1
|
Gonzalez-Lozano MA, Schmid EW, Whelan EM, Jiang Y, Paulo JA, Walter JC, Harper JW. EndoMAP.v1, a Structural Protein Complex Landscape of Human Endosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636106. [PMID: 39975243 PMCID: PMC11839024 DOI: 10.1101/2025.02.07.636106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Early/sorting endosomes are dynamic organelles that play key roles in proteome control by triaging plasma membrane proteins for either recycling or degradation in the lysosome1,2,3. These events are coordinated by numerous transiently-associated regulatory complexes and integral membrane components that contribute to organelle identity during endosome maturation4. While a subset of the several hundred protein components and cargoes known to associate with endosomes have been studied at the biochemical and/or structural level, interaction partners and higher order molecular assemblies for many endosomal components remain unknown. Here, we combine cross-linking and native gel mass spectrometry5-8 of purified early endosomes with AlphaFold9,10 and computational analysis to create a systematic human endosomal structural interactome. We present dozens of structural models for endosomal protein pairs and higher order assemblies supported by experimental cross-links from their native subcellular context, suggesting structural mechanisms for previously reported regulatory processes. Using induced neurons, we validate two candidate complexes whose interactions are supported by crosslinks and structural predictions: TMEM230 as a subunit of ATP8/11 lipid flippases11 and TMEM9/9B as subunits of CLCN3/4/5 chloride-proton antiporters12. This resource and its accompanying structural network viewer provide an experimental framework for understanding organellar structural interactomes and large-scale validation of structural predictions.
Collapse
Affiliation(s)
- Miguel A Gonzalez-Lozano
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ernst W Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| | - Enya Miguel Whelan
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yizhi Jiang
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Initiative in Trafficking and Neurogeneration, Department of Cell Biology, Harvard Medical School, Boston MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Yong J, Villalta JE, Vu N, Kukurugya MA, Olsson N, López MP, Lazzari-Dean JR, Hake K, McAllister FE, Bennett BD, Jan CH. Impairment of lipid homeostasis causes lysosomal accumulation of endogenous protein aggregates through ESCRT disruption. eLife 2024; 12:RP86194. [PMID: 39713930 DOI: 10.7554/elife.86194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Protein aggregation increases during aging and is a pathological hallmark of many age-related diseases. Protein homeostasis (proteostasis) depends on a core network of factors directly influencing protein production, folding, trafficking, and degradation. Cellular proteostasis also depends on the overall composition of the proteome and numerous environmental variables. Modulating this cellular proteostasis state can influence the stability of multiple endogenous proteins, yet the factors contributing to this state remain incompletely characterized. Here, we performed genome-wide CRISPRi screens to elucidate the modulators of proteostasis state in mammalian cells, using a fluorescent dye to monitor endogenous protein aggregation. These screens identified known components of the proteostasis network and uncovered a novel link between protein and lipid homeostasis. Increasing lipid uptake and/or disrupting lipid metabolism promotes the accumulation of sphingomyelins and cholesterol esters and drives the formation of detergent-insoluble protein aggregates at the lysosome. Proteome profiling of lysosomes revealed ESCRT accumulation, suggesting disruption of ESCRT disassembly, lysosomal membrane repair, and microautophagy. Lipid dysregulation leads to lysosomal membrane permeabilization but does not otherwise impact fundamental aspects of lysosomal and proteasomal functions. Together, these results demonstrate that lipid dysregulation disrupts ESCRT function and impairs proteostasis.
