1
|
Ancel L, Grison S, Gabillot O, Gueguen J, Svilar L, Guen BL, Gruel G, Benderitter M, Martin JC, Souidi M, Tamarat R, Flamant S, Benadjaoud MA. Metabolomics identifies plasma biomarkers of localized radiation injury. Sci Rep 2025; 15:2166. [PMID: 39819895 PMCID: PMC11739571 DOI: 10.1038/s41598-025-85717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
A radiological accident may result in the development of a local skin radiation injury (LRI) which may evolve, depending on the dose, from dry desquamation to deep ulceration and necrosis through unpredictable inflammatory waves. Therefore, early diagnosis of victims of LRI is crucial for improving medical care efficiency. This preclinical study aims to identify circulating metabolites as biomarkers associated with LRI using a C57BL/6J mouse model of hind limb irradiation. More precisely, two independent mice cohorts were used to conduct a broad-spectrum profiling study followed by a suspect screening analysis performed on plasma metabolites by mass spectrometry. An integrative analysis was conducted through a multi-block sparse partial least square discriminant analysis (sPLS-DA) to establish multi-scale correlations between specific metabolites levels and biological, physiological (injury severity), and functional parameters (skin perfusion). The identified biomarker signature consists in a 6-metabolite panel including putrescine, uracil, 2,3-dihydroxybenzoate, 3-hydroxybenzoate, L-alanine and pyroglutamate, that can discriminate mice according to radiation dose and injury severity. Our results demonstrate relevant molecular signature associated with LRI in mice and support the use of plasma metabolites as suitable molecular biomarkers for LRI prognosis and diagnosis.
Collapse
Affiliation(s)
- Lucie Ancel
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Stéphane Grison
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTox, Fontenay-aux-Roses, 92260, France
| | - Olivier Gabillot
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Jules Gueguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Ljubica Svilar
- Centre Cardiovasculaire et Nutrition (C2VN), CRIBIOM, Aix Marseille Université, Marseille, 13007, France
| | - Bernard Le Guen
- Électricité de France (EDF), DPN, 1 place Pleyel, Saint Denis, 93382, France
| | - Gaëtan Gruel
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED, Fontenay-aux-Roses, 92260, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, Fontenay-aux-Roses, 92260, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille Université, Marseille, 13007, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Radia Tamarat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, Fontenay-aux-Roses, 92260, France
| | - Stéphane Flamant
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France.
| |
Collapse
|
2
|
Chen Q, Zhao H, Xi C, Cai TJ, Gao L, Liu KH, Liu QJ. Targeted lipidomics-based study of radiation-induced metabolite profiles changes in plasma of total body irradiation cases. Int J Radiat Biol 2024; 100:1481-1492. [PMID: 39136547 DOI: 10.1080/09553002.2024.2387054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE Lipidomics is an important tool for triaging exposed individuals, and helps early adoption of prevention and control strategies. The purpose of this study was to screen significantly perturbed lipids between pre- and post-irradiation of human plasma samples after total body irradiation (TBI) and explore potential radiation biomarkers for early radiation classification. METHODS Plasma samples were collected before and after irradiation from 22 hospitalized cases of acute myeloid leukemia (AML) prepared for bone marrow transplantation. Acute total-body γ irradiation was performed at doses of 0, 4, 8, and 12 Gy. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with multiple reaction monitoring (MRM) method was utilized. Self-paired studies before and after irradiation were performed to screen potential lipid categorization markers and markers of dose-response relationships for radiation perturbation in humans. Based on the screened potential markers, a human TBI dose estimation model was developed. RESULTS In total, 426 individual lipids from 14 major classes were quantified and 152 potential biomarkers with categorical characteristics were screened. A total of 80 lipids (32 TGs, 29 SMs, 9 FAs, 5 CEs, 5 PIs) were upregulated at 4 Gy, and a total of 91 lipids (39 SMs, 18 TGs, 15 HexCers, 7 CEs, 6 Cers, 3 LacCers, 2 LPEs, 1 PI) were upregulated at 12 Gy. Comparison of the ROC curves between the non-exposed and exposed groups at different doses showed AUC values ranging from 0.807 to 0.876. The metabolic pathways of potential lipid markers are mainly sphingolipid and glycerolipid metabolism, unsaturated fatty acid biosynthesis, fatty acid degradation and biosynthesis. Among the 13 dose-dependent radiosensitive lipids, CE (20:5), CE (18:1) and PI (18:2/18:2) were gradually incorporated into the TBI dose estimation model. CONCLUSION This study suggested that it was feasible to acquire quantitative lipid biomarker panels using targeted lipidomics platforms for rapid, high-throughput triage. Lipidomics strategies for radiation biodosimetry in humans were established with lipid biomarkers with good dose-response relationship.
