angular velocity of the driving gear is investigated and shown to be related to the bond formation process between gears.
Collapse
Affiliation(s)
- Huang-Hsiang Lin
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, Dresden, Germany
| | - Jonathan Heinze
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, Dresden, Germany
| | - Alexander Croy
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, Dresden, Germany
| | - Rafael Gutiérrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, Dresden, Germany
| |
Collapse
|
15
|
Gisbert Y, Abid S, Kammerer C, Rapenne G. Molecular Gears: From Solution to Surfaces. Chemistry 2021; 27:12019-12031. [PMID: 34131971 DOI: 10.1002/chem.202101489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 01/18/2023]
Abstract
This review highlights the major efforts devoted to the development of molecular gears over the past 40 years, from pioneering covalent bis-triptycyl systems undergoing intramolecular correlated rotation in solution, to the most recent examples of gearing systems anchored on a surface, which allow intermolecular transmission of mechanical power. Emphasis is laid on the different strategies devised progressively to control the architectures of molecular bevel and spur gears, as intramolecular systems in solution or intermolecular systems on surfaces, while aiming at increased efficiency, complexity and functionality.
Collapse
Affiliation(s)
- Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Seifallah Abid
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France.,Division of Materials Science, Nara Institute of Science and Technology, 8916-5, Nara, Japan
| |
Collapse
|
16
|
Zhang X, Dai X, Han Q, Zhao J, Jing D, Liu F, Li L, Xin Y, Liu K. Prediction and New Insight for the Drag Reduction of Turbulent Flow with Polymers and Its Degradation Mechanism. J Phys Chem Lett 2021; 12:7201-7206. [PMID: 34310148 DOI: 10.1021/acs.jpclett.1c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A physicochemical understanding of the mechanism of turbulent flow drag reduction with polymer and its degradation is of great interest from both science and industry perspectives. Although the correlation based on the Fourier series has been proposed to predict the drag reduction and its degradation, its physical meaning was not clear until now. This letter aims to clarify this issue. We develop a comprehensive model to predict the drag reduction and degradation of polymers in turbulent flow from a chemical thermodynamics and kinetics viewpoint. We demonstrate that the Fourier series employed to predict the drag reduction and its degradation is due to the viscoelastic property of drag-reducing polymer solution, and the phase angle in the model, in physical nature, represents the hysteresis of the polymer in turbulent flow. Besides, our new insight of drag reduction with flexible polymers can also explain why a maximum drag reduction in rotational flow appears before degradation happens.
Collapse
Affiliation(s)
- Xin Zhang
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, People's Republic of China
| | - Xiaodong Dai
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, People's Republic of China
| | - Qiaorong Han
- Oil & Gas Technology Research Institute of Changqing Oilfield Company, Xi'an, Shaanxi 710018, People's Republic of China
| | - Jishi Zhao
- Yunfu (Foshan) R&D Center of Hydrogen Energy Standardization, Yunfu, Guangdong 527326, People's Republic of China
| | - Dengwei Jing
- State Key Laboratory of Multiphase Flow in Power Engineering & International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Fei Liu
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, People's Republic of China
| | - Lei Li
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, People's Republic of China
| | - Yanping Xin
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, People's Republic of China
| | - Kun Liu
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, People's Republic of China
| |
Collapse
|
17
|
Abid S, Gisbert Y, Kojima M, Saffon-Merceron N, Cuny J, Kammerer C, Rapenne G. Desymmetrised pentaporphyrinic gears mounted on metallo-organic anchors. Chem Sci 2021; 12:4709-4721. [PMID: 34163729 PMCID: PMC8179540 DOI: 10.1039/d0sc06379g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/13/2021] [Indexed: 11/21/2022] Open
Abstract
Mastering intermolecular gearing is crucial for the emergence of complex functional nanoscale machineries. However, achieving correlated motion within trains of molecular gears remains highly challenging, due to the multiple degrees of freedom of each cogwheel. In this context, we designed and synthesised a series of star-shaped organometallic molecular gears incorporating a hydrotris(indazolyl)borate anchor to prevent diffusion on the surface, a central ruthenium atom as a fixed rotation axis, and an azimuthal pentaporphyrinic cyclopentadienyl cogwheel specifically labelled to monitor its motion by non-time-resolved Scanning Tunneling Microscopy (STM). Desymmetrisation of the cogwheels was first achieved sterically, i.e. by introducing one tooth longer than the other four. For optimal mechanical interactions, chemical labelling was also investigated as a preferential way to induce local contrast in STM images, and the electronic properties of one single paddle were modulated by varying the porphyrinic scaffold or the nature of the central metal. To reach such a structural diversity, our modular synthetic approach relied on sequential cross-coupling reactions on a penta(p-halogenophenyl)cyclopentadienyl ruthenium(ii) key building block, bearing a single pre-activated p-iodophenyl group. Chemoselective Sonogashira or more challenging Suzuki-Miyaura reactions allowed the controlled introduction of the tagged porphyrinic tooth, and the subsequent four-fold cross-couplings yielded the prototypes of pentaporphyrinic molecular gears for on-surface studies, incorporating desymmetrised cogwheels over 5 nm in diameter.
