1
|
Pascuali N, Tobias F, Valyi-Nagy K, Salih S, Veiga-Lopez A. Delineating lipidomic landscapes in human and mouse ovaries: Spatial signatures and chemically-induced alterations via MALDI mass spectrometry imaging: Spatial ovarian lipidomics. ENVIRONMENT INTERNATIONAL 2024; 194:109174. [PMID: 39644787 DOI: 10.1016/j.envint.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
This study addresses the critical gap in understanding the ovarian lipidome's abundance, distribution, and vulnerability to environmental disruptors, a largely unexplored field. Leveraging the capabilities of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI), we embarked on a novel exploration of the ovarian lipidome in both mouse and human healthy tissues. Our findings revealed that the obesogenic chemical tributyltin (TBT), at environmentally relevant exposures, exerts a profound and region-specific impact on the mouse ovarian lipidome. TBT exposure predominantly affects lipid species in antral follicles and oocytes, suggesting a targeted disruption of lipid homeostasis in these biologically relevant regions. Our comprehensive approach, integrating advanced lipidomic techniques and bioinformatic analyses, documented the disruptive effects of TBT, an environmental chemical, on the ovarian lipid landscape. Similar to mice, our research also unveiled distinct spatial lipidomic signatures corresponding to specific ovarian compartments in a healthy human ovary that may also be vulnerable to disruption by chemical exposures. Findings from this study not only underscore the vulnerability of the ovarian lipidome to environmental factors but also lay the groundwork for unraveling the molecular pathways underlying ovarian toxicity mediated through lipid dysregulation.
Collapse
Affiliation(s)
- Natalia Pascuali
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Fernando Tobias
- Integrated Molecular Structure Education and Research Center, Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Klara Valyi-Nagy
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Sana Salih
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA; Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Wei J, Liu R, Yang Z, Liu H, Wang Y, Zhang J, Sun M, Shen C, Liu J, Yu P, Tang NJ. Association of metals and bisphenols exposure with lipid profiles and dyslipidemia in Chinese adults: Independent, combined and interactive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174315. [PMID: 38942316 DOI: 10.1016/j.scitotenv.2024.174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Although studies have assessed the association of metals and bisphenols with lipid metabolism, the observed results have been controversial, and limited knowledge exists about the combined and interactive effects of metals and bisphenols exposure on lipid metabolism. METHODS Plasma metals and serum bisphenols concentrations were evaluated in 888 participants. Multiple linear regression and logistic regression models were conducted to assess individual associations of 18 metals and 3 bisphenols with 5 lipid profiles and dyslipidemia risk, respectively. The dose-response relationships of targeted contaminants with lipid profiles and dyslipidemia risk were captured by applying a restriction cubic spline (RCS) function. The bayesian kernel machine regression (BKMR) model was used to assess the overall effects of metals and bisphenols mixture on lipid profiles and dyslipidemia risk. The interactive effects of targeted contaminants on interested outcomes were explored by constructing an interaction model. RESULTS Single-contaminant analyses revealed that exposure to iron (Fe), nickel (Ni), copper (Cu), arsenic (As), selenium (Se), strontium (Sr), and tin (Sn) was associated with elevated lipid levels. Cobalt (Co) showed a negative association with high density lipoprotein cholesterol (HDL-C). Bisphenol A (BPA) and bisphenol AF (BPAF) were associated with decreased HDL-C levels, with nonlinear associations observed. Vanadium (V), lead (Pb), and silver (Ag) displayed U-shaped dose-response relationships with most lipid profiles. Multi-contaminant analyses indicated positive trends between contaminants mixture and total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C). The interaction analyses showed that Se-Fe exhibited synergistic effects on LDL-C and non-HDL-C, and Se-Sn showed a synergistic effect on HDL-C. CONCLUSIONS Our study suggested that exposure to metals and bisphenols was associated with changes in lipid levels, and demonstrated their combined and interactive effects.
Collapse
Affiliation(s)
- Jiemin Wei
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Ruifang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Yiqing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Meiqing Sun
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Changkun Shen
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Jian Liu
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
3
|
Pascuali N, Pu Y, Waye AA, Pearl S, Martin D, Sutton A, Shikanov A, Veiga-Lopez A. Evaluation of Lipids and Lipid-Related Transcripts in Human and Ovine Theca Cells and an in Vitro Mouse Model Exposed to the Obesogen Chemical Tributyltin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47009. [PMID: 38630605 PMCID: PMC11023052 DOI: 10.1289/ehp13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Exposure to obesogenic chemicals has been reported to result in enhanced adipogenesis, higher adipose tissue accumulation, and reduced ovarian hormonal synthesis and follicular function. We have reported that organotins [tributyltin (TBT) and triphenyltin (TPT)] dysregulate cholesterol trafficking in ovarian theca cells, but, whether organotins also exert lipogenic effects on ovarian cells remains unexplored. OBJECTIVE We investigated if environmentally relevant exposures to organotins [TBT, TPT, or dibutyltin (DBT)] induce lipid dysregulation in ovarian theca cells and the role of the liver X receptor (LXR) in this effect. We also tested the effect of TBT on oocyte maturation and neutral lipid accumulation, and lipid-related transcript expression in cumulus cells and preimplantation embryos. METHODS Primary theca cell cultures derived from human and ovine ovaries were exposed to TBT, TPT, or DBT (1, 10, or 50 ng / ml ). The effect of these chemical exposures on neutral lipid accumulation, lipid abundance and composition, lipid homeostasis-related gene expression, and cytokine secretion was evaluated using liquid chromatography-mass spectrometry (LC-MS), inhibitor-based methods, cytokine secretion, and lipid ontology analyses. We also exposed murine cumulus-oocyte complexes to TBT and evaluated oocyte maturation, embryo development, and lipid homeostasis-related mRNA expression in cumulus cells and blastocysts. RESULTS Exposure to TBT resulted in higher intracellular neutral lipids in human and ovine primary theca cells. In ovine theca cells, this effect was dose-dependent, independent of cell stage, and partially mediated by LXR. DBT and TPT resulted in higher intracellular neutral lipids but to a lesser extent in comparison with TBT. More than 140 lipids and 9 cytokines were dysregulated in TBT-exposed human theca cells. Expression of genes involved in lipogenesis and fatty acid synthesis were higher in theca cells, as well as in cumulus cells and blastocysts exposed to TBT. However, TBT did not impact the rates of oocyte maturation or blastocyst development. DISCUSSION TBT induced dyslipidemia in primary human and ovine theca cells, which may be responsible for some of the TBT-induced fertility dysregulations reported in rodent models of TBT exposure. https://doi.org/10.1289/EHP13955.