Collapse
Affiliation(s)
- Qi Chen
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
- Hubei Center for Disease Control and Prevention, Hubei, P.R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Ke-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| |
Collapse
|
3
|
Pannkuk EL, Laiakis EC, Garty G, Bansal S, Jayatilake MM, Tan Y, Ponnaiya B, Wu X, Amundson SA, Brenner DJ, Fornace AJ. Impact of Partial Body Shielding from Very High Dose Rates on Untargeted Metabolomics in Biodosimetry. ACS OMEGA 2024; 9:35182-35196. [PMID: 39157112 PMCID: PMC11325421 DOI: 10.1021/acsomega.4c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
A realistic exposure to ionizing radiation (IR) from an improvised nuclear device will likely include individuals who are partially shielded from the initial blast delivered at a very high dose rate (VHDR). As different tissues have varying levels of radiosensitivity, e.g., hematopoietic vs gastrointestinal tissues, the effects of shielding on radiation biomarkers need to be addressed. Here, we explore how biofluid (urine and serum) metabolite signatures from male and female C57BL/6 mice exposed to VHDR (5-10 Gy/s) total body irradiation (TBI, 0, 4, and 8 Gy) compare to individuals exposed to partial body irradiation (PBI) (lower body irradiated [LBI] or upper body irradiated [UBI] at an 8 Gy dose) using a data-independent acquisition untargeted metabolomics approach. Although sex differences were observed in the spatial groupings of urine signatures from TBI and PBI mice, a metabolite signature (N6,N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, taurine, and creatine) previously developed from variable dose rate experiments was able to identify individuals with high sensitivity and specificity, irrespective of radiation shielding. A panel of serum metabolites composed from previous untargeted studies on nonhuman primates had excellent performance for separating irradiated cohorts; however, a multiomic approach to complement the metabolome could increase dose estimation confidence intervals. Overall, these results support the inclusion of small-molecule markers in biodosimetry assays without substantial interference from the upper or lower body shielding.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Evagelia C. Laiakis
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| | - Guy Garty
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sunil Bansal
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Meth M. Jayatilake
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Yuewen Tan
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
| | - Brian Ponnaiya
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Xuefeng Wu
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sally A. Amundson
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - David J. Brenner
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Albert J. Fornace
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| |
Collapse
|
4
|
Pannkuk EL, Shuryak I, Kot A, Yun-Tien Lin L, Li HH, Fornace AJ. Host microbiome depletion attenuates biofluid metabolite responses following radiation exposure. PLoS One 2024; 19:e0300883. [PMID: 38758927 PMCID: PMC11101107 DOI: 10.1371/journal.pone.0300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 03/06/2024] [Indexed: 05/19/2024] Open
Abstract
Development of novel biodosimetry assays and medical countermeasures is needed to obtain a level of radiation preparedness in the event of malicious or accidental mass exposures to ionizing radiation (IR). For biodosimetry, metabolic profiling with mass spectrometry (MS) platforms has identified several small molecules in easily accessible biofluids that are promising for dose reconstruction. As our microbiome has profound effects on biofluid metabolite composition, it is of interest how variation in the host microbiome may affect metabolomics based biodosimetry. Here, we 'knocked out' the microbiome of male and female C57BL/6 mice (Abx mice) using antibiotics and then irradiated (0, 3, or 8 Gy) them to determine the role of the host microbiome on biofluid radiation signatures (1 and 3 d urine, 3 d serum). Biofluid metabolite levels were compared to a sham and irradiated group of mice with a normal microbiome (Abx-con mice). To compare post-irradiation effects in urine, we calculated the Spearman's correlation coefficients of metabolite levels with radiation dose. For selected metabolites of interest, we performed more detailed analyses using linear mixed effect models to determine the effects of radiation dose, time, and microbiome depletion. Serum metabolite levels were compared using an ANOVA. Several metabolites were affected after antibiotic administration in the tryptophan and amino acid pathways, sterol hormone, xenobiotic and bile acid pathways (urine) and lipid metabolism (serum), with a post-irradiation attenuative effect observed for Abx mice. In urine, dose×time interactions were supported for a defined radiation metabolite panel (carnitine, hexosamine-valine-isoleucine [Hex-V-I], creatine, citric acid, and Nε,Nε,Nε-trimethyllysine [TML]) and dose for N1-acetylspermidine, which also provided excellent (AUROC ≥ 0.90) to good (AUROC ≥ 0.80) sensitivity and specificity according to the area under the receiver operator characteristic curve (AUROC) analysis. In serum, a panel consisting of carnitine, citric acid, lysophosphatidylcholine (LysoPC) (14:0), LysoPC (20:3), and LysoPC (22:5) also gave excellent to good sensitivity and specificity for identifying post-irradiated individuals at 3 d. Although the microbiome affected the basal levels and/or post-irradiation levels of these metabolites, their utility in dose reconstruction irrespective of microbiome status is encouraging for the use of metabolomics as a novel biodosimetry assay.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Metabolomics Studies, Georgetown University, Washington, DC, United States of America
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Anika Kot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Lorreta Yun-Tien Lin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Metabolomics Studies, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
5
|
Carpenter AD, Li Y, Fatanmi OO, Wise SY, Petrus SA, Janocha BL, Cheema AK, Singh VK. Metabolomic Profiles in Tissues of Nonhuman Primates Exposed to Either Total- or Partial-Body Radiation. Radiat Res 2024; 201:371-383. [PMID: 38253059 DOI: 10.1667/rade-23-00091.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 01/24/2024]
Abstract
A complex cascade of systemic and tissue-specific responses induced by exposure to ionizing radiation can lead to functional impairment over time in the surviving population. Current methods for management of survivors of unintentional radiation exposure episodes rely on monitoring individuals over time for the development of adverse clinical symptoms due to the lack of predictive biomarkers for tissue injury. In this study, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that received either 4.0 Gy or 5.8 Gy total-body irradiation (TBI) of 60Co gamma rays, and 4.0 or 5.8 Gy partial-body irradiation (PBI) from LINAC-derived photons and were treated with a promising radiation countermeasure, gamma-tocotrienol (GT3). These include small molecule alterations that correlate with radiation effects in the jejunum, lung, kidney, and spleen of animals that either survived or succumbed to radiation toxicities over a 30-day period. Radiation-induced metabolic changes in tissues were observed in animals exposed to both doses and types of radiation, but were partially alleviated in GT3-treated and irradiated animals, with lung and spleen being most responsive. The majority of the pathways protected by GT3 treatment in these tissues were related to glucose metabolism, inflammation, and aldarate metabolism, suggesting GT3 may exert radioprotective effects in part by sparing these pathways from radiation-induced dysregulation. Taken together, the results of our study demonstrate that the prophylactic administration of GT3 results in metabolic and lipidomic shifts that likely provide an overall advantage against radiation injury. This investigation is among the first to highlight the use of a molecular phenotyping approach in a highly translatable NHP model of partial- and total-body irradiation to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.