Collapse
Affiliation(s)
- Seifallah Abid
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
| | - Yohan Gisbert
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
| | - Mitsuru Kojima
- Division of Materials Science, Nara Institute of Science and Technology, NAIST 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Nathalie Saffon-Merceron
- Université de Toulouse, UPS, Institut de Chimie de Toulouse ICT FR 2599, 118 Route de Narbonne 31062 Toulouse France
| | - Jérôme Cuny
- LCPQ, Université de Toulouse, CNRS 118 Route de Narbonne F-31062 Toulouse Cedex 9 France
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
- Division of Materials Science, Nara Institute of Science and Technology, NAIST 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
18
|
Au Yeung KH, Kühne T, Eisenhut F, Kleinwächter M, Gisbert Y, Robles R, Lorente N, Cuniberti G, Joachim C, Rapenne G, Kammerer C, Moresco F. Transmitting Stepwise Rotation among Three Molecule-Gear on the Au(111) Surface. J Phys Chem Lett 2020; 11:6892-6899. [PMID: 32787202 DOI: 10.1021/acs.jpclett.0c01747] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The realization of a train of molecule-gears working under the tip of a scanning tunneling microscope (STM) requires a stable anchor of each molecule to the metal surface. Such an anchor can be promoted by a radical state of the molecule induced by a dissociation reaction. Our results, rationalized by density functional theory calculations, reveal that such an open radical state at the core of star-shaped pentaphenylcyclopentadiene (PPCP) favors anchoring. Furthermore, to allow the transmission of motion by STM manipulation, the molecule-gears should be equipped with specific groups facilitating the tip-molecule interactions. In our case, a tert-butyl group positioned at one tooth end of the gear benefits both the tip-induced manipulation and the monitoring of rotation. With this optimized molecule, we achieve reproducible and stepwise rotations of the single gears and transmit rotations for up to three interlocked units.
Collapse
Affiliation(s)
| | | | | | | | - Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 31055 Toulouse, France
| | - Roberto Robles
- Centro de Fisica de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Nicolas Lorente
- Centro de Fisica de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center, 20018 Donostia-S. Sebastian, Spain
| | | | | | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 31055 Toulouse, France
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
19
|
Ariga K. The evolution of molecular machines through interfacial nanoarchitectonics: from toys to tools. Chem Sci 2020; 11:10594-10604. [PMID: 34094314 PMCID: PMC8162416 DOI: 10.1039/d0sc03164j] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Molecular machines are often regarded as molecular artworks and sometimes as fancy molecular toys. However, many researchers strive to operate molecular machines as useful tools for realistic practical applications. In this perspective article, shifting the working environment of molecular machines from solution to interfacial media is discussed from the viewpoint of their evolution from scientific toys to useful tools. Following a short description of traditional research into molecular machines in solution and their nanotechnological manipulation on clean solid surfaces, pioneering research into molecular machine operation at dynamic interfaces, such as liquid surfaces, is discussed, along with cutting-edge research into molecular machine functions in living cells and their models. Biomolecular machines within organisms are the products of evolution over billions of years. We may nanoarchitect such sophisticated functional systems with artificial molecular machines within much shorter periods.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| |
Collapse
|