1
|
de Rooij ENM, van Duijl TT, Hoogeveen EK, Romijn FPHTM, Dekker FW, van Kooten C, Cobbaert CM, de Fijter JW. Urinary NGAL Outperforms 99mTc-MAG3 Renography in Predicting DCD Kidney Graft Function. Transpl Int 2025; 38:13818. [PMID: 40421388 PMCID: PMC12104080 DOI: 10.3389/ti.2025.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 04/15/2025] [Indexed: 05/28/2025]
Abstract
Recipients of donation after circulatory death (DCD) kidneys are at high risk for delayed graft function (DGF) due to severe ischemia-reperfusion injury. We compared urinary biomarkers in predicting the duration of DGF with the tubular function slope (TFS) as the gold standard. In 89 DCD kidney transplant recipients, urinary TIMP-2, IGFBP7, B2M, NGAL, KIM1, CXCL9, and UMOD were quantified by LC-MS/MS analysis on postoperative days (PODs) 1, 4 and 10. Interstitial fibrosis and tubular atrophy (IF/TA) were assessed with protocol biopsies at POD 10. TFS was calculated with 99mTc-MAG3 renography. Predictive performance was compared with AUCs from ROC analyses. Of all 89 recipients, 22% experienced no (<7), 22% mild (≥7-14), 29% moderate (≥14-<21) and 26% severe (≥21 days) fDGF. The OR for the presence of IF/TA was 1.9 (95% CI:0.4; 10.0) for mild to moderate and 15.0 (95% CI:2.7; 84.8) for severe compared to no fDGF. At POD 4, urinary NGAL and fractional NGAL excretion (FE-NGAL) outperformed TFS and other biomarkers in predicting fDGF with AUCs of 0.97, 0.98 and 0.92, respectively. At POD10, FE-NGAL and PCR best predicted severe vs. mild to moderate fDGF, with AUCs of 0.74 and 0.76 versus 0.65 for TFS. Therefore, urinary NGAL and FE-NGAL may provide a viable alternative to 99mTcMAG3 renography for monitoring fDGF clearance or guiding kidney transplant biopsy to exclude additional acute rejection.
Collapse
Affiliation(s)
- Esther N. M. de Rooij
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tirsa T. van Duijl
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Ellen K. Hoogeveen
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Nephrology, Jeroen Bosch Hospital, Den Bosch, Netherlands
| | - Fred P. H. T. M. Romijn
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Friedo W. Dekker
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Christa M. Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Johan W. de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Department of Nephrology and Hypertension, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Meisinger T, Vogt A, Kretz R, Hammer HS, Planatscher H, Poetz O. Mass spectrometry-based ligand binding assays in biomedical research. Expert Rev Proteomics 2025; 22:123-140. [PMID: 39964118 DOI: 10.1080/14789450.2025.2467263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Ligand binding assays combining immunoaffinity enrichment steps with mass spectrometry (MS) readout have gained attention as a highly specific and sensitive tool for protein quantification. These techniques typically combine enzymatic fragmentation of the sample or enriched protein with capture on the protein or peptide-level for quantification. Antibodies ensure specific target recognition, while MS offers quantitative accuracy with isotopically labeled internal standards. This dual approach supports a broad dynamic range, enabling protein measurements from picomolar to nanomolar levels. These methods have diverse applications, from quantifying signaling proteins in basic research to biomarker monitoring in clinical trials and analyzing the pharmacokinetics of therapeutic proteins. AREAS COVERED This review delves into the diverse workflows of immunoaffinity-MS, shedding light on the innovative strategies employed, their practical applications, efficacy, and inherent limitations in the realm of protein quantification. EXPERT OPINION Immunoaffinity-MS has transformed protein analysis, but widespread adoption is hindered by complex workflows, high instrument costs, and limited capture molecule availability. Efforts to enhance automation, standardize workflows, and advance technological innovation aim to overcome these barriers. Improvements in mass spectrometer sensitivity, advances in recombinant capture technologies, and support from public initiatives are poised to further improve the reliability and accessibility of this method.
