1
|
Jha PK, Valekunja UK, Reddy AB. Chronic sleep curtailment expediates brain aging by activating the complement and coagulation cascades in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638886. [PMID: 40027811 PMCID: PMC11870557 DOI: 10.1101/2025.02.18.638886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Chronic sleep insufficiency is prevalent in modern society and has been associated with age-related neurodegenerative diseases. Loss of sleep accelerates the progression of neurodegeneration in animal models of neurological diseases. Here, we study whether chronic sleep curtailment leads to brain aging in wild-type animals without a genetic predisposition. We used a wild-type mouse model to simulate modern-day conditions of restricted sleep and compared the brain (cortex) proteome of young sleep-restricted animals with different aged control groups. We report the alteration of 149 proteins related to sleep and 1269 related to age with 96 proteins common between them. Through pathway analysis of proteins common to sleep restriction and aging, we discovered that the complement and coagulation cascade pathways were enriched by alterations of complement component 3 (C3), alpha-2-macroglobulin (A2M), fibrinogen alfa and beta chain (FGA and FGB). This is the first study indicating the possible role of the complement and coagulation pathways in brain aging and by chronic sleep restriction (CSR) in mice.
Collapse
Affiliation(s)
- Pawan K. Jha
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Utham K. Valekunja
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akhilesh B. Reddy
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Dutta S, Hensel J, Scott A, Mohallem R, Rossitto LAM, Khan HF, Johnson T, Ferreira CR, Marmolejo JF, Chen X, Jayant K, Aryal UK, Volpicelli-Daley L, Rochet JC. Synaptic phosphoproteome modifications and cortical circuit dysfunction are linked to the early-stage progression of alpha-synuclein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634820. [PMID: 39896549 PMCID: PMC11785254 DOI: 10.1101/2025.01.24.634820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cortical dysfunction is increasingly recognized as a major contributor to the non-motor symptoms associated with Parkinson's disease (PD) and other synucleinopathies. Although functional alterations in cortical circuits have been observed in preclinical PD models, the underlying molecular mechanisms are unclear. To bridge this knowledge gap, we investigated tissue-level changes in the cortices of rats and mice treated with alpha-synuclein (aSyn) seeds using a multi-omics approach. Our study revealed significant phosphoproteomic changes, but not global proteomic or lipid profiling changes, in the rat sensorimotor cortex 3 months after intrastriatal injection with aSyn preformed fibrils (PFFs). Gene ontology analysis of the phosphoproteomic data indicated that PFF administration impacted pathways related to synaptic transmission and cytoskeletal organization. Similar phosphoproteomic perturbations were observed in the sensorimotor cortex of mice injected intrastriatally or intracortically with aSyn PFFs. Functional analyses demonstrated increased neuronal firing rates and enhanced spike-spike coherence in the sensorimotor cortices of PFF-treated mice, indicating seed-dependent cortical circuit dysfunction. Bioinformatic analysis of the altered phosphosites suggested the involvement of several kinases, including casein kinase-2 (CK2), which has been previously implicated in PD pathology. Collectively, these findings highlight the importance of phosphorylation-mediated signaling pathways in the cortical response to aSyn pathology spread in PD and related synucleinopathies, setting the stage for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sayan Dutta
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer Hensel
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Alicia Scott
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Leigh-Ana M Rossitto
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Hammad Furqan Khan
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Teshawn Johnson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Jackeline F. Marmolejo
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Xu Chen
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Uma K. Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Gao M, Kong W, Liu K, Wen G, Yu Y, Zhu Y, Jiang Z, Wei K. Exploring Brain Imaging and Genetic Risk Factors in Different Progression States of Alzheimer's Disease Through OSnetNMF-Based Methods. J Mol Neurosci 2025; 75:7. [PMID: 39815147 DOI: 10.1007/s12031-024-02274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/29/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with no effective treatment, often preceded by mild cognitive impairment (MCI). Multimodal imaging genetics integrates imaging and genetic data to gain a deeper understanding of disease progression and individual variations. This study focuses on exploring the mechanisms that drive the transition from normal cognition to MCI and ultimately to AD. As an effective joint feature extraction and dimensionality reduction method, non-negative matrix factorization (NMF) and its improved variants, particularly the network-based non-negative matrix factorization (netNMF), have been widely used in multimodal analysis to mine brain imaging and genetic data by considering the interactions between different features. However, many of these methods overlook the importance of the coefficient matrix and do not address issues related to data accuracy and feature redundancy. To address these limitations, we propose an orthogonal sparse network non-negative matrix factorization (OSnetNMF) algorithm, which introduces orthogonal and sparse constraints based on netNMF. By establishing linear relationships between structural magnetic resonance imaging (sMRI) and corresponding gene expression data, OSnetNMF reduces feature redundancy and decreases correlation between data, resulting in more accurate and reliable biomarker extraction. Experiments demonstrate that the OSnetNMF algorithm can accurately identify risk regions of interest (ROIs) and key genes that characterize AD progression, revealing significant trends in ROI pairs such as l4thVen-HIF1A, rBst-MPO, and rBst-PTK2B. Comparative experiments show that the improved algorithm outperforms traditional methods, identifying more disease-related biomarkers and achieving better reconstruction performance.
Collapse
Affiliation(s)
- Min Gao
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, P. R. China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, P. R. China.
| | - Kun Liu
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, P. R. China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuemin Zhu
- CREATIS, University of Lyon, INSA Lyon, CNRS UMR 5220, Inserm U1294, Lyon, 69621, France
| | - Zhihan Jiang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, P. R. China
| | - Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Chi X, Yin S, Sun Y, Kou L, Zou W, Wang Y, Jin Z, Wang T, Xia Y. Astrocyte-neuron communication through the complement C3-C3aR pathway in Parkinson's disease. Brain Behav Immun 2025; 123:229-243. [PMID: 39288893 DOI: 10.1016/j.bbi.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
Neuroinflammation and autoimmunity are pivotal in the pathogenesis of neurodegenerative diseases. Complement activation and involvement of astrocyte-neuron C3/C3aR pathway have been observed, yet the mechanisms influencing α-synuclein (α-syn) pathology and neurodegeneration remain unclear. In this study, elevated levels of complement C3 were detected in the plasma of α-syn PFF-induced mice and the substantia nigra of A53T transgenic mice. Colocalization of complement C3 with astrocytes was also observed. Overexpression of complement C3 exacerbated motor dysfunction, dopaminergic neuron loss, and phosphorylated α-syn expression in mice injected with α-syn preformed fibrils (α-syn PFFs). Conversely, downregulation of complement C3 protected α-syn PFF-induced mice. Molecular investigations revealed that inhibition of Toll-like receptor 2 (TLR2) or NF-κB reduced complement C3 expression in primary astrocytes following α-syn PFF treatment. Astrocyte-neuron communication via the C3/C3aR pathway influenced α-syn PFF-induced neuronal apoptosis and α-syn pathology, potentially through modulation of GSK3β. These findings underscore the critical role of astrocyte-neuron communication via the C3/C3aR pathway in PD pathogenesis, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Demmings MD, da Silva Chagas L, Traetta ME, Rodrigues RS, Acutain MF, Barykin E, Datusalia AK, German-Castelan L, Mattera VS, Mazengenya P, Skoug C, Umemori H. (Re)building the nervous system: A review of neuron-glia interactions from development to disease. J Neurochem 2025; 169:e16258. [PMID: 39680483 DOI: 10.1111/jnc.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Neuron-glia interactions are fundamental to the development and function of the nervous system. During development, glia, including astrocytes, microglia, and oligodendrocytes, influence neuronal differentiation and migration, synapse formation and refinement, and myelination. In the mature brain, glia are crucial for maintaining neural homeostasis, modulating synaptic activity, and supporting metabolic functions. Neurons, inherently vulnerable to various stressors, rely on glia for protection and repair. However, glia, in their reactive state, can also promote neuronal damage, which contributes to neurodegenerative and neuropsychiatric diseases. Understanding the dual role of glia-as both protectors and potential aggressors-sheds light on their complex contributions to disease etiology and pathology. By appropriately modulating glial activity, it may be possible to mitigate neurodegeneration and restore neuronal function. In this review, which originated from the International Society for Neurochemistry (ISN) Advanced School in 2019 held in Montreal, Canada, we first describe the critical importance of glia in the development and maintenance of a healthy nervous system as well as their contributions to neuronal damage and neurological disorders. We then discuss potential strategies to modulate glial activity during disease to protect and promote a properly functioning nervous system. We propose that targeting glial cells presents a promising therapeutic avenue for rebuilding the nervous system.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Luana da Silva Chagas