Collapse
Affiliation(s)
- Natalia Pascuali
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yong Pu
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Anita A. Waye
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, Michigan, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, Michigan, USA
| | - Allison Sutton
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
- The Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Pannkuk EL, Laiakis EC, Garty G, Ponnaiya B, Wu X, Shuryak I, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Variable Dose Rates in Realistic Radiation Exposures: Effects on Small Molecule Markers of Ionizing Radiation in the Murine Model. Radiat Res 2023; 200:1-12. [PMID: 37212727 PMCID: PMC10410530 DOI: 10.1667/rade-22-00211.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Novel biodosimetry assays for use in preparedness and response to potential malicious attacks or nuclear accidents would ideally provide accurate dose reconstruction independent of the idiosyncrasies of a complex exposure to ionizing radiation. Complex exposures will consist of dose rates spanning the low dose rates (LDR) to very high-dose rates (VHDR) that need to be tested for assay validation. Here, we investigate how a range of relevant dose rates affect metabolomic dose reconstruction at potentially lethal radiation exposures (8 Gy in mice) from an initial blast or subsequent fallout exposures compared to zero or sublethal exposures (0 or 3 Gy in mice) in the first 2 days, which corresponds to an integral time individuals will reach medical facilities after a radiological emergency. Biofluids (urine and serum) were collected from both male and female 9-10-week-old C57BL/6 mice at 1 and 2 days postirradiation (total doses of 0, 3 or 8 Gy) after a VHDR of 7 Gy/s. Additionally, samples were collected after a 2-day exposure consisting of a declining dose rate (1 to 0.004 Gy/min) recapitulating the 7:10 rule-of-thumb time dependency of nuclear fallout. Overall similar perturbations were observed in both urine and serum metabolite concentrations irrespective of sex or dose rate, with the exception of xanthurenic acid in urine (female specific) and taurine in serum (VHDR specific). In urine, we developed identical multiplex metabolite panels (N6, N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, and taurine) that could identify individuals receiving potentially lethal levels of radiation from the zero or sublethal cohorts with excellent sensitivity and specificity, with creatine increasing model performance at day 1. In serum, individuals receiving a 3 or 8 Gy exposure could be identified from their pre-irradiation samples with excellent sensitivity and specificity, however, due to a lower dose response the 3 vs. 8 Gy groups could not be distinguished from each other. Together with previous results, these data indicate that dose-rate-independent small molecule fingerprints have potential in novel biodosimetry assays.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| | - Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| |
Collapse
|
5
|
Wang S, Sun J, Gu L, Wang Y, Du C, Wang H, Ma Y, Wang L. Association of Urinary Strontium with Cardiovascular Disease Among the US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey. Biol Trace Elem Res 2022:10.1007/s12011-022-03451-9. [PMID: 36282469 DOI: 10.1007/s12011-022-03451-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022]
Abstract
Previous studies have demonstrated the effects of environmental metals on the cardiovascular system. However, the relationship of strontium (Sr) to cardiovascular disease (CVD) in the general population has not been established. This cross-sectional study aimed to investigate the association between urinary Sr (U-Sr) and CVD in the US adults using data of 5255 participants from the National Health and Nutrition Examination Survey (NHANES) 2011-2016. Multivariable logistic regression and restricted cubic spline (RCS) regression were performed to assess the association between U-Sr and CVD. After multivariable adjustments, compared to the lowest quartile, the adjusted odds ratios (ORs) of CVD with 95% confidence intervals (CIs) across the quartiles were 0.65 (0.46, 0.92), 0.87 (0.61, 1.25), and 0.78 (0.55, 1.10). RCS plot revealed a nonlinear relationship between U-Sr levels and CVD (P for nonlinearity = 0.004). Threshold effect analysis identified the inflection point of U-Sr for the curve was 90.18 μg/g urinary creatinine (μg/g UCr). Each 1-unit increase in U-Sr was associated with a 1.1% decrease in CVD (OR 0.989; 95% CI 0.980-0.998) on the left side of the inflection point, but no significant association was observed on the right side of the inflection point. This study suggests a nonlinear association of U-Sr with CVD prevalence in the US general adults. These findings may have positive implications for the determination of appropriate Sr levels for public cardiovascular health. Given the cross-sectional study design, further prospective studies are warranted.