Collapse
Affiliation(s)
| | | | | | | | | | - Oliver Poetz
- SIGNATOPE GmbH, Reutlingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| |
Collapse
|
3
|
Morales-Betanzos C, Berasi SP, Federspiel JD, Neubert H, Fernandez Ocana M. Development of a Multiplexed LC-MS/MS Assay for the Quantitation of Podocyte Injury Biomarkers Nephrin, Podocalyxin, and Podocin in Human Urine. J Proteome Res 2025; 24:282-288. [PMID: 39651829 PMCID: PMC11705212 DOI: 10.1021/acs.jproteome.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
CKD is frequently diagnosed only after a significant progression. GFR is the most common indicator of kidney function but is limited in detecting early CKD cases and distinguishing glomerular, tubular, and global CKD. Aiming to provide a glomeruli specific biomarker assay, we developed a peptide immunoaffinity targeted mass spectrometry method for the quantitation of three podocyte specific proteins in human urine: nephrin, podocalyxin, and podocin. Proteins in urine were precipitated, stable isotope labeled peptide standards incorporated, and digested with trypsin. Target peptides were enriched using an online antibody column prior to LC-MS/MS. The performance metrics for nephrin, podocalyxin, and podocin were evaluated: The lower limits of quantitation were 3.8, 22.0, and 5.4 pM, respectively. The intraplate relative error (RE) was within ±10.6%, ± 10.4%, and ±16.1%, and coefficient of variation (CV) was ≤27.2%, ≤ 14.1%, and ≤20.7% accordingly. The interplate RE was within ±7.0%, ± 3.8%, and ±3.0%, and CV was ≤17.2%, ≤ 12.1%, and ≤20.0% for the three analytes. The urinary nephrin, podocalyxin, and podocin concentrations in 60 healthy volunteers and 20 disease samples was measured, thereby establishing the basal levels of these protein and enabling future evaluation of their roles as noninvasive biomarkers of glomerular injury in the clinic.
Collapse
|
4
|
Niwa M. Immunocapture mass spectrometry: macroscopic history, recent trends and future prospects. Bioanalysis 2024; 16:1189-1198. [PMID: 39417345 PMCID: PMC11583629 DOI: 10.1080/17576180.2024.2413277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Literature on immunological pretreatment and mass spectrometry was searched in the Web of Science database. The collected data were utilized for bibliometric analysis and literature review to identify trends in this field. Immunological pretreatment initially began in chemical toxicology using gas chromatography mass spectrometry and research interests later shifted to biologics pharmacokinetics, biomarkers, anti-drug antibodies and diagnosis. The key advantage of using mass spectrometry was the ability to distinguish molecular subtypes. Future research interests are expected to focus on a broader range of analyte types (such as intact protein mass spectrometry) and methodological improvements, including better protein digestion and microfluidics, aiming for faster, less labor-intensive and more reliable analysis through multiplexing and automation.