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marianela E Traetta
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Rui S Rodrigues
- University of Bordeaux, INSERM, Neurocentre Magendie U1215, Bordeaux, France
| | - Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER Raebareli), Raebareli, UP, India
| | - Liliana German-Castelan
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vanesa S Mattera
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB-FFyB-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedzisai Mazengenya
- Center of Medical and bio-Allied Health Sciences Research, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Cecilia Skoug
- Department of Neuroscience, Physiology & Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Das S, Rajeswari VD, Venkatraman G, Ramanathan G. Phytochemicals in Parkinson's Disease: a Pathway to Neuroprotection and Personalized Medicine. Cell Biochem Biophys 2024:10.1007/s12013-024-01607-z. [PMID: 39537915 DOI: 10.1007/s12013-024-01607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder marked by the progressive loss of dopaminergic neurons in the substantia nigra. While current treatments primarily manage symptoms, there is increasing interest in alternative approaches, particularly the use of phytochemicals from medicinal plants. These natural compounds have demonstrated promising neuroprotective potential in preclinical studies by targeting key pathological mechanisms such as oxidative stress, neuroinflammation, and protein aggregation. However, the clinical translation of these phytochemicals is limited due to a lack of robust clinical trials evaluating their safety, efficacy, and pharmacokinetics. This review provides a comprehensive overview of the neuroprotective potential of phytochemicals in PD management, examining the mechanisms underlying PD pathogenesis and emphasizing neuroprotection. It explores the historical and current research on medicinal plants like Mucuna pruriens, Curcuma longa, and Ginkgo biloba, and discusses the challenges in clinical translation, including ethical and practical considerations and the integration with conventional therapies. It further underscores the need for future research to elucidate mechanisms of action, optimize drug delivery, and conduct rigorous clinical trials to establish the safety and efficacy of phytochemicals, aiming to shape future neuroprotective strategies and develop more effective, personalized treatments for PD.
Collapse
Affiliation(s)
- Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ganesh Venkatraman
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
7
|
Wang X, Li W, Zhao X, Hu N, Wang X, Xiao X, Yang K, Sun T. Dysregulated Coagulation in Parkinson's Disease. Cells 2024; 13:1874. [PMID: 39594622 PMCID: PMC11592531 DOI: 10.3390/cells13221874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD), a prevalent neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein accumulation, has been increasingly associated with coagulation dysfunction. This review synthesizes emerging evidence linking dysregulated coagulation to PD pathophysiology. We examine the alterations in coagulation parameters, including elevated fibrinogen levels, impaired fibrinolysis, and platelet dysfunction, which collectively contribute to a hypercoagulable state in PD patients. Epidemiological studies have revealed a higher incidence of thrombotic events, such as deep vein thrombosis (DVT) and stroke, among PD patients, suggesting significant comorbidity between PD and coagulation disorders. This review explores the potential pathophysiological mechanisms underlying this association, focusing on the roles of inflammation and oxidative stress. Additionally, we discuss the limitations of current research and propose future directions. This comprehensive analysis underscores the importance of understanding the coagulation-neurodegeneration axis in PD, which may lead to novel diagnostic and therapeutic strategies for this debilitating condition.
Collapse
Affiliation(s)
- Xinqing Wang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China;
| | - Wenxin Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Ning Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Xi Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Xilin Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China;
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
8
|
Vatsa N, Brynildsen JK, Goralski TM, Kurgat K, Meyerdirk L, Breton L, DeWeerd D, Brasseur L, Turner L, Becker K, Gallik KL, Bassett DS, Henderson MX. Network analysis of α-synuclein pathology progression reveals p21-activated kinases as regulators of vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619411. [PMID: 39484617 PMCID: PMC11526907 DOI: 10.1101/2024.10.22.619411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
α-Synuclein misfolding and progressive accumulation drives a pathogenic process in Parkinson's disease. To understand cellular and network vulnerability to α-synuclein pathology, we developed a framework to quantify network-level vulnerability and identify new therapeutic targets at the cellular level. Full brain α-synuclein pathology was mapped in mice over 9 months. Empirical pathology data was compared to theoretical pathology estimates from a diffusion model of pathology progression along anatomical connections. Unexplained variance in the model enabled us to derive regional vulnerability that we compared to regional gene expression. We identified gene expression patterns that relate to regional vulnerability, including 12 kinases that were enriched in vulnerable regions. Among these, an inhibitor of group II PAKs demonstrated protection from neuron death and α-synuclein pathology, even after delayed compound treatment. This study provides a framework for the derivation of cellular vulnerability from network-based studies and identifies a promising therapeutic pathway for Parkinson's disease.
Collapse
Affiliation(s)
- Naman Vatsa
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Julia K. Brynildsen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas M. Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | | | | | - Dani S. Bassett
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michael X. Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Lead Contact
| |
Collapse
|
9
|
Wang X, Yang G, Lai Y, Li Y, Liu X. Exploring the hub Genes and Potential Mechanisms of Complement system-related Genes in Parkinson Disease: Based on Transcriptome Sequencing and Mendelian Randomization. J Mol Neurosci 2024; 74:95. [PMID: 39373800 DOI: 10.1007/s12031-024-02272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
An accurate diagnosis of Parkinson's disease (PD) remains challenging and the exact cause of the disease is unclean. The aims are to identify hub genes associated with the complement system in PD and to explore their underlying molecular mechanisms. Initially, differentially expressed genes (DEGs) and key module genes related to PD were mined through differential expression analysis and WGCNA. Then, differentially expressed CSRGs (DE-CSRGs) were obtained by intersecting the DEGs, key module genes and CSRGs. Subsequently, MR analysis was executed to identify genes causally associated with PD. Based on genes with significant MR results, the expression level and diagnostic performance verification were achieved to yield hub genes. Functional enrichment and immune infiltration analyses were accomplished to insight into the pathogenesis of PD. qRT-PCR was employed to evaluate the expression levels of hub genes. After MR analysis and related verification, CD93, CTSS, PRKCD and TLR2 were finally identified as hub genes. Enrichment analysis indicated that the main enriched pathways for hub genes. Immune infiltration analysis found that the hub genes showed significant correlation with a variety of immune cells (such as myeloid-derived suppressor cell and macrophage). In the qRT-PCR results, the expression levels of CTSS, PRKCD and TLR2 were consistent with those we obtained from public databases. Hence, we mined four hub genes associated with complement system in PD which provided novel perspectives for the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Gaoming Yang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Yali Lai
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Yuanyuan Li
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Xindong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China.
| |
Collapse
|
10
|
Pradeloux S, Coulombe K, Ouamba AJK, Isenbrandt A, Calon F, Roy D, Soulet D. Oral Trehalose Intake Modulates the Microbiota-Gut-Brain Axis and Is Neuroprotective in a Synucleinopathy Mouse Model. Nutrients 2024; 16:3309. [PMID: 39408276 PMCID: PMC11478413 DOI: 10.3390/nu16193309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting dopaminergic neurons in the nigrostriatal and gastrointestinal tracts, causing both motor and non-motor symptoms. This study examined the neuroprotective effects of trehalose. This sugar is confined in the gut due to the absence of transporters, so we hypothesized that trehalose might exert neuroprotective effects on PD through its action on the gut microbiota. We used a transgenic mouse model of PD (PrP-A53T G2-3) overexpressing human α-synuclein and developing GI dysfunctions. Mice were given water with trehalose, maltose, or sucrose (2% w/v) for 6.5 m. Trehalose administration prevented a reduction in tyrosine hydroxylase immunoreactivity in the substantia nigra (-25%), striatum (-38%), and gut (-18%) in PrP-A53T mice. It also modulated the gut microbiota, reducing the loss of diversity seen in PrP-A53T mice and promoting bacteria negatively correlated with PD in patients. Additionally, trehalose treatment increased the intestinal secretion of glucagon-like peptide 1 (GLP-1) by 29%. Maltose and sucrose, which break down into glucose, did not show neuroprotective effects, suggesting glucose is not involved in trehalose-mediated neuroprotection. Since trehalose is unlikely to cross the intestinal barrier at the given dose, the results suggest its effects are mediated indirectly through the gut microbiota and GLP-1.