Collapse
Affiliation(s)
- Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sarah A Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Brianna L Janocha
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
6
|
Pannkuk EL, Laiakis EC, Garty G, Ponnaiya B, Wu X, Shuryak I, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Variable Dose Rates in Realistic Radiation Exposures: Effects on Small Molecule Markers of Ionizing Radiation in the Murine Model. Radiat Res 2023; 200:1-12. [PMID: 37212727 PMCID: PMC10410530 DOI: 10.1667/rade-22-00211.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Novel biodosimetry assays for use in preparedness and response to potential malicious attacks or nuclear accidents would ideally provide accurate dose reconstruction independent of the idiosyncrasies of a complex exposure to ionizing radiation. Complex exposures will consist of dose rates spanning the low dose rates (LDR) to very high-dose rates (VHDR) that need to be tested for assay validation. Here, we investigate how a range of relevant dose rates affect metabolomic dose reconstruction at potentially lethal radiation exposures (8 Gy in mice) from an initial blast or subsequent fallout exposures compared to zero or sublethal exposures (0 or 3 Gy in mice) in the first 2 days, which corresponds to an integral time individuals will reach medical facilities after a radiological emergency. Biofluids (urine and serum) were collected from both male and female 9-10-week-old C57BL/6 mice at 1 and 2 days postirradiation (total doses of 0, 3 or 8 Gy) after a VHDR of 7 Gy/s. Additionally, samples were collected after a 2-day exposure consisting of a declining dose rate (1 to 0.004 Gy/min) recapitulating the 7:10 rule-of-thumb time dependency of nuclear fallout. Overall similar perturbations were observed in both urine and serum metabolite concentrations irrespective of sex or dose rate, with the exception of xanthurenic acid in urine (female specific) and taurine in serum (VHDR specific). In urine, we developed identical multiplex metabolite panels (N6, N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, and taurine) that could identify individuals receiving potentially lethal levels of radiation from the zero or sublethal cohorts with excellent sensitivity and specificity, with creatine increasing model performance at day 1. In serum, individuals receiving a 3 or 8 Gy exposure could be identified from their pre-irradiation samples with excellent sensitivity and specificity, however, due to a lower dose response the 3 vs. 8 Gy groups could not be distinguished from each other. Together with previous results, these data indicate that dose-rate-independent small molecule fingerprints have potential in novel biodosimetry assays.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| | - Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| |
Collapse
|
7
|
Ghandhi SA, Morton SR, Shuryak I, Lee Y, Soni RK, Perrier JR, Bakke J, Gahagan J, Bujold K, Authier S, Amundson SA, Brenner DJ, Nishita D, Chang P, Turner HC. Longitudinal multi-omic changes in the transcriptome and proteome of peripheral blood cells after a 4 Gy total body radiation dose to Rhesus macaques. BMC Genomics 2023; 24:139. [PMID: 36944971 PMCID: PMC10031949 DOI: 10.1186/s12864-023-09230-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation. RESULTS The overall mRNA response in the first week reflects a strong inflammatory reaction, infection response with neutrophil and platelet activation. At 1 week, cell cycle arrest and re-entry processes were enriched among mRNA changes, oncogene-induced senescence and MAPK signaling among the proteome changes. Influenza life cycle and infection pathways initiated earlier in mRNA and are reflected among the proteomic changes during the first week. Transcription factor proteins SRC, TGFβ and NFATC2 were immediately induced at 1 day after irradiation with increased transcriptional activity as predicted by mRNA changes persisting up to 1 week. Cell counts revealed a mild / moderate hematopoietic acute radiation syndrome (H-ARS) reaction to irradiation with expected lymphopenia, neutropenia and thrombocytopenia that resolved within 30 days. Measurements of micronuclei per binucleated cell levels in cytokinesis-blocked T-lymphocytes remained high in the range 0.27-0.33 up to 28 days and declined to 0.1 by day 56. CONCLUSIONS Overall, we show that the TBI 4 Gy dose in NHPs induces many cellular changes that persist up to 1 month after exposure, consistent with damage, death, and repopulation of blood cells.
Collapse
Affiliation(s)
- Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Shad R. Morton
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, NY New York, 10032 USA
| | - Jay R. Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - James Bakke
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Janet Gahagan
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Kim Bujold
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Simon Authier
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Denise Nishita
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Polly Chang
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| |
Collapse
|
8
|
Liu HX, Zhao H, Xi C, Li S, Ma LP, Lu X, Yan J, Tian XL, Gao L, Tian M, Liu QJ. CPT1 Mediated Ionizing Radiation-Induced Intestinal Injury Proliferation via Shifting FAO Metabolism Pathway and Activating the ERK1/2 and JNK Pathway. Radiat Res 2022; 198:488-507. [PMID: 36351324 DOI: 10.1667/rade-21-00174.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
The intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid β-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation. We detected the changed of FAO in the plasma and small intestine of Sprague Dawley (SD) rats at 24 h after 60Co gamma irradiation (0, 5 and 10 Gy), using target metabolomics, qRT-PCR, immunohistochemistry (IHC), western blot (WB) and related enzymatic activity kits. We then analyzed the FAO changes in radiation-induced intestinal injury models regardless of ex vivo (mice enteroids), or in vitro (normal human intestinal epithelial cell lines, HIEC-6). HIEC-6 cells were transduced with lentivirus vector GV392 and treated with puromycin for obtaining CPT1 stable knockout cell lines, named CPT1 KO. CPT1 enzymatic activities of HIEC-6 cells and mice enteroids were also inhibited by pharmaceutical inhibitor ST1326 and Etomoxir (ETO), to study the function of CPT1 in the survival and proliferation of HIEC-6 cells after 60Co gamma irradiation. We found that CPT1 mediated FAO was altered in the small intestine of the SD rats after irradiation, especially, the expression level and enzymatic activity of CPT1 were significantly increased. Similarly, the expression levels of CPT1 were also remarkably enhanced in mice enteroids and HIEC-6 cells after irradiation. CPT1 inhibition decreased the proliferation of the HIEC-6 cells and mice enteroids after irradiation partially by reducing the extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways activation, CPT1 inhibition also reduced the proliferation of mice enteroids after irradiation partially by down-regulating the Wnt/β-catenin signaling activity. In conclusion, our study indicated that CPT1 plays a crucial role in promoting intestinal epithelial cell proliferation after irradiation.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Ping Ma
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Juan Yan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
9
|
Pannkuk EL, Laiakis EC, Garty G, Bansal S, Ponnaiya B, Wu X, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Biofluid Metabolomics and Lipidomics of Mice Exposed to External Very High-Dose Rate Radiation. Metabolites 2022; 12:520. [PMID: 35736453 PMCID: PMC9228171 DOI: 10.3390/metabo12060520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
High-throughput biodosimetry methods to determine exposure to ionizing radiation (IR) that can also be easily scaled to multiple testing sites in emergency situations are needed in the event of malicious attacks or nuclear accidents that may involve a substantial number of civilians. In the event of an improvised nuclear device (IND), a complex IR exposure will have a very high-dose rate (VHDR) component from an initial blast. We have previously addressed low-dose rate (LDR, ≤1 Gy/day) exposures from internal emitters on biofluid small molecule signatures, but further research on the VHDR component of the initial blast is required. Here, we exposed 8- to 10-week-old male C57BL/6 mice to an acute dose of 3 Gy using a reference dose rate of 0.7 Gy/min or a VHDR of 7 Gy/s, collected urine and serum at 1 and 7 d, then compared the metabolite signatures using either untargeted (urine) or targeted (serum) approaches with liquid chromatography mass spectrometry platforms. A Random Forest classification approach showed strikingly similar changes in urinary signatures at 1 d post-irradiation with VHDR samples grouping closer to control samples at 7 d. Identical metabolite panels (carnitine, trigonelline, xanthurenic acid, N6,N6,N6-trimethyllysine, spermine, and hexosamine-valine-isoleucine-OH) could differentiate IR exposed individuals with high sensitivity and specificity (area under the receiver operating characteristic (AUROC) curves 0.89-1.00) irrespective of dose rate at both days. For serum, the top 25 significant lipids affected by IR exposure showed slightly higher perturbations at 0.7 Gy/min vs. 7 Gy/s; however, identical panels showed excellent sensitivity and specificity at 1 d (three hexosylceramides (16:0), (18:0), (24:0), sphingomyelin [26:1], lysophosphatidylethanolamine [22:1]). Mice could not be differentiated from control samples at 7 d for a 3 Gy exposure based on serum lipid signatures. As with LDR exposures, we found that identical biofluid small molecule signatures can identify IR exposed individuals irrespective of dose rate, which shows promise for more universal applications of metabolomics for biodosimetry.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (E.C.L.); (S.B.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- Center for Metabolomic Studies, Georgetown University, Washington, DC 20057, USA
| | - Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (E.C.L.); (S.B.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- Center for Metabolomic Studies, Georgetown University, Washington, DC 20057, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY 10032, USA;
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (E.C.L.); (S.B.); (A.J.F.J.)