Collapse
Affiliation(s)
- Makoto Niwa
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd., Kyoto, 601-8550, Japan
- Open Innovation & Collaboration Research Organization, Ritsumeikan University, Ibaraki, 567-8670, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
5
|
Illiano A, Pinto G, Mallardo A, Melchiorre C, Serpico S, Varelli M, Fasano S, Rella FD, Campitiello MR, Buonfanti G, Amoresano A. Determination of Fertility Hormones and Adipokines by LC-MRM/MS Analysis. ACS OMEGA 2024; 9:35482-35489. [PMID: 39184469 PMCID: PMC11339818 DOI: 10.1021/acsomega.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/27/2024]
Abstract
Due to the increase in the rate of male and female infertility, assisted fertilization practices are currently adopted as valid support for couples unable to get pregnant. Analytical approaches for fertility hormone dosages are constantly being developed, following the technological progress of fertilization methods that have evolved for more than a century. Indeed, the analysis of fertility hormones in serum samples is a common clinical practice to check the fertility state, but absolute quantification of these hormones is a great challenge due to biological variability and low serum concentrations. Currently, ELISA (enzyme-linked immunosorbent assay) based methods are the most used analytical techniques to quantify hormones in blood in clinical settings. The current Article discusses the development of a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) to monitor multiple fertility hormones of a protein nature in a single chromatographic run, i.e., LH (luteinizing hormone), FSH (follicle-stimulating hormone), TSH (thyroid-stimulating hormone), AMH (anti-Müllerian hormone), adiponectin, ghrelin, leptin, glucagon, and obestatin. Particular attention has been paid to the AMH hormone, whose ELISA-based quantification is known to be controversial due to the poor reproducibility between the various kits used. For AMH, the internal standard method was used for the quantitative determination to compare mass spectrometry data to the ELISA assays performed by an accredited analysis laboratory on a cohort of samples from women aged between 18 and 60 years. The ability to monitor multiple transitions by LC-MRM/MS ensured both high specificity and high selectivity, which is necessary for the quantification of protein and steroid hormones, besides improvements in data reproducibility and reduced analysis times and costs.
Collapse
Affiliation(s)
- Anna Illiano
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 26, 80126 Naples, Italy
- Istituto
Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Viale delle Medaglie d’Oro
305, 00136 Rome, Italy
| | - Gabriella Pinto
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 26, 80126 Naples, Italy
- Istituto
Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Viale delle Medaglie d’Oro
305, 00136 Rome, Italy
| | - Amelia Mallardo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Chiara Melchiorre
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Stefania Serpico
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Marco Varelli
- Istituto
Varelli, Via Cornelia
dei Gracchi, 65, 80126 Napoli, Italy
| | - Stefania Fasano
- Istituto
Varelli, Via Cornelia
dei Gracchi, 65, 80126 Napoli, Italy
| | - Francesca di Rella
- Experimental
and Clinical Senologic Oncology Unit, Istituto
Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131 Napoli, Italy
| | - Maria Rosaria Campitiello
- Department
of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, 84124 Salerno, Italy
| | - Gaetano Buonfanti
- Clinical
Trial Unit, Istituto Nazionale Tumori, IRCCS
Fondazione G. Pascale, 80131 Napoli, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 26, 80126 Naples, Italy
- Istituto
Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Viale delle Medaglie d’Oro
305, 00136 Rome, Italy
| |
Collapse
|
6
|
Van Puyvelde B, Hunter CL, Zhgamadze M, Savant S, Wang YO, Hoedt E, Raedschelders K, Pope M, Huynh CA, Ramanujan VK, Tourtellotte W, Razavi M, Anderson NL, Martens G, Deforce D, Fu Q, Dhaenens M, Van Eyk JE. Acoustic ejection mass spectrometry empowers ultra-fast protein biomarker quantification. Nat Commun 2024; 15:5114. [PMID: 38879593 PMCID: PMC11180209 DOI: 10.1038/s41467-024-48563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 06/19/2024] Open
Abstract
The global scientific response to COVID 19 highlighted the urgent need for increased throughput and capacity in bioanalytical laboratories, especially for the precise quantification of proteins that pertain to health and disease. Acoustic ejection mass spectrometry (AEMS) represents a much-needed paradigm shift for ultra-fast biomarker screening. Here, a quantitative AEMS assays is presented, employing peptide immunocapture to enrich (i) 10 acute phase response (APR) protein markers from plasma, and (ii) SARS-CoV-2 NCAP peptides from nasopharyngeal swabs. The APR proteins were quantified in 267 plasma samples, in triplicate in 4.8 h, with %CV from 4.2% to 10.5%. SARS-CoV-2 peptides were quantified in triplicate from 145 viral swabs in 10 min. This assay represents a 15-fold speed improvement over LC-MS, with instrument stability demonstrated across 10,000 peptide measurements. The combination of speed from AEMS and selectivity from peptide immunocapture enables ultra-high throughput, reproducible quantitative biomarker screening in very large cohorts.