Collapse
Affiliation(s)
- Solène Pradeloux
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Jules Kennang Ouamba
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Amandine Isenbrandt
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Roy
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Baridjavadi Z, Mahmoudi M, Abdollahi N, Ebadpour N, Mollazadeh S, Haghmorad D, Esmaeili SA. The humoral immune landscape in Parkinson's disease: Unraveling antibody and B cell changes. Cell Biochem Funct 2024; 42:e4109. [PMID: 39189398 DOI: 10.1002/cbf.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) in the brain and progressive loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Although the role of neuroinflammation and cellular immunity in PD has been extensively studied, the involvement of humoral immunity mediated by antibodies and B cells has received less attention. This article provides a comprehensive review of the current understanding of humoral immunity in PD. Here, we discuss alterations in B cells in PD, including changes in their number and phenotype. Evidence mostly indicates a decrease in the quantity of B cells in PD, accompanied by a shift in the population from naïve to memory cells. Furthermore, the existence of autoantibodies that target several antigens in PD has been investigated (i.e., anti-α-syn autoantibodies, anti-glial-derived antigen antibodies, anti-Tau antibodies, antineuromelanin antibodies, and antibodies against the renin-angiotensin system). Several autoantibodies are generated in PD, which may either provide protection or have harmful effects on disease progression. Furthermore, we have reviewed studies focusing on the utilization of antibodies as a potential treatment for PD, both in animal and clinical trials. This review sheds light on the intricate interplay between antibodies and the pathological processes in PD, including complement system activation.
Collapse
Affiliation(s)
- Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Doostparast Torshizi A, Truong DT, Hou L, Smets B, Whelan CD, Li S. Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson's disease. Nat Commun 2024; 15:6430. [PMID: 39080267 PMCID: PMC11289099 DOI: 10.1038/s41467-024-50718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Parkinson's disease is highly heterogeneous across disease symptoms, clinical manifestations and progression trajectories, hampering the identification of therapeutic targets. Despite knowledge gleaned from genetics analysis, dysregulated proteome mechanisms stemming from genetic aberrations remain underexplored. In this study, we develop a three-phase system-level proteogenomic analytical framework to characterize disease-associated proteins and dysregulated mechanisms. Proteogenomic analysis identified 577 proteins that enrich for Parkinson's disease-related pathways, such as cytokine receptor interactions and lysosomal function. Converging lines of evidence identified nine proteins, including LGALS3, CSNK2A1, SMPD3, STX4, APOA2, PAFAH1B3, LDLR, HSPB1, BRK1, with potential roles in disease pathogenesis. This study leverages the largest population-scale proteomics dataset, the UK Biobank Pharma Proteomics Project, to characterize genetically-driven protein disturbances associated with Parkinson's disease. Taken together, our work contributes to better understanding of genome-proteome dynamics in Parkinson's disease and sets a paradigm to identify potential indirect mediators connected to GWAS signals for complex neurodegenerative disorders.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA.
| | - Dongnhu T Truong
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Liping Hou
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Bart Smets
- Neuroscience Data Science, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christopher D Whelan
- Neuroscience Data Science, Janssen Research & Development, LLC, Cambridge, MA, USA
| | - Shuwei Li
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| |
Collapse
|
13
|
Park HY, Lee GS, Go J, Ryu YK, Lee CH, Moon JH, Kim KS. Angiotensin-converting enzyme inhibition prevents l-dopa-induced dyskinesia in a 6-ohda-induced mouse model of Parkinson's disease. Eur J Pharmacol 2024; 973:176573. [PMID: 38642669 DOI: 10.1016/j.ejphar.2024.176573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Parkinson's disease (PD) is characterised by severe movement defects and the degeneration of dopaminergic neurones in the midbrain. The symptoms of PD can be managed with dopamine replacement therapy using L-3, 4-dihydroxyphenylalanine (L-dopa), which is the gold standard therapy for PD. However, long-term treatment with L-dopa can lead to motor complications. The central renin-angiotensin system (RAS) is associated with the development of neurodegenerative diseases in the brain. However, the role of the RAS in dopamine replacement therapy for PD remains unclear. Here, we tested the co-treatment of the angiotensin-converting enzyme inhibitor (ACEI) with L-dopa altered L-dopa-induced dyskinesia (LID) in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Perindopril, captopril, and enalapril were used as ACEIs. The co-treatment of ACEI with L-dopa significantly decreased LID development in 6-OHDA-lesioned mice. In addition, the astrocyte and microglial transcripts involving Ccl2, C3, Cd44, and Iigp1 were reduced by co-treatment with ACEI and L-dopa in the 6-OHDA-lesioned striatum. In conclusion, co-treatment with ACEIs and L-dopa, such as perindopril, captopril, and enalapril, may mitigate the severity of L-DOPA-induced dyskinesia in a mouse model of PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
14
|
Laursen ALS, Olesen MV, Folke J, Brudek T, Knecht LH, Sotty F, Lambertsen KL, Fog K, Dalgaard LT, Aznar S. Systemic inflammation activates coagulation and immune cell infiltration pathways in brains with propagating α-synuclein fibril aggregates. Mol Cell Neurosci 2024; 129:103931. [PMID: 38508542 DOI: 10.1016/j.mcn.2024.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Synucleinopathies are a group of diseases characterized by brain aggregates of α-synuclein (α-syn). The gradual accumulation of α-syn and the role of inflammation in early-stage pathogenesis remain poorly understood. We explored this interaction by inducing chronic inflammation in a common pre-clinical synucleinopathy mouse model. Three weeks post unilateral intra-striatal injections of human α-syn pre-formed fibrils (PFF), mice underwent repeated intraperitoneal injections of 1 mg/ml lipopolysaccharide (LPS) for 3 weeks. Histological examinations of the ipsilateral site showed phospho-α-syn regional spread and LPS-induced neutrophil recruitment to the brain vasculature. Biochemical assessment of the contralateral site confirmed spreading of α-syn aggregation to frontal cortex and a rise in intracerebral TNF-α, IL-1β, IL-10 and KC/GRO cytokines levels due to LPS. No LPS-induced exacerbation of α-syn pathology load was observed at this stage. Proteomic analysis was performed contralateral to the PFF injection site using LC-MS/MS. Subsequent downstream Reactome Gene-Set Analysis indicated that α-syn pathology alters mitochondrial metabolism and synaptic signaling. Chronic LPS-induced inflammation further lead to an overrepresentation of pathways related to fibrin clotting as well as integrin and B cell receptor signaling. Western blotting confirmed a PFF-induced increase in fibrinogen brain levels and a PFF + LPS increase in Iba1 levels, indicating activated microglia. Splenocyte profiling revealed changes in T and B cells, monocytes, and neutrophils populations due to LPS treatment in PFF injected animals. In summary, early α-syn pathology impacts energy homeostasis pathways, synaptic signaling and brain fibrinogen levels. Concurrent mild systemic inflammation may prime brain immune pathways in interaction with peripheral immunity.