Collapse
Affiliation(s)
- Sibo Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiateng Sun
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lingfeng Gu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yaxin Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chong Du
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yao Ma
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
6
|
Pannkuk EL, Laiakis EC, Garty G, Bansal S, Ponnaiya B, Wu X, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Biofluid Metabolomics and Lipidomics of Mice Exposed to External Very High-Dose Rate Radiation. Metabolites 2022; 12:520. [PMID: 35736453 PMCID: PMC9228171 DOI: 10.3390/metabo12060520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
High-throughput biodosimetry methods to determine exposure to ionizing radiation (IR) that can also be easily scaled to multiple testing sites in emergency situations are needed in the event of malicious attacks or nuclear accidents that may involve a substantial number of civilians. In the event of an improvised nuclear device (IND), a complex IR exposure will have a very high-dose rate (VHDR) component from an initial blast. We have previously addressed low-dose rate (LDR, ≤1 Gy/day) exposures from internal emitters on biofluid small molecule signatures, but further research on the VHDR component of the initial blast is required. Here, we exposed 8- to 10-week-old male C57BL/6 mice to an acute dose of 3 Gy using a reference dose rate of 0.7 Gy/min or a VHDR of 7 Gy/s, collected urine and serum at 1 and 7 d, then compared the metabolite signatures using either untargeted (urine) or targeted (serum) approaches with liquid chromatography mass spectrometry platforms. A Random Forest classification approach showed strikingly similar changes in urinary signatures at 1 d post-irradiation with VHDR samples grouping closer to control samples at 7 d. Identical metabolite panels (carnitine, trigonelline, xanthurenic acid, N6,N6,N6-trimethyllysine, spermine, and hexosamine-valine-isoleucine-OH) could differentiate IR exposed individuals with high sensitivity and specificity (area under the receiver operating characteristic (AUROC) curves 0.89-1.00) irrespective of dose rate at both days. For serum, the top 25 significant lipids affected by IR exposure showed slightly higher perturbations at 0.7 Gy/min vs. 7 Gy/s; however, identical panels showed excellent sensitivity and specificity at 1 d (three hexosylceramides (16:0), (18:0), (24:0), sphingomyelin [26:1], lysophosphatidylethanolamine [22:1]). Mice could not be differentiated from control samples at 7 d for a 3 Gy exposure based on serum lipid signatures. As with LDR exposures, we found that identical biofluid small molecule signatures can identify IR exposed individuals irrespective of dose rate, which shows promise for more universal applications of metabolomics for biodosimetry.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (E.C.L.); (S.B.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- Center for Metabolomic Studies, Georgetown University, Washington, DC 20057, USA
| | - Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (E.C.L.); (S.B.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- Center for Metabolomic Studies, Georgetown University, Washington, DC 20057, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY 10032, USA;
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (E.C.L.); (S.B.); (A.J.F.J.)
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (E.C.L.); (S.B.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- Center for Metabolomic Studies, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
7
|
Pannkuk EL, Laiakis EC, Girgis M, Garty GY, Morton SR, Pujol-Canadell M, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator. J Proteome Res 2021; 20:5145-5155. [PMID: 34585931 DOI: 10.1021/acs.jproteome.1c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important component of ionizing radiation (IR) exposure after a radiological incident may include low-dose rate (LDR) exposures either externally or internally, such as from 137Cs deposition. In this study, a novel irradiation system, VAriable Dose-rate External 137Cs irradiatoR (VADER), was used to expose male and female mice to a variable LDR irradiation over a 30 d time span to simulate fall-out-type exposures in addition to biofluid collection from a reference dose rate (0.8 Gy/min). Radiation markers were identified by untargeted metabolomics and random forests. Mice exposed to LDR exposures were successfully identified from control groups based on their urine and serum metabolite profiles. In addition to metabolites commonly perturbed after IR exposure, we identified and validated a novel metabolite (hexosamine-valine-isoleucine-OH) that increased up to 150-fold after LDR and 80-fold after conventional exposures in urine. A multiplex panel consisting of hexosamine-valine-isoleucine-OH with other urinary metabolites (N6,N6,N6-trimethyllysine, carnitine, 1-methylnicotinamide, and α-ketoglutaric acid) achieved robust classification performance using receiver operating characteristic curve analysis, irrespective of the dose rate or sex. These results show that in terms of biodosimetry, dysregulated energy metabolism is associated with IR exposure for both LDR and conventional IR exposures. These mass spectrometry data have been deposited to the NIH data repository via Metabolomics Workbench with study IDs ST001790, ST001791, ST001792, ST001793, and ST001806.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Evagelia C Laiakis
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Michael Girgis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Guy Y Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10032, United States.,Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shad R Morton
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Albert J Fornace
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
8
|