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA; (B.P.); (X.W.); (S.A.G.); (S.A.A.); (D.J.B.)
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (E.C.L.); (S.B.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- Center for Metabolomic Studies, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
10
|
Liu HX, Liu QJ. Logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration. Int J Radiat Biol 2022; 98:1595-1608. [PMID: 35384773 DOI: 10.1080/09553002.2022.2063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE With the development of radiation metabolomics, a large number of radiation-related metabolic biomarkers have been identified and validated. The L-carnitine and acylcarnitines have the potential to be the new promising candidate indicators of radiation exposure. This review summarizes the effect of carnitine shuttle system on the profile of acylcarnitines and correlates the radiation effects on upstream regulators of carnitine shuttle system with the change characteristics of L-carnitine and acylcarnitines after irradiation across different animal models as well as a few humans. CONCLUSIONS Studies report that acylcarnitines were ubiquitously elevated after irradiation, especially the free L-carnitine and short-chain acylcarnitines (C2-C5). However, the molecular mechanism underlying acylcarnitine alterations after irradiation is not fully investigated, and further studies are needed to explore the biological effect and its mechanism. The activity of the carnitine shuttle system plays a key role in the alteration of L-carnitine and acylcarnitines, and the upstream regulators of the system are known to be affected by irradiation. These evidences indicate that that there is a logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
11
|
Xi C, Zhao H, Liu HX, Xiang JQ, Lu X, Cai TJ, Li S, Gao L, Tian XL, Liu KH, Tian M, Liu QJ. Screening of radiation gastrointestinal injury biomarkers in rat plasma by high-coverage targeted lipidomics. Biomarkers 2022; 27:448-460. [PMID: 35315697 DOI: 10.1080/1354750x.2022.2056920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION In the event of radiological accidents and cancer radiotherapies in clinic, the gastrointestinal (GI) system is vulnerable to ionizing radiation and shows GI injury. Accessible biomarkers may provide means to predict, evaluate, and treat GI tissue damage. The current study investigated radiation GI injury biomarkers in rat plasma. MATERIAL AND METHODS High-coverage targeted lipidomics was employed to profile lipidome perturbations at 72 h after 0, 1, 2, 3, 5 and 8 Gy (60Co γ-rays at 1 Gy/min) total-body irradiation in male rat jejunum. The results were correlated with previous plasma screening outcomes. RESULTS In total, 93 differential metabolites and 28 linear dose-responsive metabolites were screened in the jejunum. Moreover, 52 lipid species with significant differences both in jejunum and plasma were obtained. Three lipid species with linear dose-response relationship both in jejunum and plasma were put forth, which exhibited good to excellent sensitivity and specificity in triaging different exposure levels. DISCUSSION The linear dose-effect relationship of lipid metabolites in the jejunum and the triage performance of radiation GI injury biomarkers in plasma were studied for the first time. CONCLUSION The present study can provide insights into expanded biomarkers of IR-mediated GI injury and minimally invasive assays for evaluation.
Collapse
Affiliation(s)
- Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia-Qi Xiang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ke-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
12
|
Pannkuk EL, Laiakis EC, Angdisen J, Jayatilake MM, Ake P, Lin LYT, Li HH, Fornace AJ. Small Molecule Signatures of Mice Lacking T-cell p38 Alternate Activation, a Model for Immunosuppression Conditions, after Total-Body Irradiation. Radiat Res 2022; 197:613-625. [PMID: 35245386 DOI: 10.1667/rade-21-00199.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
Several diagnostic biodosimetry tools have been in development that may aid in radiological/nuclear emergency responses. Of these, correlating changes in non-invasive biofluid small-molecule signatures to tissue damage from ionizing radiation exposure show promise for inclusion in predictive biodosimetry models. Integral to dose reconstruction has been determining how genotypic variation in the general population will affect model performance. Here, we used a mouse model that lacks the T-cell receptor specific alternative p38 pathway [p38αβY323F, double knock-in (DKI) mice] to determine how attenuated autoimmune and inflammatory responses may affect dose reconstruction. We exposed adult male DKI mice (8-10 weeks old) to 2 and 7 Gy in parallel with wild-type mice and assessed perturbations in urine (days 1, 3, 7) and serum (day 1) using a global metabolomics approach. A multidimensional scaling plot showed excellent separation of radiation-exposed groups in wild-type mice with slightly dampened responses in DKI mice. Validated metabolite panels were developed for urine [N6,N6,N6-trimethyllysine (TML), N1-acetylspermidine, spermidine, carnitine, acylcarnitine C21H35NO5, 4-aminohippuric acid] and serum [phenylalanine, glutamine, propionylcarnitine, lysophosphatidylcholine (LysoPC 14:0), LysoPC (22:5)] to determine the area under the receiver operating characteristic curve (AUROC). For both urine and serum, excellent sensitivity and specificity (AUROC > 0.90) was observed for 0 Gy vs. 7 Gy groups irrespective of genotype using identical metabolite panels. Similarly, excellent to fair classification (AUROC > 0.75) was observed for ≤2 Gy vs. 7 Gy mice for both genotypes, however, model performance declined (AUROC < 0.75) between genotypes after irradiation. Overall, these results suggest immunosuppression should not compromise small molecule multiplex panels used in dose reconstruction for biodosimetry.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Meth M Jayatilake
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Pelagie Ake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Lorreta Yun-Tien Lin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
13
|
Abend M, Blakely WF, Ostheim P, Schuele S, Port M. Early molecular markers for retrospective biodosimetry and prediction of acute health effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:010503. [PMID: 34492641 DOI: 10.1088/1361-6498/ac2434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Radiation-induced biological changes occurring within hours and days after irradiation can be potentially used for either exposure reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of molecular protein or gene expression (GE) (mRNA) marker lies in their capability for early (1-3 days after irradiation), high-throughput and point-of-care diagnosis, required for the prediction of the acute radiation syndrome (ARS) in radiological or nuclear scenarios. These molecular marker in most cases respond differently regarding exposure characteristics such as e.g. radiation quality, dose, dose rate and most importantly over time. Changes over time are in particular challenging and demand certain strategies to deal with. With this review, we provide an overview and will focus on already identified and used mRNA GE and protein markers of the peripheral blood related to the ARS. These molecules are examined in light of 'ideal' characteristics of a biomarkers (e.g. easy accessible, early response, signal persistency) and the validation degree. Finally, we present strategies on the use of these markers considering challenges as their variation over time and future developments regarding e.g. origin of samples, point of care and high-throughput diagnosis.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - W F Blakely
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States of America
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schuele
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
14
|
Abstract
Biological dosimetry is an internationally recognized method for quantifying and estimating radiation dose following suspected or verified excessive exposure to ionising radiation. In severe radiation accidents where a large number of people are potentially affected, it is possible to distinguish irradiated from non-irradiated people in order to initiate appropriate medical care if necessary. In addition to severe incidents caused by technical failure, environmental disasters, military actions, or criminal abuse, there are also radiation accidents in which only one or a few individuals are affected in the frame of occupational or medical exposure. The requirements for biological dosimetry are fundamentally different for these two scenarios. In particular, for large-scale radiation accidents, pre-screening methods are necessary to increase the throughput of samples for a rough first-dose categorization. The rapid development and increasing use of omics methods in research as well as in individual applications provides new opportunities for biological dosimetry. In addition to the discovery and search for new biomarkers, dosimetry assays based on omics technologies are becoming increasingly interesting and hold great potential, especially for large-scale dosimetry. In the following review, the different areas of biological dosimetry, the problems in finding suitable biomarkers, the current status of biomarker research based on omics, the potential applications of assays using omics technologies, and also the limitations for the different areas of biological dosimetry are discussed.