Collapse
Affiliation(s)
- Anne-Line Strange Laursen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark; Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Mikkel Vestergaard Olesen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Jonas Folke
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Luisa Harriet Knecht
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | | | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløwsvej 21-25, DK-5000, Odense, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, Odense, Denmark; BRIDGE - Brain-Research-Inter-Disciplinary Guided Excellence, Department of Clinical Institute, University of Southern Denmark, Winsløwparken 19, Odense, Denmark.
| | - Karina Fog
- H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark.
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| |
Collapse
|
15
|
Abyadeh M, Mirshahvaladi S, Kashani SA, Paulo JA, Amirkhani A, Mehryab F, Seydi H, Moradpour N, Jodeiryjabarzade S, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomic profiling of mesenchymal stem cell-derived extracellular vesicles: Impact of isolation methods on protein cargo. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e159. [PMID: 38947171 PMCID: PMC11212298 DOI: 10.1002/jex2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are secreted by cells and play a critical role in cell-to-cell communication. Despite the promising reports regarding their diagnostic and therapeutic potential, the utilization of EVs in the clinical setting is limited due to insufficient information about their cargo and a lack of standardization in isolation and analysis methods. Considering protein cargos in EVs as key contributors to their therapeutic potency, we conducted a tandem mass tag (TMT) quantitative proteomics analysis of three subpopulations of mesenchymal stem cell (MSC)-derived EVs obtained through three different isolation techniques: ultracentrifugation (UC), high-speed centrifugation (HS), and ultracentrifugation on sucrose cushion (SU). Subsequently, we checked EV marker expression, size distribution, and morphological characterization, followed by bioinformatic analysis. The bioinformatic analysis of the proteome results revealed that these subpopulations exhibit distinct molecular and functional characteristics. The choice of isolation method impacts the proteome of isolated EVs by isolating different subpopulations of EVs. Specifically, EVs isolated through the high-speed centrifugation (HS) method exhibited a higher abundance of ribosomal and mitochondrial proteins. Functional apoptosis assays comparing isolated mitochondria with EVs isolated through different methods revealed that HS-EVs, but not other EVs, induced early apoptosis in cancer cells. On the other hand, EVs isolated using the sucrose cushion (SU) and ultracentrifugation (UC) methods demonstrated a higher abundance of proteins primarily involved in the immune response, cell-cell interactions and extracellular matrix interactions. Our analyses unveil notable disparities in proteins and associated biological functions among EV subpopulations, underscoring the importance of meticulously selecting isolation methods and resultant EV subpopulations based on the intended application.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Shahab Mirshahvaladi
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNew South WalesAustralia
| | - Fatemeh Mehryab
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of BiologyUniversity of Science and CultureTehranIran
| | | | | | - Mehdi Mirzaei
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vivek Gupta
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | |
Collapse
|
16
|
Stoll AC, Kemp CJ, Patterson JR, Kubik M, Kuhn N, Benskey M, Duffy MF, Luk KC, Sortwell CE. Alpha-synuclein inclusion responsive microglia are resistant to CSF1R inhibition. J Neuroinflammation 2024; 21:108. [PMID: 38664840 PMCID: PMC11045433 DOI: 10.1186/s12974-024-03108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.
Collapse
Affiliation(s)
- Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Michael Kubik
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Nathan Kuhn
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Matthew Benskey
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Megan F Duffy
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
17
|
Singh G, Khatri DK. MicroRNA-gene regulatory network of TLR signaling in neuroinflammation-induced Parkinson’s disease: a bioinformatics approach. NETWORK MODELING ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2024; 13:7. [DOI: 10.1007/s13721-024-00445-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 01/03/2025]
|
18
|
Ding R, Cheng J, Wei S, Qin X, Liu Y, Li H, Xie T, Chai H, Chen Z. Sequential transcriptomic alterations in the cerebral cortex of mice after cerebral venous sinus thrombosis. J Proteomics 2024; 291:105035. [PMID: 37918797 DOI: 10.1016/j.jprot.2023.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
To investigate the expression alterations of specific genes that occur after venous stroke, we identified differentially expressed genes (DEGs) between sham and damaged cortical tissues at 2 and 7 days after induction of cerebral venous sinus thrombosis (CVST) model. The profiles of DEGs were analyzed using GO, KEGG, GSEA, and PPI, and the crucial gene was further verified by western blot and immunofluorescence. We found 969 and 883 DEGs at 2 and 7 days after CVST, respectively. A marked increase in biological-process categories, such as immune system process and inflammatory response, and a decrease in neuropeptide signaling pathway were observed both at 2 and 7 days post-CVST. The KEGG pathway was enriched to varying degrees on complement and coagulation cascades, cytokine-cytokine receptor interaction, and multiple immune-inflammatory signaling pathways at 2 and 7 days post-CVST, separately. Furthermore, GSEA highlights the potential roles of the NOD-like receptor signaling pathway and cytokine-cytokine receptor interaction in CVST. Importantly, numerous genes related to KEGG pathways above featured prominently in the PPI network analysis, with IL1b being one of the most conspicuous. These time-dependent alterations in gene profiles and enrichment pathways reveal the unique pathophysiological characteristics of CVST and indicate novel therapeutic targets for venous stroke. SIGNIFICANCE: Cerebral venous sinus thrombosis (CVST) is an underrated and potentially fatal cause of stroke with a reported mortality of 5-10% worldwide. Currently, in addition to anticoagulant and thrombolytic therapy, effective treatments targeting the injured brain parenchyma after CVST remain limited. Besides, accurate diagnostic markers are still sorely lacking. In the present study, we will detect the transcriptomic alterations of the cerebral cortex of mice post-CVST by RNA-sequencing, screen differentially expressed genes and abnormal pathways through bioinformatics methods, analyze the correlation of these signals and CVST pathology, and finally validate the key molecules through western blot and immunofluorescence assays. Collectively, the study aimed to offer a reference for the discovery of specific genes/pathway alterations in the damaged cortical tissues of CVST mice and further reveal the underlying pathogenesis, thereby providing evidence for the diagnosis and treatment of CVST.
Collapse
Affiliation(s)
- Rui Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shanshan Wei
- Department of Oncology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Xiaohong Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yaqi Liu
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Haiyan Li
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Teng Xie
- Department of Neurosurgery, Hanchuan Renmin Hospital, Hanchuan, Hubei 431600, China
| | - Huihui Chai
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China; Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai 200040, China.
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
19
|
Guo H, Wang G, Huang W, Li L, Bai Y, Wang H, Gao L. The Mechanism of Hepatic Encephalopathy Induced by Thioacetamide Based on Metabolomics and Proteomics: A Preliminary Study. Int J Mol Sci 2023; 25:284. [PMID: 38203455 PMCID: PMC10779174 DOI: 10.3390/ijms25010284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatic encephalopathy (HE) is a central nervous system dysfunction syndrome caused by acute and chronic liver failure or various portal systemic shunt disorders. HE arises from metabolic disorder and excludes other known types of encephalopathy. HE is a major cause of death in people with liver disease. Early diagnosis and timely treatment are key to improving HE prognosis. Herein, we established a model of HE and performed metabolomics to identify 50 significantly differential metabolites between the HE group and control group. The main metabolic pathways associated with these differential metabolites were the purine metabolism, pyrimidine metabolism, aminoacyl tRNA biosynthesis, and glucose metabolism. Through proteomics analysis, we identified 226 significantly differential proteins (52 up-regulated and 174 down-regulated). The main (Kyoto Encyclopedia of Genes and Genomes) enrichment pathways were the Staphylococcus aureus infection, vitamin digestion and absorption, and complement and coagulation cascades. Through the conjoint analysis of proteomics and metabolomics, the differentially present proteins and metabolites were found to be involved in vitamin digestion and absorption, and ferroptosis pathways. In HE, malondialdehyde was significantly elevated, but glutathione was significantly diminished, and the redox balance was destroyed, thus leading to changes in proteins' levels associated with the ferroptosis pathway. In conclusion, this study preliminarily explored the molecular and metabolic mechanisms underlying HE.
Collapse
Affiliation(s)
- Honghui Guo
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China; (H.G.); (W.H.)