Singh VK, Seed TM, Cheema AK. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: current status and future perspectives. Expert Rev Mol Diagn 2021; 21:641-654. [PMID: 34024238 DOI: 10.1080/14737159.2021.1933448] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION There is an urgent need for specific and sensitive bioassays to augment biodosimetric assessments of unwanted and excessive radiation exposures that originate from unexpected nuclear/radiological events, including nuclear accidents, acts of terrorism, or the use of a radiological dispersal device. If sufficiently intense, such ionizing radiation exposures are likely to impact normal metabolic processes within the cells and organs of the body, thus inducing multifaceted biological responses. AREAS COVERED This review covers the application of metabolomics, an emerging and promising technology based on quantitative and qualitative determinations of small molecules in biological samples for the rapid assessment of an individual's exposure to ionizing radiation. Recent advancements in the analytics of high-resolution chromatography, mass spectrometry, and bioinformatics have led to untargeted (global) and targeted (quantitative phase) approaches to identify biomarkers of radiation injury and countermeasure efficacy. Biomarkers are deemed essential for both assessing the radiation exposure levels and for extrapolative processes involved in determining scaling factors of a given radiation countering medicinal between experimental animals and humans. EXPERT OPINION The discipline of metabolomics appears to be highly informative in assessing radiation exposure levels and for identifying biomarkers of radiation injury and countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants,Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA.,Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
9
|
Li Z, Xu Y, Huang Z, Wei Y, Hou J, Long T, Wang F, Cheng X, Duan Y, Chen X, Yuan H, Shen M, He M. Association of multiple metals with lipid markers against different exposure profiles: A population-based cross-sectional study in China. CHEMOSPHERE 2021; 264:128505. [PMID: 33068969 DOI: 10.1016/j.chemosphere.2020.128505] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
We sought to evaluate whether essential and toxic metals are cross-sectionally related to blood lipid levels using data among adults from Shimen (n = 564) and Huayuan (n = 637), two counties with different exposure profiles in Hunan province of China. Traditional and grouped weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were performed to assess association between exposure to a mixture of 22 metals measured in urine or plasma, and lipid markers. Most of the exposure levels of metals were significantly higher in Shimen area than those in Huayuan area (all P-values < 0.001). Traditional WQS regression analyses revealed that the WQS index were both significantly associated with lipid markers in two areas, except for the HDL-C. Grouped WQS revealed that essential metals group showed significantly positive associations with lipid markers except for HDL-C in Huayuan area, while toxic metals group showed significantly negative associations except for HDL-C and LDL-C in Huayuan area. There were no significant joint effects, but potential non-linear relationships between metals mixture and TC or LDL-C levels were observed in BKMR analyses. Although consistent significantly associations of zinc and titanium with TG levels were found in both areas, the metals closely related to other lipid markers were varied by sites. Additionally, the BKMR analyses revealed an inverse U shaped association of iron with LDL-C levels and interaction effects of zinc and cadmium on LDL-C in Huayuan area. The relationship between metal exposure and blood lipid were not identical against different exposure profiles.
Collapse
Affiliation(s)
- Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hong Yuan
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Xi C, Zhao H, Lu X, Cai TJ, Li S, Liu KH, Tian M, Liu QJ. Screening of Lipids for Early Triage and Dose Estimation after Acute Radiation Exposure in Rat Plasma Based on Targeted Lipidomics Analysis. J Proteome Res 2020; 20:576-590. [PMID: 33200940 DOI: 10.1021/acs.jproteome.0c00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid early triage and dose estimation is vital for limited medical resource allocation and treatment of a large number of the wounded after radiological accidents. Lipidomics has been utilized to delineate biofluid lipid signatures after irradiation. Here, high-coverage targeted lipidomics was employed to screen radiosensitive lipids after 0, 1, 2, 3, 5, and 8 Gy total body irradiation at 4, 24, and 72 h postirradiation in rat plasma. Ultra-performance liquid chromatography-tandem mass spectrometry with a multiple reaction monitoring method was utilized. In total, 416 individual lipids from 18 major classes were quantified and those biomarkers altered in a dose-dependent manner constituted panel A-panel D. Receiver operator characteristic curve analysis using combined lipids showed good to excellent sensitivity and specificity in triaging different radiation exposure levels (area under curve = 0.814-1.000). The equations for dose estimation were established by stepwise regression analysis for three time points. A novel strategy for radiation early triage and dose estimation was first established and validated using panels of lipids. Our study suggests that it is feasible to acquire quantitative lipid biomarker panels using targeted lipidomics platforms for rapid, high-throughput triage, which can provide further insights in developing lipidomics strategies for radiation biodosimetry in humans.
Collapse
Affiliation(s)
- Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Ke-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| |
Collapse
|
11
|
Vicente E, Vujaskovic Z, Jackson IL. A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury. Metabolites 2020; 10:E259. [PMID: 32575772 PMCID: PMC7344731 DOI: 10.3390/metabo10060259] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022] Open
Abstract
A large-scale nuclear event has the ability to inflict mass casualties requiring point-of-care and laboratory-based diagnostic and prognostic biomarkers to inform victim triage and appropriate medical intervention. Extensive progress has been made to develop post-exposure point-of-care biodosimetry assays and to identify biomarkers that may be used in early phase testing to predict the course of the disease. Screening for biomarkers has recently extended to identify specific metabolomic and lipidomic responses to radiation using animal models. The objective of this review was to determine which metabolites or lipids most frequently experienced perturbations post-ionizing irradiation (IR) in preclinical studies using animal models of acute radiation sickness (ARS) and delayed effects of acute radiation exposure (DEARE). Upon review of approximately 65 manuscripts published in the peer-reviewed literature, the most frequently referenced metabolites showing clear changes in IR induced injury were found to be citrulline, citric acid, creatine, taurine, carnitine, xanthine, creatinine, hypoxanthine, uric acid, and threonine. Each metabolite was evaluated by specific study parameters to determine whether trends were in agreement across several studies. A select few show agreement across variable animal models, IR doses and timepoints, indicating that they may be ubiquitous and appropriate for use in diagnostic or prognostic biomarker panels.