Collapse
Affiliation(s)
- Bart Van Puyvelde
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Maxim Zhgamadze
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Y Oliver Wang
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Esthelle Hoedt
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Koen Raedschelders
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Matt Pope
- SISCAPA Assay Technologies Inc., Box 53309, Washington, DC, 20009, USA
| | - Carissa A Huynh
- Cedars Sinai Biobank & Research Pathology Resource, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - V Krishnan Ramanujan
- Cedars Sinai Biobank & Research Pathology Resource, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Warren Tourtellotte
- Cedars Sinai Biobank & Research Pathology Resource, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Morteza Razavi
- SISCAPA Assay Technologies Inc., Box 53309, Washington, DC, 20009, USA
| | - N Leigh Anderson
- SISCAPA Assay Technologies Inc., Box 53309, Washington, DC, 20009, USA
| | - Geert Martens
- AZ Delta Medical Laboratories, AZ Delta General Hospital, 8800, Roeselare, Belgium
| | - Dieter Deforce
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Qin Fu
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium.
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
7
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
8
|
Sun H, Li Q, Jin Z, Lu Y, Ju Y. Simultaneous determination of multiple urine biomarkers for kidney injury using SPE combined with LC-MS/MS. Clin Chim Acta 2024; 555:117790. [PMID: 38246210 DOI: 10.1016/j.cca.2024.117790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND OBJECTIVES Urinary biomarkers such as low molecular weight proteins and small molecular weight metabolites are crucial in the diagnosis of kidney injury. The objective of this study was to develop and preliminarily validate a sensitive and specific method using solid-phase extraction (SPE) in conjunction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous measurement of these biomarkers in human urine. METHOD This study presents the development of a solid-phase extraction method integrated with LC-MS/MS analyzing biomarkers including creatinine, urea, β2-microglobulin, α1-microglobulin, and cystatin C in human urine. An enhanced solid-phase cartridge technique was employed for peptide purification and dilution of small molecule metabolites during sample preparation. RESULTS The developed LC-MS/MS method achieved satisfactory separation of the five analytes within 15 min. Accuracy levels ranged from -8.6% to 13.6%. Both intra-assay and inter-assay imprecision rates were maintained below 7.9% for all analytes. CONCLUSIONS The established LC-MS/MS method effectively quantifies creatinine, urea, β2-microglobulin, α1-microglobulin and cystatin C concurrently. This offers a viable alternative for the detection of kidney injury biomarkers in human urine, demonstrating potential for clinical application in kidney injury diagnosis.
Collapse
Affiliation(s)
- Hewei Sun
- Shanghai Center for Clinical Laboratory, Shanghai, PR China
| | - Qing Li
- Shanghai Center for Clinical Laboratory, Shanghai, PR China
| | - Zhonggan Jin
- Shanghai Center for Clinical Laboratory, Shanghai, PR China
| | - Yide Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Yi Ju
- Shanghai Center for Clinical Laboratory, Shanghai, PR China.