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
- Department of Forensic Analytical Toxicology, China Medical University, Shenyang 110122, China
| | - Guang Wang
- Department of Laboratory Animal Science, China Medical University, Shenyang 110122, China;
| | - Wei Huang
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China; (H.G.); (W.H.)
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
- Department of Forensic Analytical Toxicology, China Medical University, Shenyang 110122, China
| | - Lingrui Li
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China; (H.G.); (W.H.)
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
- Department of Forensic Analytical Toxicology, China Medical University, Shenyang 110122, China
| | - Yang Bai
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China; (H.G.); (W.H.)
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
- Department of Forensic Analytical Toxicology, China Medical University, Shenyang 110122, China
| | - Haifeng Wang
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China; (H.G.); (W.H.)
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
- Department of Forensic Analytical Toxicology, China Medical University, Shenyang 110122, China
| | - Lina Gao
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China; (H.G.); (W.H.)
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
- Department of Forensic Analytical Toxicology, China Medical University, Shenyang 110122, China
| |
Collapse
|
20
|
Thomas MA, Kim SY, Curran AM, Smith B, Antiochos B, Na CH, Darrah E. An unbiased proteomic analysis of PAD4 in human monocytes: novel substrates, binding partners and subcellular localizations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220477. [PMID: 37778379 PMCID: PMC10542449 DOI: 10.1098/rstb.2022.0477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Peptidylarginine deiminase IV (PAD4) post-translationally converts arginine residues in proteins to citrullines and is implicated in playing a central role in the pathogenesis of several diseases. Although PAD4 was historically thought to be a nuclear enzyme, recent evidence has revealed a more complex localization of PAD4 with evidence of additional cytosolic and cell surface localization and activity. However, the mechanisms by which PAD4, which lacks conventional secretory signal sequences, traffics to extranuclear localizations are unknown. In this study, we show that PAD4 was enriched in the organelle fraction of monocytes with evidence of citrullination of organelle proteins. We also demonstrated that PAD4 can bind to several cytosolic, nuclear and organelle proteins that may serve as binding partners for PAD4 to traffic intracellularly. Additionally, cell surface expression of PAD4 increased with monocyte differentiation into monocyte-derived dendritic cells and co-localized with several endocytic/autophagic and conventional secretory pathway markers, implicating the use of these pathways by PAD4 to traffic within the cell. Our results suggest that PAD4 is expressed in multiple subcellular localizations and may play previously unappreciated roles in physiological and pathological conditions. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Mekha A. Thomas
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Ave, Suite 5200, Baltimore, MD 21224, USA
| | - Seok-Young Kim
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ashley M. Curran
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Ave, Suite 5200, Baltimore, MD 21224, USA
| | - Barbara Smith
- Department of Cell Biology, Institute for Basic Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brendan Antiochos
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Ave, Suite 5200, Baltimore, MD 21224, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Erika Darrah
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Ave, Suite 5200, Baltimore, MD 21224, USA
| |
Collapse
|
21
|
Yaghoobi A, Seyedmirzaei H, Ala M. Genome- and Exome-Wide Association Studies Revealed Candidate Genes Associated with DaTscan Imaging Features. PARKINSON'S DISEASE 2023; 2023:2893662. [PMID: 37664790 PMCID: PMC10468272 DOI: 10.1155/2023/2893662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/02/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Introduction Despite remarkable progress in identifying Parkinson's disease (PD) genetic risk loci, the genetic basis of PD remains largely unknown. With the help of the endophenotype approach and using data from dopamine transporter single-photon emission computerized tomography (DaTscan), we identified potentially involved genes in PD. Method We conducted an imaging genetic study by performing exome-wide association study (EWAS) and genome-wide association study (GWAS) on the specific binding ratio (SBR) of six DaTscan anatomical areas between 489 and 559 subjects of Parkinson's progression markers initiative (PPMI) cohort and 83,623 and 36,845 single-nucleotide polymorphisms (SNPs)/insertion-deletion mutations (INDELs). We also investigated the association of cerebrospinal fluid (CSF) protein concentration of our significant genes with PD progression using PPMI CSF proteome data. Results Among 83,623 SNPs/INDELs in EWAS, one SNP (rs201465075) on 1 q32.1 locus was significantly (P value = 4.03 × 10-7) associated with left caudate DaTscan SBR, and 33 SNPs were suggestive. Among 36,845 SNPs in GWAS, one SNP (rs12450112) on 17 p.12 locus was significantly (P value = 1.34 × 10-6) associated with right anterior putamen DaTscan SBR, and 39 SNPs were suggestive among which 8 SNPs were intergenic. We found that rs201465075 and rs12450112 are most likely related to IGFN1 and MAP2K4 genes. The protein level of MAP2K4 in the CSF was significantly associated with PD progression in the PPMI cohort; however, proteomic data were not available for the IGFN1 gene. Conclusion We have shown that particular variants of IGFN1 and MAP2K4 genes may be associated with PD. Since DaTscan imaging could be positive in other Parkinsonian syndromes, caution should be taken when interpreting our results. Future experimental studies are also needed to verify these findings.
Collapse
Affiliation(s)
- Arash Yaghoobi
- Institute for Research in Fundamental Sciences (IPM), School of Biological Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moein Ala
- Experimental Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Wang Q, Xue Q. Bioinformatics analysis of potential common pathogenic mechanism for carotid atherosclerosis and Parkinson's disease. Front Aging Neurosci 2023; 15:1202952. [PMID: 37649719 PMCID: PMC10464527 DOI: 10.3389/fnagi.2023.1202952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background Cerebrovascular disease (CVD) related to atherosclerosis and Parkinson's disease (PD) are two prevalent neurological disorders. They share common risk factors and frequently occur together. The aim of this study is to investigate the association between atherosclerosis and PD using genetic databases to gain a comprehensive understanding of underlying biological mechanisms. Methods The gene expression profiles of atherosclerosis (GSE28829 and GSE100927) and PD (GSE7621 and GSE49036) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) for these two disorders, we constructed protein-protein interaction (PPI) networks and functional modules, and further identified hub genes using Least Absolute Shrinkage and Selection Operator (LASSO) regression. The diagnostic effectiveness of these hub genes was evaluated using Receiver Operator Characteristic Curve (ROC) analysis. Furthermore, we used single sample gene set enrichment analysis (ssGSEA) to analyze immune cell infiltration and explored the association of the identified hub genes with infiltrating immune cells through Spearman's rank correlation analysis in R software. Results A total of 50 shared DEGs, with 36 up-regulated and 14 down-regulated genes, were identified through the intersection of DEGs of atherosclerosis and PD. Using LASSO regression, we identified six hub genes, namely C1QB, CD53, LY96, P2RX7, C3, and TNFSF13B, in the lambda.min model, and CD14, C1QB, CD53, P2RX7, C3, and TNFSF13B in the lambda.1se model. ROC analysis confirmed that both models had good diagnostic efficiency for atherosclerosis datasets GSE28829 (lambda.min AUC = 0.99, lambda.1se AUC = 0.986) and GSE100927 (lambda.min AUC = 0.922, lambda.1se AUC = 0.933), as well as for PD datasets GSE7621 (lambda.min AUC = 0.924, lambda.1se AUC = 0.944) and GSE49036 (lambda.min AUC = 0.894, lambda.1se AUC = 0.881). Furthermore, we found that activated B cells, effector memory CD8 + T cells, and macrophages were the shared correlated types of immune cells in both atherosclerosis and PD. Conclusion This study provided new sights into shared molecular mechanisms between these two disorders. These common hub genes and infiltrating immune cells offer promising clues for further experimental studies to explore the common pathogenesis of these disorders.