Collapse
|
15
|
Maan K, Baghel R, Bakhshi R, Dhariwal S, Tyagi R, Rana P. An integrative chemometric approach and correlative metabolite networking of LC-MS and 1H NMR based urine metabolomics for radiation signatures. Mol Omics 2022; 18:214-225. [PMID: 34982087 DOI: 10.1039/d1mo00399b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing threat of nuclear terrorism or radiological accident has made high throughput radiation biodosimetry a requisite for the immediate response for triage. Owing to detection of subtle alterations in biological pathways before the onset of clinical conditions, metabolomics has become an important tool for studying biomarkers and the related mechanisms for radiation induced damage. Here, we have attempted to combine two detection techniques, LC-MS and 1H NMR spectroscopy, to obtain a comprehensive metabolite profile of urine at 24 h following lethal (7.5 Gy) and sub-lethal (5 Gy) irradiation in mice. Integrated data analytics using multiblock-OPLSDA (MB-OPLSDA), correlation networking and pathway analysis was used to identify metabolic disturbances associated with radiation exposure. MB-OPLSDA revealed better clustering and separation of irradiated groups compared with controls without overfitting (p-value of CV-ANOVA: 1.5 × 10-3). Metabolites identified through MB-OPLSDA, namely, taurine, creatine, citrate and 2-oxoglutarate, were found to be dose independent markers and further support and validate our earlier findings as potential radiation injury biomarkers. Integrated analysis resulted in the enhanced coverage of metabolites and better correlation networking in energy, taurine, gut flora, L-carnitine and nucleotide metabolism observed post irradiation in urine. Our study thus emphasizes the major advantage of using the two detection techniques along with integrated analysis for better detection and comprehensive understanding of disturbed metabolites in biological pathways.
Collapse
Affiliation(s)
- Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India. .,Department of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Ruchi Baghel
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Radhika Bakhshi
- Department of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Seema Dhariwal
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Ritu Tyagi
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| |
Collapse
|
16
|
Liu HX, Lu X, Zhao H, Li S, Gao L, Tian M, Liu QJ. Enhancement of Acylcarnitine Levels in Small Intestine of Abdominal Irradiation Rats Might Relate to Fatty Acid β-Oxidation Pathway Disequilibration. Dose Response 2022; 20:15593258221075118. [PMID: 35221822 PMCID: PMC8874182 DOI: 10.1177/15593258221075118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022]
Abstract
Objective This study aims to analyze the alteration of carnitine profile in the small intestine of abdominal irradiation-induced intestinal injury rats and explore the possible reason for the altered carnitine profile. Methods The abdomens of 15 male Sprague Dawley (SD) rats were irradiated with 0, 10, and 15 Gy of 60Co gamma rays. The carnitine profile in the small intestine and plasma samples of SD rats at 72 h after abdominal irradiated with 0 Gy or 10 Gy of 60Co gamma rays were measured by targeted metabolomics. The changes of fatty acid β-oxidation (FAO), including the expression of carnitine palmitoyltransferase 1 (CPT1) and acyl-CoA dehydrogenases, were analyzed in the small intestine samples of SD rats after exposed to 0, 10, and 15 Gy groups. Results There were eleven acylcarnitines in the small intestine and fourteen acylcarnitines in the plasma of the rat model significantly enhanced, respectively (P < .05). The expression level and activity of CPT1 in the small intestine were remarkably increased (P < .05), and the activity of acyl-CoA dehydrogenase in the small intestine was noticeably reduced (P < .01) after abdominal irradiation. Conclusion The enhanced acylcarnitine levels in the small intestine of abdominal irradiation rats might relate to the FAO pathway disequilibration.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
17
|
Taliaferro LP, DiCarlo AL, Satyamitra MM. NIH Policies and Regulatory Pathways for the Advancement of Radiation Medical Countermeasures and Biodosimetry Tools to U.S. FDA Licensure. Radiat Res 2021; 197:475645. [PMID: 34919721 PMCID: PMC9762489 DOI: 10.1667/rade-21-00206.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| |
Collapse
|
18
|
Pannkuk EL, Laiakis EC, Girgis M, Garty GY, Morton SR, Pujol-Canadell M, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator. J Proteome Res 2021; 20:5145-5155. [PMID: 34585931 DOI: 10.1021/acs.jproteome.1c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important component of ionizing radiation (IR) exposure after a radiological incident may include low-dose rate (LDR) exposures either externally or internally, such as from 137Cs deposition. In this study, a novel irradiation system, VAriable Dose-rate External 137Cs irradiatoR (VADER), was used to expose male and female mice to a variable LDR irradiation over a 30 d time span to simulate fall-out-type exposures in addition to biofluid collection from a reference dose rate (0.8 Gy/min). Radiation markers were identified by untargeted metabolomics and random forests. Mice exposed to LDR exposures were successfully identified from control groups based on their urine and serum metabolite profiles. In addition to metabolites commonly perturbed after IR exposure, we identified and validated a novel metabolite (hexosamine-valine-isoleucine-OH) that increased up to 150-fold after LDR and 80-fold after conventional exposures in urine. A multiplex panel consisting of hexosamine-valine-isoleucine-OH with other urinary metabolites (N6,N6,N6-trimethyllysine, carnitine, 1-methylnicotinamide, and α-ketoglutaric acid) achieved robust classification performance using receiver operating characteristic curve analysis, irrespective of the dose rate or sex. These results show that in terms of biodosimetry, dysregulated energy metabolism is associated with IR exposure for both LDR and conventional IR exposures. These mass spectrometry data have been deposited to the NIH data repository via Metabolomics Workbench with study IDs ST001790, ST001791, ST001792, ST001793, and ST001806.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Evagelia C Laiakis