Collapse
Affiliation(s)
| | | | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.V.); (Z.V.)
| |
Collapse
|
12
|
Cheema AK, Mehta KY, Rajagopal MU, Wise SY, Fatanmi OO, Singh VK. Metabolomic Studies of Tissue Injury in Nonhuman Primates Exposed to Gamma-Radiation. Int J Mol Sci 2019; 20:ijms20133360. [PMID: 31323921 PMCID: PMC6651211 DOI: 10.3390/ijms20133360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/29/2022] Open
Abstract
Exposure to ionizing radiation induces a complex cascade of systemic and tissue-specific responses that lead to functional impairment over time in the surviving population. However, due to the lack of predictive biomarkers of tissue injury, current methods for the management of survivors of radiation exposure episodes involve monitoring of individuals over time for the development of adverse clinical symptoms and death. Herein, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that were exposed to a single dose of 7.2 Gy whole-body 60Co γ-radiation that either survived or succumbed to radiation toxicities over a 60-day period. This study involved the delineation of the radiation effects in the liver, kidney, jejunum, heart, lung, and spleen. We found robust metabolic changes in the kidney and liver and modest changes in other tissue types at the 60-day time point in a cohort of NHPs. Remarkably, we found significant elevation of long-chain acylcarnitines in animals that were exposed to radiation across multiple tissue types underscoring the role of this class of metabolites as a generic indicator of radiation-induced normal tissue injury. These studies underscore the utility of a metabolomics approach for delineating anticipatory biomarkers of exposure to ionizing radiation.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20001, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20001, USA
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20001, USA
| | - Meena U Rajagopal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20001, USA
| | - Stephen Y Wise
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA
- Scientific Research Department, Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA
- Scientific Research Department, Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Scientific Research Department, Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| |
Collapse
|
13
|
Temporal Effects on Radiation Responses in Nonhuman Primates: Identification of Biofluid Small Molecule Signatures by Gas Chromatography⁻Mass Spectrometry Metabolomics. Metabolites 2019; 9:metabo9050098. [PMID: 31096611 PMCID: PMC6571779 DOI: 10.3390/metabo9050098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022] Open
Abstract
Whole body exposure to ionizing radiation damages tissues leading to physical symptoms which contribute to acute radiation syndrome. Radiation biodosimetry aims to determine characteristic early biomarkers indicative of radiation exposure and is necessary for effective triage after an unanticipated radiological incident. Radiation metabolomics can address this aim by assessing metabolic perturbations following exposure. Gas chromatography-mass spectrometry (GC-MS) is a standardized platform ideal for compound identification. We performed GC time-of-flight MS for the global profiling of nonhuman primate urine and serum samples up to 60 d after a single 4 Gy γ-ray total body exposure. Multivariate statistical analysis showed higher group separation in urine vs. serum. We identified biofluid markers involved in amino acid, lipid, purine, and serotonin metabolism, some of which may indicate host microbiome dysbiosis. Sex differences were observed for amino acid fold changes in serum samples. Additionally, we explored mitochondrial dysfunction by tricarboxylic acid intermediate analysis in the first week with a GC tandem quadrupole MS platform. By adding this temporal component to our previous work exploring dose effects at 7 d, we observed the highest fold changes occurring at 3 d, returning closer to basal levels by 7 d. These results emphasize the utility of both MS-based metabolomics for biodosimetry and complementary analytical platforms for increased metabolome coverage.
Collapse
|
14
|
Xiao L, Zhou Y, Ma J, Cao L, Wang B, Zhu C, Yang S, Li W, Zhang Z, Wang D, Guo Y, Mu G, Yuan J, Chen W. The cross-sectional and longitudinal associations of chromium with dyslipidemia: A prospective cohort study of urban adults in China. CHEMOSPHERE 2019; 215:362-369. [PMID: 30336313 DOI: 10.1016/j.chemosphere.2018.10.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Chromium exposure can induce altered lipoprotein metabolism in animals, but the health effects of chromium on dyslipidemia in humans have not been fully evaluated. In this study, we aimed to investigate the cross-sectional and longitudinal effects of urinary chromium on lipid levels and dyslipidemia risk among urban adults from two cities in China. A total of 3762 urban adults from the Wuhan-Zhuhai cohort were included in the initial investigation, and followed up three years later. Urinary chromium concentration was measured at baseline and repeated at follow-up. Associations of urinary chromium concentration with lipid levels and risk of dyslipidemia were analyzed by generalized linear and binary logistic regression models, respectively. We found significant relationships between increased urinary chromium concentration and both reduced triglyceride (TG) level and elevated high-density lipoprotein cholesterol (HDL-C) level at baseline and follow-up. In the cross-sectional analysis, each 1-unit increase in log-transformed urinary chromium was associated with a 0.25 mmol/L decrease in TG and a 0.05 mmol/L increase in HDL-C (P < 0.05); also, downward trends for odds ratios of hyperTG (TG level ≥ 1.7 mmol/L) and hypoHDL-C (HDL-C level < 1.0 mmol/L) were significantly associated with increasing quartiles of urinary chromium (P trend < 0.05). In the longitudinal analysis, each 1-unit increase in log-transformed urinary chromium concentration was associated with a 3% and 6% decrease in the risk of developing hyperTG and hypoHDL-C, respectively (P > 0.05). Our study indicated that significant dose-response relationships between urinary chromium concentration and lipid levels were observed at baseline and at follow-up.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhuang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanjun Guo
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Yuan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
15
|
Cheema AK, Hinzman CP, Mehta KY, Hanlon BK, Garcia M, Fatanmi OO, Singh VK. Plasma Derived Exosomal Biomarkers of Exposure to Ionizing Radiation in Nonhuman Primates. Int J Mol Sci 2018; 19:ijms19113427. [PMID: 30388807 PMCID: PMC6274965 DOI: 10.3390/ijms19113427] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022] Open
Abstract