Collapse
Affiliation(s)
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Zhang W, Ding L, Chen H, Zhang M, Ma R, Zheng S, Gong J, Zhang Z, Xu H, Xu P, Zhang Y. Cntnap4 partial deficiency exacerbates α-synuclein pathology through astrocyte-microglia C3-C3aR pathway. Cell Death Dis 2023; 14:285. [PMID: 37087484 PMCID: PMC10122675 DOI: 10.1038/s41419-023-05807-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder, which is characterized by dopaminergic (DA) neuron death and the aggregation of neurotoxic α-synuclein. Cntnap4, a risk gene of autism, has been implicated to participate in PD pathogenesis. Here we showed Cntnap4 lacking exacerbates α-synuclein pathology, nigrostriatal DA neuron degeneration and motor impairment, induced by injection of adeno-associated viral vector (AAV)-mediated human α-synuclein overexpression (AAV-hα-Syn). This scenario was further validated in A53T α-synuclein transgenic mice injected with AAV-Cntnap4 shRNA. Mechanistically, α-synuclein derived from damaged DA neuron stimulates astrocytes to release complement C3, activating microglial C3a receptor (C3aR), which in turn triggers microglia to secrete complement C1q and pro-inflammatory cytokines. Thus, the astrocyte-microglia crosstalk further drives DA neuron death and motor dysfunction in PD. Furthermore, we showed that in vivo depletion of microglia and microglial targeted delivery of a novel C3aR antagonist (SB290157) rescue the aggravated α-synuclein pathology resulting from Cntnap4 lacking. Together, our results indicate that Cntnap4 plays a key role in α-synuclein pathogenesis by regulating glial crosstalk and may be a potential target for PD treatment.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huaqing Chen
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Mengran Zhang
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, 310024, China
| | - Runfang Ma
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, 310024, China
| | - Shaohui Zheng
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, 310024, China
| | - Junwei Gong
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Huaxi Xu
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Yunlong Zhang
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
24
|
Shi D, Su W, Mu Y. Quantitative proteomics study on the changes of egg white of yellow preserved primary chicken eggs soaked in alkali solution. Food Res Int 2023; 165:112346. [PMID: 36869443 DOI: 10.1016/j.foodres.2022.112346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In order to investigate the changes of egg white of primary chicken eggs after being soaked in alkali solution, the tandem mass tags (TMT)-labeled quantitative proteomic technology combined with bioinformatics was conducted in this study. The results indicated that 100 differentially expressed proteins (DEPs) in yellow preserved primary egg white (YPPEW), 75 of which were highly and significantly correlated with the quality traits of YPPEW (| r | ≥ 0.9000, P < 0.01). Most of DEPs were involved in cellular processes by binding in extracellular space. Six pathways revealed the potential anti-inflammatory, anti-virus, anti-cancer and neuromodulatory mechanism of YPPEW. The current research provided a theoretical basis for the further study on YPPEW.
Collapse
Affiliation(s)
- Denghui Shi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
25
|
Curran AM, Girgis AA, Jang Y, Crawford JD, Thomas MA, Kawalerski R, Coller J, Bingham CO, Na CH, Darrah E. Citrullination modulates antigen processing and presentation by revealing cryptic epitopes in rheumatoid arthritis. Nat Commun 2023; 14:1061. [PMID: 36828807 PMCID: PMC9958131 DOI: 10.1038/s41467-023-36620-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Cryptic peptides, hidden from the immune system under physiologic conditions, are revealed by changes to MHC class II processing and hypothesized to drive the loss of immune tolerance to self-antigens in autoimmunity. Rheumatoid arthritis (RA) is an autoimmune disease characterized by immune responses to citrullinated self-antigens, in which arginine residues are converted to citrullines. Here, we investigate the hypothesis that citrullination exposes cryptic peptides by modifying protein structure and proteolytic cleavage. We show that citrullination alters processing and presentation of autoantigens, resulting in the generation of a unique citrullination-dependent repertoire composed primarily of native sequences. This repertoire stimulates T cells from RA patients with anti-citrullinated protein antibodies more robustly than controls. The generation of this unique repertoire is achieved through altered protease cleavage and protein destabilization, rather than direct presentation of citrulline-containing epitopes, suggesting a novel paradigm for the role of protein citrullination in the breach of immune tolerance in RA.
Collapse
Affiliation(s)
- Ashley M Curran
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander A Girgis
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yura Jang
- Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jonathan D Crawford
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mekha A Thomas
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Kawalerski
- Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff Coller
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Clifton O Bingham
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan Hyun Na
- Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika Darrah
- Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Botulinum neurotoxin A ameliorates depressive-like behavior in a reserpine-induced Parkinson's disease mouse model via suppressing hippocampal microglial engulfment and neuroinflammation. Acta Pharmacol Sin 2023:10.1038/s41401-023-01058-x. [PMID: 36765267 DOI: 10.1038/s41401-023-01058-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023]
Abstract
Depression is one of the common non-motor symptoms of Parkinson's disease (PD). In the clinic, botulinum neurotoxin A (BoNT/A) has been used to treat depression. In this study, we investigated the mechanisms underlying the anti-depressive effect of BoNT/A in a PD mouse model. Mice were administered reserpine (3 μg/mL in the drinking water) for 10 weeks. From the 10th week, BoNT/A (10 U·kg-1·d-1) was injected into the cheek for 3 consecutive days. We showed that chronic administration of reserpine produced the behavioral phenotypes of depression and neurochemical changes in the substantia nigra pars compacta (SNpc) and striatum. BoNT/A treatment significantly ameliorated the depressive-like behaviors, but did not improve TH activity in SNpc of reserpine-treated mice. We demonstrated that BoNT/A treatment reversed reserpine-induced complement and microglia activation in the hippocampal CA1 region. Furthermore, BoNT/A treatment significantly attenuated the microglial engulfment of presynaptic synapses, thus ameliorating the apparent synapse and spine loss in the hippocampus in the reserpine-treated mice. Moreover, BoNT/A treatment suppressed microglia-mediated expression of pro-inflammatory cytokines TNF-α and IL-1β in reserpine-treated mice. In addition, we showed that BoNT/A (0.1 U/mL) ameliorated reserpine-induced complement and microglia activation in mouse BV2 microglial cells in vitro. We conclude that BoNT/A ameliorates depressive-like behavior in a reserpine-induced PD mouse model through reversing the synapse loss mediated by classical complement induced-microglial engulfment as well as alleviating microglia-mediated proinflammatory responses. BoNT/A ameliorates depressive-like behavior, and reverses synapse loss mediated by classical complement pathway-initiated microglia engulfment as well as alleviates microglia-mediated proinflammatory response in the reserpine-induced Parkinson's disease mouse model.
Collapse
|
27
|
Jang Y, Pletnikova O, Troncoso JC, Pantelyat AY, Dawson TM, Rosenthal LS, Na CH. Mass Spectrometry-Based Proteomics Analysis of Human Substantia Nigra From Parkinson's Disease Patients Identifies Multiple Pathways Potentially Involved in the Disease. Mol Cell Proteomics 2023; 22:100452. [PMID: 36423813 PMCID: PMC9792365 DOI: 10.1016/j.mcpro.2022.100452] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) of the brain. Despite decades of studies, the precise pathogenic mechanism of PD is still elusive. An unbiased proteomic analysis of PD patient's brain allows the identification of critical proteins and molecular pathways that lead to dopamine cell death and α-synuclein deposition and the resulting devastating clinical symptoms. In this study, we conducted an in-depth proteome analysis of human SN tissues from 15 PD patients and 15 healthy control individuals combining Orbitrap mass spectrometry with the isobaric tandem mass tag-based multiplexing technology. We identified 10,040 proteins with 1140 differentially expressed proteins in the SN of PD patients. Pathway analysis showed that the ribosome pathway was the most enriched one, followed by gamma-aminobutyric acidergic synapse, retrograde endocannabinoid signaling, cell adhesion molecules, morphine addiction, Prion disease, and PD pathways. Strikingly, the majority of the proteins enriched in the ribosome pathway were mitochondrial ribosomal proteins (mitoribosomes). The subsequent protein-protein interaction analysis and the weighted gene coexpression network analysis confirmed that the mitoribosome is the most enriched protein cluster. Furthermore, the mitoribosome was also identified in our analysis of a replication set of ten PD and nine healthy control SN tissues. This study provides potential disease pathways involved in PD and paves the way to study further the pathogenic mechanism of PD.