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Michael Girgis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Guy Y Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10032, United States.,Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shad R Morton
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Albert J Fornace
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
19
|
Zhang LJ, Qian L, Ding LY, Wang L, Wong MH, Tao HC. Ecological and toxicological assessments of anthropogenic contaminants based on environmental metabolomics. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 5:100081. [PMID: 36158612 PMCID: PMC9488080 DOI: 10.1016/j.ese.2021.100081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 05/02/2023]
Abstract
There has long been a great concern with growing anthropogenic contaminants and their ecological and toxicological effects on living organisms and the surrounding environment for decades. Metabolomics, a functional readout of cellular activity, can capture organismal responses to various contaminant-related stressors, acquiring direct signatures to illustrate the environmental behaviours of anthropogenic contaminants better. This review entails the application of metabolomics to profile metabolic responses of environmental organisms, e.g. animals (rodents, fish, crustacean and earthworms) and microorganisms (bacteria, yeast and microalgae) to different anthropogenic contaminants, including heavy metals, nanomaterials, pesticides, pharmaceutical and personal products, persistent organic pollutants, and assesses their ecotoxicological impacts with regard to literature published in the recent five years. Contaminant-induced metabolism alteration and up/down-regulation of metabolic pathways are revealed in typical organisms. The obtained insights of variations in global metabolism provide a distinct understanding of how anthropogenic contaminants exert influences on specific metabolic pathways on living organisms. Thus with a novel ecotechnique of environmental metabolomics, risk assessments of anthropogenic contaminants are profoundly demonstrated.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Lu Qian
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Ling-Yun Ding
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Hu-Chun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
- Corresponding author.
| |
Collapse
|
20
|
Xi C, Zhao H, Lu X, Cai TJ, Li S, Liu KH, Tian M, Liu QJ. Screening of Lipids for Early Triage and Dose Estimation after Acute Radiation Exposure in Rat Plasma Based on Targeted Lipidomics Analysis. J Proteome Res 2020; 20:576-590. [PMID: 33200940 DOI: 10.1021/acs.jproteome.0c00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid early triage and dose estimation is vital for limited medical resource allocation and treatment of a large number of the wounded after radiological accidents. Lipidomics has been utilized to delineate biofluid lipid signatures after irradiation. Here, high-coverage targeted lipidomics was employed to screen radiosensitive lipids after 0, 1, 2, 3, 5, and 8 Gy total body irradiation at 4, 24, and 72 h postirradiation in rat plasma. Ultra-performance liquid chromatography-tandem mass spectrometry with a multiple reaction monitoring method was utilized. In total, 416 individual lipids from 18 major classes were quantified and those biomarkers altered in a dose-dependent manner constituted panel A-panel D. Receiver operator characteristic curve analysis using combined lipids showed good to excellent sensitivity and specificity in triaging different radiation exposure levels (area under curve = 0.814-1.000). The equations for dose estimation were established by stepwise regression analysis for three time points. A novel strategy for radiation early triage and dose estimation was first established and validated using panels of lipids. Our study suggests that it is feasible to acquire quantitative lipid biomarker panels using targeted lipidomics platforms for rapid, high-throughput triage, which can provide further insights in developing lipidomics strategies for radiation biodosimetry in humans.
Collapse
Affiliation(s)
- Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Ke-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| |
Collapse
|
21
|
Tyagi R, Maan K, Khushu S, Rana P. Urine metabolomics based prediction model approach for radiation exposure. Sci Rep 2020; 10:16063. [PMID: 32999294 PMCID: PMC7527994 DOI: 10.1038/s41598-020-72426-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023] Open
Abstract
The radiological incidents and terrorism have demanded the need for the development of rapid, precise, and non-invasive technique for detection and quantification of exposed dose of radiation. Though radiation induced metabolic markers have been thoroughly investigated, but reproducibility still needs to be elucidated. The present study aims at assessing the reliability and reproducibility of markers using nuclear magnetic resonance (NMR) spectroscopy and further deriving a logistic regression model based on these markers. C57BL/6 male mice (8-10 weeks) whole body γ-irradiated and sham irradiated controls were used. Urine samples collected at 24 h post dose were investigated using high resolution NMR spectroscopy and the datasets were analyzed using multivariate analysis. Fifteen distinguishable metabolites and 3 metabolic pathways (TCA cycle, taurine and hypotaurine metabolism, primary bile acid biosynthesis) were found to be amended. ROC curve and logistic regression was used to establish a diagnostic model as Logit (p) = log (p/1 - p) = -0.498 + 13.771 (tau) - 3.412 (citrate) - 34.461 (α-KG) + 515.183 (fumarate) with a sensitivity and specificity of 1.00 and 0.964 respectively. The findings demonstrate the proof of concept and the potential of NMR based metabolomics to establish a prediction model that can be implemented as a promising mass screening tool during triage.