| |
Collapse
|
9
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Yildiz P, Ozcan S. A single protein to multiple peptides: Investigation of protein-peptide correlations using targeted alpha-2-macroglobulin analysis. Talanta 2023; 265:124878. [PMID: 37392709 DOI: 10.1016/j.talanta.2023.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/30/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Recent advances in proteomics technologies have enabled the analysis of thousands of proteins in a high-throughput manner. Mass spectrometry (MS) based proteomics uses a peptide-centric approach where biological samples undergo specific proteolytic digestion and then only unique peptides are used for protein identification and quantification. Considering the fact that a single protein may have multiple unique peptides and a number of different forms, it becomes essential to understand dynamic protein-peptide relationships to ensure robust and reliable peptide-centric protein analysis. In this study, we investigated the correlation between protein concentration and corresponding unique peptide responses under a conventional proteolytic digestion condition. Protein-peptide correlation, digestion efficiency, matrix-effect, and concentration-effect were evaluated. Twelve unique peptides of alpha-2-macroglobulin (A2MG) were monitored using a targeted MS approach to acquire insights into protein-peptide dynamics. Although the peptide responses were reproducible between replicates, protein-peptide correlation was moderate in protein standards and low in complex matrices. The results suggest that reproducible peptide signal could be misleading in clinical studies and a peptide selection could dramatically change the outcome at protein level. This is the first study investigating quantitative protein-peptide correlations in biological samples using all unique peptides representing the same protein and opens a discussion on peptide-based proteomics.
Collapse
Affiliation(s)
- Pelin Yildiz
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye; Nanografi Nanotechnology Co, Middle East Technical University (METU) Technopolis, 06531, Ankara, Turkiye
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye; Cancer Systems Biology Laboratory (CanSyL), Middle East Technical University (METU), 06800, Ankara, Turkiye.
| |
Collapse
|
11
|
Vanstapel FJLA, Orth M, Streichert T, Capoluongo ED, Oosterhuis WP, Çubukçu HC, Bernabeu-Andreu FA, Thelen M, Jacobs LHJ, Linko S, Bhattoa HP, Bossuyt PMM, Meško Brguljan P, Boursier G, Cobbaert CM, Neumaier M. ISO 15189 is a sufficient instrument to guarantee high-quality manufacture of laboratory developed tests for in-house-use conform requirements of the European In-Vitro-Diagnostics Regulation. Clin Chem Lab Med 2023; 61:608-626. [PMID: 36716120 DOI: 10.1515/cclm-2023-0045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
The EU In-Vitro Diagnostic Device Regulation (IVDR) aims for transparent risk-and purpose-based validation of diagnostic devices, traceability of results to uniquely identified devices, and post-market surveillance. The IVDR regulates design, manufacture and putting into use of devices, but not medical services using these devices. In the absence of suitable commercial devices, the laboratory can resort to laboratory-developed tests (LDT) for in-house use. Documentary obligations (IVDR Art 5.5), the performance and safety specifications of ANNEX I, and development and manufacture under an ISO 15189-equivalent quality system apply. LDTs serve specific clinical needs, often for low volume niche applications, or correspond to the translational phase of new tests and treatments, often extremely relevant for patient care. As some commercial tests may disappear with the IVDR roll-out, many will require urgent LDT replacement. The workload will also depend on which modifications to commercial tests turns them into an LDT, and on how national legislators and competent authorities (CA) will handle new competences and responsibilities. We discuss appropriate interpretation of ISO 15189 to cover IVDR requirements. Selected cases illustrate LDT implementation covering medical needs with commensurate management of risk emanating from intended use and/or design of devices. Unintended collateral damage of the IVDR comprises loss of non-profitable niche applications, increases of costs and wasted resources, and migration of innovative research to more cost-efficient environments. Taking into account local specifics, the legislative framework should reduce the burden on and associated opportunity costs for the health care system, by making diligent use of existing frameworks.