Collapse
Affiliation(s)
- Yura Jang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander Y Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA; Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, USA.
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
28
|
Lee S, Ryu HG, Kweon SH, Kim H, Park H, Lee KH, Jang SM, Na CH, Kim S, Ko HS. c-Abl Regulates the Pathological Deposition of TDP-43 via Tyrosine 43 Phosphorylation. Cells 2022; 11:3972. [PMID: 36552734 PMCID: PMC9776721 DOI: 10.3390/cells11243972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Non-receptor tyrosine kinase, c-Abl plays a role in the pathogenesis of several neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Here, we found that TDP-43, which was one of the main proteins comprising pathological deposits in amyotrophic lateral sclerosis (ALS), is a novel substrate for c-Abl. The phosphorylation of tyrosine 43 of TDP-43 by c-Abl led to increased TDP-43 levels in the cytoplasm and increased the formation of G3BP1-positive stress granules in SH-SY5Y cells. The kinase-dead mutant of c-Abl had no effect on the cytoplasmic localization of TDP-43. The expression of phosphor-mimetic mutant Y43E of TDP-43 in primary cortical neurons accumulated the neurite granule. Furthermore, the phosphorylation of TDP-43 at tyrosine 43 by c-Abl promoted the aggregation of TDP-43 and increased neuronal cell death in primary cortical neurons, but not in c-Abl-deficient primary cortical neurons. Identification of c-Abl as the kinase of TDP43 provides new insight into the pathogenesis of ALS.
Collapse
Affiliation(s)
- Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hye Guk Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Sin Ho Kweon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyerynn Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Ha Lee
- Department of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Sang-Min Jang
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Hu S, Li S, Ning W, Huang X, Liu X, Deng Y, Franceschi D, Ogbuehi AC, Lethaus B, Savkovic V, Li H, Gaus S, Zimmerer R, Ziebolz D, Schmalz G, Huang S. Identifying crosstalk genetic biomarkers linking a neurodegenerative disease, Parkinson's disease, and periodontitis using integrated bioinformatics analyses. Front Aging Neurosci 2022; 14:1032401. [PMID: 36545026 PMCID: PMC9760933 DOI: 10.3389/fnagi.2022.1032401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To identify the genetic linkage mechanisms underlying Parkinson's disease (PD) and periodontitis, and explore the role of immunology in the crosstalk between both these diseases. Methods The gene expression omnibus (GEO) datasets associated with whole blood tissue of PD patients and gingival tissue of periodontitis patients were obtained. Then, differential expression analysis was performed to identify the differentially expressed genes (DEGs) deregulated in both diseases, which were defined as crosstalk genes. Inflammatory response-related genes (IRRGs) were downloaded from the MSigDB database and used for dividing case samples of both diseases into different clusters using k-means cluster analysis. Feature selection was performed using the LASSO model. Thus, the hub crosstalk genes were identified. Next, the crosstalk IRRGs were selected and Pearson correlation coefficient analysis was applied to investigate the correlation between hub crosstalk genes and hub IRRGs. Additionally, immune infiltration analysis was performed to examine the enrichment of immune cells in both diseases. The correlation between hub crosstalk genes and highly enriched immune cells was also investigated. Results Overall, 37 crosstalk genes were found to be overlapping between the PD-associated DEGs and periodontitis-associated DEGs. Using clustering analysis, the most optimal clustering effects were obtained for periodontitis and PD when k = 2 and k = 3, respectively. Using the LASSO feature selection, five hub crosstalk genes, namely, FMNL1, MANSC1, PLAUR, RNASE6, and TCIRG1, were identified. In periodontitis, MANSC1 was negatively correlated and the other four hub crosstalk genes (FMNL1, PLAUR, RNASE6, and TCIRG1) were positively correlated with five hub IRRGs, namely, AQP9, C5AR1, CD14, CSF3R, and PLAUR. In PD, all five hub crosstalk genes were positively correlated with all five hub IRRGs. Additionally, RNASE6 was highly correlated with myeloid-derived suppressor cells (MDSCs) in periodontitis, and MANSC1 was highly correlated with plasmacytoid dendritic cells in PD. Conclusion Five genes (i.e., FMNL1, MANSC1, PLAUR, RNASE6, and TCIRG1) were identified as crosstalk biomarkers linking PD and periodontitis. The significant correlation between these crosstalk genes and immune cells strongly suggests the involvement of immunology in linking both diseases.
Collapse
Affiliation(s)
- Shaonan Hu
- Stomatological Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Shaonan Hu,
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wanchen Ning
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhong Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Debora Franceschi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Bernd Lethaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Rüdiger Zimmerer
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Shaohong Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China,Shaohong Huang,
| |
Collapse
|
30
|
Jang Y, Thuraisamy T, Redding‐Ochoa J, Pletnikova O, Troncoso JC, Rosenthal LS, Dawson TM, Pantelyat AY, Na CH. Mass spectrometry-based proteomics analysis of human globus pallidus from progressive supranuclear palsy patients discovers multiple disease pathways. Clin Transl Med 2022; 12:e1076. [PMID: 36354133 PMCID: PMC9647849 DOI: 10.1002/ctm2.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a neurodegenerative disorder clinically characterized by progressive postural instability, supranuclear gaze palsy, parkinsonism, and cognitive decline caused by degeneration in specific areas of the brain including globus pallidus (GP), substantia nigra, and subthalamic nucleus. However, the pathogenetic mechanism of PSP remains unclear to date.Unbiased global proteome analysis of patients' brain samples is an important step toward understanding PSP pathogenesis, as proteins serve as workhorses and building blocks of the cell. METHODS In this study, we conducted unbiased mass spectrometry-based global proteome analysis of GP samples from 15 PSP patients, 15 Parkinson disease (PD) patients, and 15 healthy control (HC) individuals. To analyze 45 samples, we conducted 5 batches of 11-plex isobaric tandem mass tag (TMT)-based multiplexing experiments. The identified proteins were subjected to statistical analysis, such as a permutation-based statistical analysis in the significance analysis of microarray (SAM) method and bootstrap receiver operating characteristic curve (ROC)-based statistical analysis. Subsequently, we conducted bioinformatics analyses using gene set enrichment analysis, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) protein-protein interaction (PPI) analysis, and weighted gene co-expression network analysis (WGCNA). RESULTS We have identified 10,231 proteins with ∼1,000 differentially expressed proteins. The gene set enrichment analysis results showed that the PD pathway was the most highly enriched, followed by pathways for oxidative phosphorylation, Alzheimer disease, Huntington disease, and non-alcoholic fatty liver disease (NAFLD) when PSP was compared to HC or PD. Most of the proteins enriched in the gene set enrichment analysis were mitochondrial proteins such as cytochrome c oxidase, NADH dehydrogenase, acyl carrier protein, succinate dehydrogenase, ADP/ATP translocase, cytochrome b-c1 complex, and/or ATP synthase. Strikingly, all of the enriched mitochondrial proteins in the PD pathway were downregulated in PSP compared to both HC and PD. The subsequent STRING PPI analysis and the WGCNA further supported that the mitochondrial proteins were the most highly enriched in PSP. CONCLUSION Our study showed that the mitochondrial respiratory electron transport chain complex was the key proteins that were dysregulated in GP of PSP, suggesting that the mitochondrial respiratory electron transport chain complex could potentially be involved in the pathogenesis of PSP. This is the first global proteome analysis of human GP from PSP patients, and this study paves the way to understanding the mechanistic pathogenesis of PSP.