Collapse
Affiliation(s)
- Ritu Tyagi
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
22
|
Satyamitra MM, Cassatt DR, Hollingsworth BA, Price PW, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. Metabolomics in Radiation Biodosimetry: Current Approaches and Advances. Metabolites 2020; 10:metabo10080328. [PMID: 32796693 PMCID: PMC7465152 DOI: 10.3390/metabo10080328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Triage and medical intervention strategies for unanticipated exposure during a radiation incident benefit from the early, rapid and accurate assessment of dose level. Radiation exposure results in complex and persistent molecular and cellular responses that ultimately alter the levels of many biological markers, including the metabolomic phenotype. Metabolomics is an emerging field that promises the determination of radiation exposure by the qualitative and quantitative measurements of small molecules in a biological sample. This review highlights the current role of metabolomics in assessing radiation injury, as well as considerations for the diverse range of bioanalytical and sampling technologies that are being used to detect these changes. The authors also address the influence of the physiological status of an individual, the animal models studied, the technology and analysis employed in interrogating response to the radiation insult, and variables that factor into discovery and development of robust biomarker signatures. Furthermore, available databases for these studies have been reviewed, and existing regulatory guidance for metabolomics are discussed, with the ultimate goal of providing both context for this area of radiation research and the consideration of pathways for continued development.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
- Correspondence: ; Tel.: +1-240-669-5432
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Paul W. Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA;
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| |
Collapse
|
23
|
Serum Metabolomic Alterations Associated with Cesium-137 Internal Emitter Delivered in Various Dose Rates. Metabolites 2020; 10:metabo10070270. [PMID: 32629836 PMCID: PMC7407308 DOI: 10.3390/metabo10070270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Our laboratory and others have use radiation metabolomics to assess responses in order to develop biomarkers reflecting exposure and level of injury. To expand the types of exposure and compare to previously published results, metabolomic analysis has been carried out using serum samples from mice exposed to 137Cs internal emitters. Animals were injected intraperitoneally with 137CsCl solutions of varying radioactivity, and the absorbed doses were calculated. To determine the dose rate effect, serum samples were collected at 2, 3, 5, 7, and 14 days after injection. Based on the time for each group receiving the cumulative dose of 4 Gy, the dose rate for each group was determined. The dose rates analyzed were 0.16 Gy/day (low), 0.69 Gy/day (medium), and 1.25 Gy/day (high). The results indicated that at a cumulative dose of 4 Gy, the low dose rate group had the least number of statistically significantly differential spectral features. Some identified metabolites showed common changes for different dose rates. For example, significantly altered levels of oleamide and sphingosine 1-phosphate were seen in all three groups. On the other hand, the intensity of three amino acids, Isoleucine, Phenylalanine and Arginine, significantly decreased only in the medium dose rate group. These findings have the potential to be used in assessing the exposure and the biological effects of internal emitters.
Collapse
|
24
|
Vicente E, Vujaskovic Z, Jackson IL. A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury. Metabolites 2020; 10:E259. [PMID: 32575772 PMCID: PMC7344731 DOI: 10.3390/metabo10060259] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022] Open
Abstract
A large-scale nuclear event has the ability to inflict mass casualties requiring point-of-care and laboratory-based diagnostic and prognostic biomarkers to inform victim triage and appropriate medical intervention. Extensive progress has been made to develop post-exposure point-of-care biodosimetry assays and to identify biomarkers that may be used in early phase testing to predict the course of the disease. Screening for biomarkers has recently extended to identify specific metabolomic and lipidomic responses to radiation using animal models. The objective of this review was to determine which metabolites or lipids most frequently experienced perturbations post-ionizing irradiation (IR) in preclinical studies using animal models of acute radiation sickness (ARS) and delayed effects of acute radiation exposure (DEARE). Upon review of approximately 65 manuscripts published in the peer-reviewed literature, the most frequently referenced metabolites showing clear changes in IR induced injury were found to be citrulline, citric acid, creatine, taurine, carnitine, xanthine, creatinine, hypoxanthine, uric acid, and threonine. Each metabolite was evaluated by specific study parameters to determine whether trends were in agreement across several studies. A select few show agreement across variable animal models, IR doses and timepoints, indicating that they may be ubiquitous and appropriate for use in diagnostic or prognostic biomarker panels.
Collapse
Affiliation(s)
| | | | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.V.); (Z.V.)
| |
Collapse
|
25
|
Effects of Genetic Variation on Urinary Small Molecule Signatures of Mice after Exposure to Ionizing Radiation: A Study of p53 Deficiency. Metabolites 2020; 10:metabo10060234. [PMID: 32521675 PMCID: PMC7345090 DOI: 10.3390/metabo10060234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/19/2023] Open
Abstract
Due to risks from potential exposures to ionizing radiation (IR), improved radiological countermeasures are required, as well as rapid high-throughput biodosimetry. Genotypic variation in the general population contributes to differences in radiosensitivity that may affect biodosimetry accuracy. Previous studies utilized radiosensitive mutant mouse models (Parp1−/− and Atm−/−) to determine the effects of genotypic deficiency on radiation signatures. Here, we extend this approach by examining changes in the urinary metabolome in a hematopoietic (HP) resistant mouse model (p53−/−) after IR exposure. As p53 is a primary regulator in radiation response and apoptosis, limited hematopoietic stem cell apoptosis leads to reduced mortality at doses of ~8–10 Gy but increased mortality at higher doses (>15 Gy) due to mitotic catastrophe in gastrointestinal (GI) crypt cells. Urine was collected from mice (wild-type (WT), p53+/−, and p53−/−) pre-irradiation and at 4 and 24 h after total body irradiation (TBI) (WT: 8 and 10 Gy; p53−/−: 10 Gy) for metabolic phenotyping using an ultra-performance liquid chromatography mass spectrometry (UPLC-MS) platform. Minimal differences were detected between unirradiated WT, p53+/−, and p53−/− mice. While similar perturbations were observed for metabolites involved in tryptophan, vitamin B6, and histamine pathways, glycine conjugation, and redox metabolism for WT and p53−/− mice after TBI, an overall dampened response was observed in p53-deficient mice. Despite comparable metabolite patterns between genotypes, differentiation was achieved through receiver operating characteristic curve analysis with high specificity and sensitivity for carnitine, N1-acetylspermidine, and creatine. These studies highlight that both attenuated and dampened metabolic responses due to genetic variability in the general population need to be addressed in biodosimetry frameworks.
Collapse
|
26
|
Vera NB, Coy SL, Laiakis EC, Fornace AJ, Clasquin M, Barker CA, Pfefferkorn JA, Vouros P. Quantitation of Urinary Acylcarnitines by DMS-MS/MS Uncovers the Effects of Total Body Irradiation in Cancer Patients. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:498-507. [PMID: 32013416 PMCID: PMC7489307 DOI: 10.1021/jasms.9b00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Acylcarnitines have been identified in human and animal metabolomic-profiling studies as urinary markers of radiation exposure, a result which is consistent with their cytoprotective effects and roles in energy metabolism. In the present work, a rapid method for quantitation of the more abundant acylcarnitines in human urine is developed using a valuable set of samples from cancer patients who received total body irradiation (TBI) at Memorial Sloan Kettering Cancer Center. The method uses solid-phase extraction (SPE) processing followed by differential mobility spectrometry (DMS with ethyl acetate modifier) tandem mass spectrometry (ESI-DMS-MS/MS) with deuterated internal standards. The analyzed human urine samples were collected from 38 individual patients at three time points over 24 h during and after the course of radiation treatment, a design allowing each patient to act as their own control and creatinine normalization. Creatinine-normalized concentrations for nine urinary acylcarnitine (acyl-CN) species are reported. Six acyl-CN species were reduced at the 6 h point. Acetylcarnitine (C2:0-CN) and valerylcarnitine (C5:0-CN) showed recovery at 24 h, but none of the other acyl-CN species showed recovery at that point. Levels of three acyl-CN species were not significantly altered by radiation. This rapid quantitative method for clinical samples covers the short- and medium-chain acylcarnitines and has the flexibility to be expanded to cover additional radiation-linked metabolites. The human data presented here indicates the utility of the current approach as a rapid, quantitative technique with potential applications by the medical community, by space research laboratories concerned with radiation exposure, and by disaster response groups.