Exposure to ionizing radiation induces a cascade of molecular events that ultimately impact endogenous metabolism. Qualitative and quantitative characterization of metabolomic profiles is a pragmatic approach to studying the risks of radiation exposure since it provides a phenotypic readout. Studies were conducted in irradiated nonhuman primates (NHP) to investigate metabolic changes in plasma and plasma-derived exosomes. Specifically, rhesus macaques (Macaca mulatta) were exposed to cobalt-60 gamma-radiation and plasma samples were collected prior to and after exposure to 5.8 Gy or 6.5 Gy radiation. Exosomes were isolated using ultracentrifugation and analyzed by untargeted profiling via ultra-performance liquid chromatography mass spectrometry (UPLC-MS) based metabolomic and lipidomic analyses, with the goal of identifying a molecular signature of irradiation. The enrichment of an exosomal fraction was confirmed using quantitative ELISA. Plasma profiling showed markers of dyslipidemia, inflammation and oxidative stress post-irradiation. Exosomal profiling, on the other hand, enabled detection and identification of low abundance metabolites that comprise exosomal cargo which would otherwise get obscured with plasma profiling. We discovered enrichment of different classes of metabolites including N-acyl-amino acids, Fatty Acid ester of Hydroxyl Fatty Acids (FAHFA’s), glycolipids and triglycerides as compared to the plasma metabolome composition with implications in mediation of systemic response to radiation induced stress signaling.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Charles P Hinzman
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Briana K Hanlon
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| | - Melissa Garcia
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| |
Collapse
|
16
|
Zheng W, Wu X, Goudarzi M, Shi J, Song W, Li C, Liu J, Chen H, Zhang X, Zeng X, Li HH. Metabolomic alterations associated with Behçet's disease. Arthritis Res Ther 2018; 20:214. [PMID: 30249301 PMCID: PMC6154820 DOI: 10.1186/s13075-018-1712-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Background The diagnosis of Behçet’s disease (BD) remains challenging due to the lack of diagnostic biomarkers. This study aims to identify potential serum metabolites associated with BD and its disease activity. Methods Medical records and serum samples of 24 pretreated BD patients, 12 post-treated BD patients, and age-matched healthy controls (HC) were collected for metabolomics and lipidomics profiling using UPLC-QTOF-MS and UPLC-QTOF-MSE approaches. Additionally, serum samples from an independent cohort of BD patients, disease controls including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Takayasu’s arteritis (TA), Crohn’s disease (CD) patients, and HC were collected for further validation of two potential biomarkers using UPLC-QTOFMS analysis. Results Unsupervised principal component analysis (PCA) showed a clear separation of metabolomics profiles of BD patients from HC. Statistical analysis of the data revealed differential metabolites between BD patients and HC. The serum levels of some phosphatidylcholines (PCs) were found to be significantly lower in BD patients, while the levels of several polyunsaturated fatty acids (PUFAs) were increased markedly in the BD group compared with HC. Furthermore, the serum level of two omega-6 PUFAs, linoleic acid (LA) and arachidonic acid (AA), were dramatically decreased in patients with remission. A validation cohort confirmed that the serum LA and AA levels in BD patients were significantly higher than those in HC and patients with RA, SLE, TA, and CD. In addition, receiver operating characteristic (ROC) analysis indicated good sensitivity and specificity. Conclusions The serum metabolomics profiles in BD patients are altered. Serum LA and AA are promising diagnostic biomarkers for BD. Electronic supplementary material The online version of this article (10.1186/s13075-018-1712-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China.
| | - Xiuhua Wu
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China.,Department of Rheumatology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Maryam Goudarzi
- Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Jing Shi
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Wei Song
- Central Research Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Chaoran Li
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Jinjing Liu
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Heng-Hong Li
- Georgetown University Medical Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
17
|
Pannkuk EL, Laiakis EC, Garcia M, Fornace AJ, Singh VK. Nonhuman Primates with Acute Radiation Syndrome: Results from a Global Serum Metabolomics Study after 7.2 Gy Total-Body Irradiation. Radiat Res 2018; 190:576-583. [PMID: 30183511 DOI: 10.1667/rr15167.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Threats of nuclear terrorism coupled with potential unintentional ionizing radiation exposures have necessitated the need for large-scale response efforts of such events, including high-throughput biodosimetry for medical triage. Global metabolomics utilizing mass spectrometry (MS) platforms has proven an ideal tool for generating large compound databases with relative quantification and structural information in a short amount of time. Determining metabolite panels for biodosimetry requires experimentation to evaluate the many factors associated with compound concentrations in biofluids after radiation exposures, including temporal changes, pre-existing conditions, dietary intake, partial- vs. total-body irradiation (TBI), among others. Here, we utilize a nonhuman primate (NHP) model and identify metabolites perturbed in serum after 7.2 Gy TBI without supportive care [LD70/60, hematologic (hematopoietic) acute radiation syndrome (HARS) level H3] at 24, 36, 48 and 96 h compared to preirradiation samples with an ultra-performance liquid chromatography quadrupole time-of-flight (UPLC-QTOF) MS platform. Additionally, we document changes in cytokine levels. Temporal changes observed in serum carnitine, acylcarnitines, amino acids, lipids, deaminated purines and increases in pro-inflammatory cytokines indicate clear metabolic dysfunction after radiation exposure. Multivariate data analysis shows distinct separation from preirradiation groups and receiver operator characteristic curve analysis indicates high specificity and sensitivity based on area under the curve at all time points after 7.2 Gy irradiation. Finally, a comparison to a 6.5 Gy (LD50/60, HARS level H2) cohort after 24 h postirradiation revealed distinctly increased separations from the 7.2 Gy cohort based on multivariate data models and higher compound fold changes. These results highlight the utility of MS platforms to differentiate time and absorbed dose after a potential radiation exposure that may aid in assigning specific medical interventions and contribute as additional biodosimetry tools.