Collapse
Affiliation(s)
- Yura Jang
- Neuroregeneration and Stem Cell ProgramsInstitute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Thujitha Thuraisamy
- Neuroregeneration and Stem Cell ProgramsInstitute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Javier Redding‐Ochoa
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Olga Pletnikova
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pathology and Anatomical SciencesJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNYUSA
| | - Juan C. Troncoso
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Liana S. Rosenthal
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell ProgramsInstitute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Chan Hyun Na
- Neuroregeneration and Stem Cell ProgramsInstitute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
31
|
Leveraging the preformed fibril model to distinguish between alpha-synuclein inclusion- and nigrostriatal degeneration-associated immunogenicity. Neurobiol Dis 2022; 171:105804. [PMID: 35764290 PMCID: PMC9803935 DOI: 10.1016/j.nbd.2022.105804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 01/03/2023] Open
Abstract
Neuroinflammation has become a well-accepted pathologic hallmark of Parkinson's disease (PD). However, it remains unclear whether inflammation, triggered by α-syn aggregation and/or degeneration, contributes to the progression of the disease. Studies examining neuroinflammation in PD are unable to distinguish between Lewy body-associated inflammation and degeneration-associated inflammation, as both pathologies are present simultaneously. Intrastriatal and intranigral injections of alpha-synuclein (α-syn) preformed fibrils (PFFs) results in two distinct pathologic phases: Phase 1: The accumulation and peak formation of α-syn inclusions in nigrostriatal system and, Phase 2: Protracted dopaminergic neuron degeneration. In this review we summarize the current understanding of neuroinflammation in the α-syn PFF model, leveraging the distinct Phase 1 aggregation phase and Phase 2 degeneration phase to guide our interpretations. Studies consistently demonstrate an association between pathologic α-syn aggregation in the substantia nigra (SN) and activation of the innate immune system. Further, major histocompatibility complex-II (MHC-II) antigen presentation is proportionate to inclusion load. The α-syn aggregation phase is also associated with peripheral and adaptive immune cell infiltration to the SN. These findings suggest that α-syn like aggregates are immunogenic and thus have the potential to contribute to the degenerative process. Studies examining neuroinflammation during the neurodegenerative phase reveal elevated innate, adaptive, and peripheral immune cell markers, however limitations of single time point experimental design hinder interpretations as to whether this neuroinflammation preceded, or was triggered by, nigral degeneration. Longitudinal studies across both the aggregation and degeneration phases of the model suggest that microglial activation (MHC-II) is greater in magnitude during the aggregation phase that precedes degeneration. Overall, the consistency between neuroinflammatory markers in the parkinsonian brain and in the α-syn PFF model, combined with the distinct aggregation and degenerative phases, establishes the utility of this model platform to yield insights into pathologic events that contribute to neuroinflammation and disease progression in PD.
Collapse
|
32
|
Geertsma HM, Suk TR, Ricke KM, Horsthuis K, Parmasad JLA, Fisk ZA, Callaghan SM, Rousseaux MWC. Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor impairment and cortical dysfunction, independent of protein aggregation. Hum Mol Genet 2022; 31:3613-3628. [PMID: 35179202 PMCID: PMC9616578 DOI: 10.1093/hmg/ddac035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 11/14/2022] Open
Abstract
A growing body of evidence suggests that nuclear alpha-synuclein (αSyn) plays a role in the pathogenesis of Parkinson’s disease (PD). However, this question has been difficult to address as controlling the localization of αSyn in experimental systems often requires protein overexpression, which affects its aggregation propensity. To overcome this, we engineered SncaNLS mice, which localize endogenous αSyn to the nucleus. We characterized these mice on a behavioral, histological and biochemical level to determine whether the increase of nuclear αSyn is sufficient to elicit PD-like phenotypes. SncaNLS mice exhibit age-dependent motor deficits and altered gastrointestinal function. We found that these phenotypes were not linked to αSyn aggregation or phosphorylation. Through histological analyses, we observed motor cortex atrophy in the absence of midbrain dopaminergic neurodegeneration. We sampled cortical proteomes of SncaNLS mice and controls to determine the molecular underpinnings of these pathologies. Interestingly, we found several dysregulated proteins involved in dopaminergic signaling, including Darpp32, Pde10a and Gng7, which we further confirmed was decreased in cortical samples of the SncaNLS mice compared with controls. These results suggest that chronic endogenous nuclear αSyn can elicit toxic phenotypes in mice, independent of its aggregation. This model raises key questions related to the mechanism of αSyn toxicity in PD and provides a new model to study an underappreciated aspect of PD pathogenesis.
Collapse
Affiliation(s)
- Haley M Geertsma
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Terry R Suk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Konrad M Ricke
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Kyra Horsthuis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Jean-Louis A Parmasad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Zoe A Fisk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Steve M Callaghan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H8M5, Canada
| | - Maxime W C Rousseaux
- To whom correspondence should be addressed at: University of Ottawa, 451 Smyth Road, Ottawa, K1H8M5, Canada. Tel: +1 6138625800 ext. 8611;
| |
Collapse
|
33
|
Comprehensive subtyping of Parkinson's disease patients with similarity fusion: a case study with BioFIND data. NPJ PARKINSONS DISEASE 2021; 7:83. [PMID: 34535682 PMCID: PMC8448859 DOI: 10.1038/s41531-021-00228-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/30/2021] [Indexed: 12/28/2022]
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder with diverse clinical manifestations. To better understand this disease, research has been done to categorize, or subtype, patients, using an array of criteria derived from clinical assessments and biospecimen analyses. In this study, using data from the BioFIND cohort, we aimed at identifying subtypes of moderate-to-advanced PD via comprehensively considering motor and non-motor manifestations. A total of 103 patients were included for analysis. Through the use of a patient-wise similarity matrix fusion technique and hierarchical agglomerative clustering analysis, three unique subtypes emerged from the clustering results. Subtype I, comprised of 60 patients (~58.3%), was characterized by mild symptoms, both motor and non-motor. Subtype II, comprised of 20 (~19.4%) patients, was characterized by an intermediate severity, with a high tremor score and mild non-motor symptoms. Subtype III, comprised of 23 (~22.3%) patients, was characterized by more severe motor and non-motor symptoms. These subtypes show statistically significant differences when looking at motor (on and off medication) clinical features and non-motor clinical features, while there was no clear difference in demographics, biomarker levels, and genetic risk scores.
Collapse
|
34
|
Gregersen E, Betzer C, Kim WS, Kovacs G, Reimer L, Halliday GM, Thiel S, Jensen PH. Alpha-synuclein activates the classical complement pathway and mediates complement-dependent cell toxicity. J Neuroinflammation 2021; 18:177. [PMID: 34399786 PMCID: PMC8369722 DOI: 10.1186/s12974-021-02225-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background Synucleinopathies are characterized by neurodegeneration and deposition of the presynaptic protein α-synuclein in pathological protein inclusions. Growing evidence suggests the complement system not only has physiological functions in the central nervous system, but also is involved in mediating the pathological loss of synapses in Alzheimer’s disease. However, it is not established whether the complement system has a similar role in the diseases Parkinson's disease, Dementia with Lewy bodies, and multiple system atrophy (MSA) that are associated with α-synuclein aggregate pathology. Methods To investigate if the complement system has a pathological role in synucleinopathies, we assessed the effect of the complement system on the viability of an α-synuclein expressing cell model and examined direct activation of the complement system by α-synuclein in a plate-based activation assay. Finally, we investigated the levels of the initiator of the classical pathway, C1q, in postmortem brain samples from MSA patients. Results We demonstrate that α-synuclein activates the classical complement pathway and mediates complement-dependent toxicity in α-synuclein expressing SH-SY5Y cells. The α-synuclein-dependent cellular toxicity was rescued by the complement inhibitors RaCI (inhibiting C5) and Cp20 (inhibiting C3). Furthermore, we observed a trend for higher levels of C1q in the putamen of MSA subjects than that of controls. Conclusion α-Synuclein can activate the classical complement pathway, and the complement system is involved in α-synuclein-dependent cellular cytotoxicity suggesting the system could play a prodegenerative role in synucleinopathies. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02225-9.
Collapse
Affiliation(s)
- Emil Gregersen
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Cristine Betzer
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Woojin S Kim
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Gergo Kovacs
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Lasse Reimer
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Poul Henning Jensen
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus C, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|