Collapse
Key Words
- AB, accrediting body
- BRCA1/2, breast cancer genes 1 and 2
- CA, competent authority
- CAPA, corrective and preventive actions
- CDx, companion diagnostics
- CGP, comprehensive genomic profile
- CRGA, clinically relevant genomic alterations
- EEA, European economic area
- EFLM, European Federation of Clinical Chemistry and Laboratory Medicine
- EMA, European Medicines Agency
- EU, European Union
- European Regulation 2017/746 on In-Vitro-Diagnostic Devices
- FMEA, failure-mode effects analysis
- GA, genomic alterations
- GDPR, General Data Protection Regulation
- HI, health institution
- HRD, homologous recombination deficiency
- HRR, homologous recombination repair
- ISO 15189:2012
- ISO, International Organization for Standardization
- IVDD, In-Vitro Diagnostic Device Directive
- IVDR, In-Vitro Diagnostic Device Regulation
- LDT, laboratory-developed test
- MDCG, Medical Device Coordination Group
- MSI, micro satellite instability
- MU, measurement uncertainty
- NB, notified body
- NGS, next generation sequencing
- NTRK, neurotrophic tyrosine receptor kinase
- PARPi, poly (ADP-ribose) polymerase inhibitors
- PRRC, person responsible for regulatory compliance
- PT, proficiency testing
- RUO, research use only
- RiliBÄk, Richtlinie der Bundesärztekammer zur Qualitätssicherung Laboratoriums medizinischer Untersuchungen
- SOP, standard operating procedure
- TMB, tumor mutational burden
- UDI, unique device identifier
- VAF, variant allele frequency
- iQC, internal quality control
- laboratory-developed tests for in-house use
- method validation
Collapse
Affiliation(s)
- Florent J L A Vanstapel
- Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
- Department of Public Health, Biomedical Sciences Group, Catholic University Leuven, Leuven, Belgium
| | - Matthias Orth
- Institute of Laboratory Medicine, Vinzenz von Paul Kliniken gGmbH, Stuttgart, Germany
- Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Thomas Streichert
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ettore D Capoluongo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Naples, Italy
| | - Wytze P Oosterhuis
- Department of Clinical Chemistry, Reinier Haga Medical Diagnostic Centre, Delft, The Netherlands
| | - Hikmet Can Çubukçu
- Ankara University Stem Cell Institute, Ankara, Türkiye
- Department of Rare Diseases, General Directorate of Health Services, Turkish Ministry of Health, Ankara, Türkiye
| | - Francisco A Bernabeu-Andreu
- Servicio Bioquímica Análisis Clínicos, Hospital Universitario Puerta de Hierro Majadahonda (Madrid), Majadahonda, Spain
| | - Marc Thelen
- Result Laboratory for Clinical Chemistry, Amphia Hospital, Breda, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo H J Jacobs
- Laboratory for Clinical Chemistry and Hematology, Meander Medical Centre, Amersfoort, The Netherlands
| | | | - Harjit Pal Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Patrick M M Bossuyt
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Pika Meško Brguljan
- Department of Clinical Chemistry, University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Guilaine Boursier
- Department of Molecular Genetics and Cytogenomics, Rare and Autoinflammatory Diseases Unit, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michael Neumaier
- Institute for Clinical Chemistry, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Smit NPM, Romijn FPHTM, van Ham VJJ, Reijnders E, Cobbaert CM, Ruhaak LR. Quantitative protein mass-spectrometry requires a standardized pre-analytical phase. Clin Chem Lab Med 2023; 61:55-66. [PMID: 36069790 DOI: 10.1515/cclm-2022-0735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Quantitative protein mass-spectrometry (QPMS) in blood depends on tryptic digestion of proteins and subsequent measurement of representing peptides. Whether serum and plasma can be used interchangeably and whether in-vitro anticoagulants affect the recovery is unknown. In our laboratory serum samples are the preferred matrix for QPMS measurement of multiple apolipoproteins. In this study, we investigated the effect of different matrices on apolipoprotein quantification by mass spectrometry. METHODS Blood samples were collected from 44 healthy donors in Beckton Dickinson blood tubes simultaneously for serum (with/without gel) and plasma (heparin, citrate or EDTA). Nine apolipoproteins were quantified according to standard operating procedure using value-assigned native serum calibrators for quantitation. Tryptic digestion kinetics were investigated in the different matrices by following formation of peptides for each apolipoprotein in time, up to 22 h. RESULTS In citrate plasma recovery of apolipoproteins showed an overall reduction with a bias of -14.6%. For heparin plasma only -0.3% bias was found compared to serum, whereas for EDTA-plasma reduction was more pronounced (-5.3% bias) and variable with >14% reduction for peptides of apoA-I, A-II and C-III. Digestion kinetics revealed that especially slow forming peptides showed reduced formation in EDTA-plasma. CONCLUSIONS Plasma anticoagulants affect QPMS test results. Heparin plasma showed comparable results to serum. Reduced concentrations in citrate plasma can be explained by dilution, whereas reduced recovery in EDTA-plasma is dependent on altered proteolytic digestion efficiency. The results highlight the importance of a standardized pre-analytical phase for accurate QPMS applications in clinical chemistry.