Collapse
Affiliation(s)
| | - Evagelia C Laiakis
- Departments of Oncology.,Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Melissa Garcia
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Bethesda, Maryland
| | - Albert J Fornace
- Departments of Oncology.,Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Bethesda, Maryland.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
18
|
Hinzman CP, Baulch JE, Mehta KY, Gill K, Limoli CL, Cheema AK. Exposure to Ionizing Radiation Causes Endoplasmic Reticulum Stress in the Mouse Hippocampus. Radiat Res 2018; 190:483-493. [PMID: 30084740 DOI: 10.1667/rr15061.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well known that ionizing radiation-induced toxicity to normal tissue has functional consequences in the brain. However, the underlying molecular alterations have yet to be elucidated. We have previously reported cognitive impairments with concomitant changes in dendritic complexity, spine density and inflammation in mice at 6-24 weeks postirradiation. The goal of this study was to determine whether metabolic changes in the mouse hippocampus after whole-body (4 Gy) or cranial (9 Gy) X-ray irradiation might trigger some of the incipient changes contributing to the persisting pathology in the radiation-injured brain. Metabolomic and lipidomic profiling of hippocampal tissue revealed that radiation induced dyslipidemia in mice at two days and two weeks postirradiation. Strikingly, significant changes were also observed in metabolites of the hexosamine biosynthesis pathway, a finding that was further confirmed using orthogonal methodologies. We hypothesize that these changes in hexosamine metabolism could induce endoplasmic reticulum stress and contribute to radiation-induced cognitive impairments. Taken together, our results show that molecular phenotyping is a valuable approach to identify potentially detrimental pathway perturbations that manifest significantly earlier than gross structural and functional changes in the irradiated brain.
Collapse
Affiliation(s)
- Charles P Hinzman
- a Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Janet E Baulch
- c Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Khyati Y Mehta
- b Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Kirandeep Gill
- b Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Charles L Limoli
- c Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Amrita K Cheema
- a Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057.,b Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
19
|
Chen Z, Coy SL, Pannkuk EL, Laiakis EC, Fornace AJ, Vouros P. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1650-1664. [PMID: 29736597 PMCID: PMC6287943 DOI: 10.1007/s13361-018-1977-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 05/21/2023]
Abstract
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.
Collapse
Affiliation(s)
- Zhidan Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Stephen L Coy
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Evan L Pannkuk
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Evagelia C Laiakis
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Paul Vouros
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Li H, Xu W, Jiang L, Gu H, Li M, Zhang J, Guo W, Deng P, Long H, Bu Q, Tian J, Zhao Y, Cen X. Lipidomic signature of serum from the rats exposed to alcohol for one year. Toxicol Lett 2018; 294:166-176. [PMID: 29758358 DOI: 10.1016/j.toxlet.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023]
Abstract
Alcohol abuse and its related diseases are the major risk factors for human health. Although the mechanism of alcohol-related disorders has been widely investigated, serum metabolites associated with long-term alcohol intake have not been well explored. In this study, we aimed to investigate the profiles of serum metabolites and lipid species of rats chronically exposed to alcohol, which may be involved in the pathogenesis of alcohol-associated disease. An 1H NMR-based metabolomics and Q-TOF/MS-based lipidomics approach were applied to investigate the profile of serum metabolites and lipid species of rats administrated daily with alcohol (12% vol/vol, 10 ml/kg per day, i.g.) for one year continuously. The rats administered with sterile water (10 ml/kg per day, i.g.) were used as control. We found that alcohol affected mostly the lipid species rather than small molecule metabolites in the serum of both female and male rats. Among the modified lipids, glycerophospholipid, sphingolipid and glycerolipids metabolism pathways were profoundly altered. The prominent changes in lipid profiles included diacylglycerol (DG), lysophosphatidylcholine (LysoPC), phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and triacylglycerol (TG). Moreover, fatty-acyl profile of lipids and total degree of unsaturation of fatty acid were also significantly altered by alcohol. The modified lipidomic profile may help to understand the pathogenesis of alcohol-associated diseases and also be of value for clinical evaluation of alcohol abuse, alcohol-associated disease diagnosis.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wei Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hui Gu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Menglu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiamei Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; College of Pharmacy, Yantai University, State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai 264000, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu 610041, China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China
| | - Jingwei Tian
- College of Pharmacy, Yantai University, State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai 264000, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
21
|
Pannkuk EL, Laiakis EC, Singh VK, Fornace AJ. Lipidomic Signatures of Nonhuman Primates with Radiation-Induced Hematopoietic Syndrome. Sci Rep 2017; 7:9777. [PMID: 28852188 PMCID: PMC5575047 DOI: 10.1038/s41598-017-10299-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Concern over potential exposures of ionizing radiation (IR) to large populations has emphasized the need for rapid and reliable methods of biodosimetry to determine absorbed dose and required triage. Lipidomics has emerged as a powerful technique for large-scale lipid identification and quantification. Indirect effects from IR exposure generate reactive oxygen species (ROS) through water hydrolysis and may subsequently damage cellular lipids. Thus, rapid identification of specific affected lipid molecules represents possible targets for biodosimetry. The current study addresses temporal changes in the serum lipidome from 4 h to 28 d in nonhuman primates (NHPs) with radiation-induced hematopoietic syndrome (6.5 Gy exposure, LD50/60). Statistical analyses revealed a highly dynamic temporal response in the serum lipidome after IR exposure. Marked lipidomic perturbations occurred within 24 h post-irradiation along with increases in cytokine levels and C-reactive protein. Decreases were observed in di- and triacylglycerides, sphingomyelins (SMs), lysophosphatidylcholines (LysoPCs), and esterified sterols. Conversely, free fatty acids and monoacylglycerides significantly increased. Decreased levels of SMs and increased levels of LysoPCs may be important markers for biodosimetry ~2 d–3 d post-irradiation. The biphasic and dynamic response to the serum lipidome post-irradiation emphasize the importance of determining the temporal long-term response of possible radiation markers.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., 20057, USA
| | - Evagelia C Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., 20057, USA
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Bethesda, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., 20057, USA. .,Deparment of Oncology Georgetown University, Washington, D.C., 20057, USA.