Collapse
Affiliation(s)
- Nicholas B. Vera
- Pfizer Global Research and Development, Cambridge Laboratories, Pfizer Inc., Cambridge, Massachusetts 02139 United States
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115 United States
| | - Stephen L. Coy
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115 United States
| | - Evagelia C. Laiakis
- Department of Oncology, Georgetown University, 3700 O Street NW, Washington, D.C. 20057 United States
- Department of Biochemistry and Molecular & Cellular Oncology, Georgetown University, 3700 O Street NW, Washington D.C. 20057 United States
| | - Albert J. Fornace
- Department of Oncology, Georgetown University, 3700 O Street NW, Washington, D.C. 20057 United States
- Department of Biochemistry and Molecular & Cellular Oncology, Georgetown University, 3700 O Street NW, Washington D.C. 20057 United States
| | - Michelle Clasquin
- Pfizer Global Research and Development, Cambridge Laboratories, Pfizer Inc., Cambridge, Massachusetts 02139 United States
| | - Christopher A. Barker
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
| | - Jeffrey A. Pfefferkorn
- Pfizer Global Research and Development, Cambridge Laboratories, Pfizer Inc., Cambridge, Massachusetts 02139 United States
| | - Paul Vouros
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115 United States
| |
Collapse
|
27
|
Sun L, Inaba Y, Kanzaki N, Bekal M, Chida K, Moritake T. Identification of Potential Biomarkers of Radiation Exposure in Blood Cells by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Int J Mol Sci 2020; 21:ijms21030812. [PMID: 32012663 PMCID: PMC7037449 DOI: 10.3390/ijms21030812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023] Open
Abstract
Biodosimetry is a useful method for estimating personal exposure doses to ionizing radiation. Studies have identified metabolites in non-cellular biofluids that can be used as markers in biodosimetry. Levels of metabolites in blood cells may reflect health status or environmental stresses differentially. Here, we report changes in the levels of murine blood cell metabolites following exposure to X-rays in vivo. Levels of blood cell metabolites were measured by capillary electrophoresis time-of-flight mass spectrometry. The levels of 100 metabolites were altered substantially following exposure. We identified 2-aminobutyric acid, 2'-deoxycytidine, and choline as potentially useful markers of radiation exposure and established a potential prediction panel of the exposure dose using stepwise regression. Levels of blood cell metabolites may be useful biomarkers in estimating exposure doses during unexpected radiation incidents.
Collapse
Affiliation(s)
- Lue Sun
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai 980-0845, Japan
| | - Norie Kanzaki
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Mahesh Bekal
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai 980-0845, Japan
| | - Takashi Moritake
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
- Correspondence: ; Tel.: +81-93-691-7549
| |
Collapse
|
28
|
Salivary Metabolomics of Total Body Irradiated Nonhuman Primates Reveals Long-Term Normal Tissue Responses to Radiation. Int J Radiat Oncol Biol Phys 2019; 105:843-851. [PMID: 31352081 DOI: 10.1016/j.ijrobp.2019.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To identify metabolomic biomarkers of acute radiation exposure in saliva that show time-dependent changes. METHODS AND MATERIALS Nonhuman primates were exposed to 4 Gy of total body irradiation with γ-rays. Saliva was collected from 7 animals twice before and at days 1, 3, 5, 7, 15, 21, 28, and 60 after irradiation. Profiling was conducted with liquid chromatography time-of-flight mass spectrometry. Multivariate data analysis and potential biomarker identification was conducted through random Forests and the software MetaboAnalyst. Candidate biomarkers were validated through tandem mass spectrometry, and receiver operating characteristic curves were constructed to show the diagnostic ability of the signature over time. RESULTS Untargeted metabolomic analysis revealed significant and persistent effects up to the 60 days evaluated in this study. Biomarkers spanning primarily amino acids and nucleotides were identified, with a significant number showing long-term responses. Fifteen biomarkers showed high statistical significance in the first week after irradiation and 16 at >7 days after irradiation (false discovery rate-adjusted P < .05). The combination of the biomarkers in a single biosignature was able to accurately show the diagnostic ability of the signature in a binary classifier system with receiver operating characteristic curves. CONCLUSIONS Radiation can alter the metabolome in saliva, and metabolomics could effectively be used to monitor radiation responses, as a biodosimetry method, in the event of a radiological incident. Saliva metabolomics also has potential relevance in a clinical setting.
Collapse
|
29
|
Temporal Effects on Radiation Responses in Nonhuman Primates: Identification of Biofluid Small Molecule Signatures by Gas Chromatography⁻Mass Spectrometry Metabolomics. Metabolites 2019; 9:metabo9050098. [PMID: 31096611 PMCID: PMC6571779 DOI: 10.3390/metabo9050098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022] Open
Abstract
Whole body exposure to ionizing radiation damages tissues leading to physical symptoms which contribute to acute radiation syndrome. Radiation biodosimetry aims to determine characteristic early biomarkers indicative of radiation exposure and is necessary for effective triage after an unanticipated radiological incident. Radiation metabolomics can address this aim by assessing metabolic perturbations following exposure. Gas chromatography-mass spectrometry (GC-MS) is a standardized platform ideal for compound identification. We performed GC time-of-flight MS for the global profiling of nonhuman primate urine and serum samples up to 60 d after a single 4 Gy γ-ray total body exposure. Multivariate statistical analysis showed higher group separation in urine vs. serum. We identified biofluid markers involved in amino acid, lipid, purine, and serotonin metabolism, some of which may indicate host microbiome dysbiosis. Sex differences were observed for amino acid fold changes in serum samples. Additionally, we explored mitochondrial dysfunction by tricarboxylic acid intermediate analysis in the first week with a GC tandem quadrupole MS platform. By adding this temporal component to our previous work exploring dose effects at 7 d, we observed the highest fold changes occurring at 3 d, returning closer to basal levels by 7 d. These results emphasize the utility of both MS-based metabolomics for biodosimetry and complementary analytical platforms for increased metabolome coverage.
Collapse
|