Collapse
Affiliation(s)
- Nico P M Smit
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Fred P H T M Romijn
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
van Duijl TT, Ruhaak R, Hoogeveen E, de Mutsert RE, Rosendaal F, le Cessie S, de Fijter J, Cobbaert C. Reference intervals of urinary kidney injury biomarkers for middle-aged men and women determined by quantitative protein mass spectrometry. Ann Clin Biochem 2022; 59:420-432. [PMID: 35957618 DOI: 10.1177/00045632221121780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS There is an ongoing need to recognize early kidney injury and its progression in structural chronic pathologies. The proteins NGAL, IGFBP7, TIMP2, KIM-1, CXCL9, TGF-β1, SLC22A2, nephrin, cubilin and uromodulin have been proposed as early kidney injury biomarkers. To guide clinical interpretation, their urinary concentrations should be accompanied by reference intervals, which we here establish in a representative Dutch middle-aged population. MATERIALS AND METHODS The 24-h urine samples from 1443 Caucasian middle-aged men and women, were analyzed for the biomarkers by quantitative LC-MS/MS. Biomarker excretion per 24-h were calculated, and urine creatinine and osmolality were measured for dilution normalization. This population was characterized by demographic and anthropometric parameters, comorbid conditions, and conventional kidney function measures. RESULTS NGAL, IGFBP7, TIMP2, KIM-1 and uromodulin could be quantified in this population, whereas nephrin, SLC22A2 and CXCL9 were below their detection limits. Urine creatinine and osmolality ( r= -were correlated to urine volume (r = -0.71; -0.74) and to IGFBP7 (r = 0.73; 0.71) and TIMP2 (r = 0.71; 0.69). Crude and normalized biomarker concentrations were affected by sex, but not by age, BMI, smoking, kidney function or common comorbid conditions. The reference intervals (men; women) were 18-108; 21-131 pmol IGFBP7/mmol creatinine, 1- 63; 4-224 pmol NGAL/mmol creatinine, 7-48; 7- 59 pmol TIMP2/mmol creatinine, <1-9; <1-12 pmol KIM-1/mmol creatinine and 0.1-1.2; 0.1-1.7 mg uromodulin/mmol creatinine. CONCLUSION We present dilution-normalized and sex-stratified urinary reference intervals of kidney injury biomarkers in a middle-aged Caucasian population.
Collapse
Affiliation(s)
| | | | - Ellen Hoogeveen
- Department of Clinical Epidemiology4501Leiden University Medical Center
| | - Renà E de Mutsert
- Department of Clinical Epidemiology4501Leiden University Medical Center
| | - Frits Rosendaal
- Department of Clinical Epidemiology4501Leiden University Medical Center
| | - Saskia le Cessie
- Department of Clinical Epidemiology4501Leiden University Medical Center
| | - Johan de Fijter
- Department of Nephrology4501Leiden University Medical Center
| | | |
Collapse
|
14
|
Lash LH. Lawrence Lash reports financial support was provided by National Institutes of Health. Cellular and Functional Biomarkers of Renal Injury and Disease. CURRENT OPINION IN TOXICOLOGY 2022; 31. [DOI: 10.1016/j.cotox.2022.100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
|