| |
Collapse
|
22
|
Semi-synthetic thymoquinone analogs: new prototypes as potential antihyperlipidemics in irradiated rats. Future Med Chem 2017; 9:1483-1493. [PMID: 28795592 DOI: 10.4155/fmc-2017-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Thymoquinone (TQ), has been reported to possess strong antihyperlipidemic properties. However, a variety of serious side effects has been reported for TQ. The present study aimed to evaluate the potential antihyperlipidemic activity of newly synthesized TQ analogs. METHODS & RESULTS first, novel TQ derivatives were studied against radiation-induced dyslipidemia in male rats. Second, the most promising sulfur derivatives (4-7), were further tested to elucidate their possible mechanism(s) of actions. Results showed that they possess Hydroxymethyl Glutaryl-Co A reductase inhibitory activity, as well as stimulatory effects on the activities of each of plasma Lecithin-Cholesterol Acyltransferase and lipoprotein lipase enzymes. CONCLUSION TQ derivatives (4-7), could be considered as promising agents in pathologies implicating impaired lipid metabolism, preclinical evaluation is warranted. [Formula: see text].
Collapse
|
23
|
Pannkuk EL, Fornace AJ, Laiakis EC. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol 2017; 93:1151-1176. [PMID: 28067089 DOI: 10.1080/09553002.2016.1269218] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. CONCLUSIONS Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Tumor Biology Program , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA
| | - Albert J Fornace
- b Molecular Oncology , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA.,c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| | - Evagelia C Laiakis
- c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| |
Collapse
|
24
|
Chen Z, Coy SL, Pannkuk EL, Laiakis EC, Hall AB, Fornace AJ, Vouros P. Rapid and High-Throughput Detection and Quantitation of Radiation Biomarkers in Human and Nonhuman Primates by Differential Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1626-36. [PMID: 27392730 PMCID: PMC5018447 DOI: 10.1007/s13361-016-1438-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 05/04/2023]
Abstract
Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Zhidan Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Stephen L Coy
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Evan L Pannkuk
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Evagelia C Laiakis
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Adam B Hall
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| | - Paul Vouros
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Goudarzi M, Chauthe S, Strawn SJ, Weber WM, Brenner DJ, Fornace AJ. Quantitative Metabolomic Analysis of Urinary Citrulline and Calcitroic Acid in Mice after Exposure to Various Types of Ionizing Radiation. Int J Mol Sci 2016; 17:ijms17050782. [PMID: 27213362 PMCID: PMC4881599 DOI: 10.3390/ijms17050782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 05/10/2016] [Indexed: 01/08/2023] Open
Abstract
With the safety of existing nuclear power plants being brought into question after the Fukushima disaster and the increased level of concern over terrorism-sponsored use of improvised nuclear devices, it is more crucial to develop well-defined radiation injury markers in easily accessible biofluids to help emergency-responders with injury assessment during patient triage. Here, we focused on utilizing ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to identify and quantitate the unique changes in the urinary excretion of two metabolite markers, calcitroic acid and citrulline, in mice induced by different forms of irradiation; external γ irradiation at a low dose rate (LDR) of 3.0 mGy/min and a high dose rate (HDR) of 1.1 Gy/min, and internal exposure to Cesium-137 ((137)Cs) and Strontium-90 ((90)Sr). The multiple reaction monitoring analysis showed that, while exposure to (137)Cs and (90)Sr induced a statistically significant and persistent decrease, similar doses of external γ beam at the HDR had the opposite effect, and the LDR had no effect on the urinary levels of these two metabolites. This suggests that the source of exposure and the dose rate strongly modulate the in vivo metabolomic injury responses, which may have utility in clinical biodosimetry assays for the assessment of exposure in an affected population. This study complements our previous investigations into the metabolomic profile of urine from mice internally exposed to (90)Sr and (137)Cs and to external γ beam radiation.
Collapse
Affiliation(s)
- Maryam Goudarzi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | - Siddheshwar Chauthe
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, USA.
| | - Steven J Strawn
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | - Waylon M Weber
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA.
| | - David J Brenner
- Center for Radiological Research, Columbia University, 630 West 168th Street, VC11-240, New York, NY 10032, USA.
| | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057, USA.
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, USA.
| |
Collapse
|