Collapse
Affiliation(s)
- John Yong
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Niclas Olsson
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - Kayley Hake
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - Calvin H Jan
- Calico Life Sciences LLC, South San Francisco, United States
| |
Collapse
|
4
|
Makar AN, Boraman A, Mosen P, Simpson JE, Marques J, Michelberger T, Aitken S, Wheeler AP, Winter D, von Kriegsheim A, Gammoh N. The V-ATPase complex component RNAseK is required for lysosomal hydrolase delivery and autophagosome degradation. Nat Commun 2024; 15:7743. [PMID: 39231962 PMCID: PMC11374810 DOI: 10.1038/s41467-024-52049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Autophagy is a finely orchestrated process required for the lysosomal degradation of cytosolic components. The final degradation step is essential for clearing autophagic cargo and recycling macromolecules. Using a CRISPR/Cas9-based screen, we identify RNAseK, a highly conserved transmembrane protein, as a regulator of autophagosome degradation. Analyses of RNAseK knockout cells reveal that, while autophagosome maturation is intact, cargo degradation is severely disrupted. Importantly, lysosomal protease activity and acidification remain intact in the absence of RNAseK suggesting a specificity to autolysosome degradation. Analyses of lysosome fractions show reduced levels of a subset of hydrolases in the absence of RNAseK. Of these, the knockdown of PLD3 leads to a defect in autophagosome clearance. Furthermore, the lysosomal fraction of RNAseK-depleted cells exhibits an accumulation of the ESCRT-III complex component, VPS4a, which is required for the lysosomal targeting of PLD3. Altogether, here we identify a lysosomal hydrolase delivery pathway required for efficient autolysosome degradation.
Collapse
Affiliation(s)
- Agata N Makar
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Alina Boraman
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Peter Mosen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Joanne E Simpson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Jair Marques
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Tim Michelberger
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Crewe Road South, University of Edinburgh, Edinburgh, UK
| | - Ann P Wheeler
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Crewe Road South, University of Edinburgh, Edinburgh, UK
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Noor Gammoh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK.
| |
Collapse
|
5
|
Bonini S, Winter D. Two-Step Enrichment Facilitates Background Reduction for Proteomic Analysis of Lysosomes. J Proteome Res 2024; 23:3393-3403. [PMID: 38967832 DOI: 10.1021/acs.jproteome.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Lysosomes constitute the main degradative compartment of most mammalian cells and are involved in various cellular functions. Most of them are catalyzed by lysosomal proteins, which typically are low abundant, complicating their analysis by mass spectrometry-based proteomics. To increase analytical performance and to enable profiling of lysosomal content, lysosomes are often enriched. Two approaches have gained popularity in recent years, namely, superparamagnetic iron oxide nanoparticles (SPIONs) and immunoprecipitation from cells overexpressing a 3xHA-tagged version of TMEM192 (TMEM-IP). The effect of these approaches on the lysosomal proteome has not been investigated to date. We addressed this topic through a combination of both techniques and proteomic analysis of lysosome-enriched fractions. For SPIONs treatment, we identified altered cellular iron homeostasis and moderate changes of the lysosomal proteome. For overexpression of TMEM192, we observed more pronounced effects in lysosomal protein expression, especially for lysosomal membrane proteins and those involved in protein trafficking. Furthermore, we established a combined strategy based on the sequential enrichment of lysosomes with SPIONs and TMEM-IP. This enabled increased purity of lysosome-enriched fractions and, through TMEM-IP-based lysosome enrichment from SPIONs flow-through and eluate fractions, additional insights into the properties of individual approaches. All data are available via ProteomeXchange with PXD048696.
Collapse
Affiliation(s)
- Sara Bonini
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
6
|
Calvo B, Torres-Vidal P, Delrio-Lorenzo A, Rodriguez C, Aulestia FJ, Rojo-Ruiz J, McVeigh BM, Moiseenkova-Bell V, Yule DI, Garcia-Sancho J, Patel S, Alonso MT. Direct measurements of luminal Ca 2+ with endo-lysosomal GFP-aequorin reveal functional IP 3 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.547422. [PMID: 39211134 PMCID: PMC11360962 DOI: 10.1101/2023.07.11.547422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Endo-lysosomes are considered acidic Ca 2+ stores but direct measurements of luminal Ca 2+ within them are limited. Here we report that the Ca 2+ -sensitive luminescent protein aequorin does not reconstitute with its cofactor at highly acidic pH but that a significant fraction of the probe is functional within a mildly acidic compartment when targeted to the endo-lysosomal system. We leveraged this probe (ELGA) to report Ca 2+ dynamics in this compartment. We show that Ca 2+ uptake is ATP-dependent and sensitive to blockers of endoplasmic reticulum Ca 2+ pumps. We find that the Ca 2+ mobilizing messenger IP 3 which typically targets the endoplasmic reticulum evokes robust luminal responses in wild type cells, but not in IP 3 receptor knock-out cells. Responses were comparable to those evoked by activation of the endo-lysosomal ion channel TRPML1. Stimulation with IP 3 -forming agonists also mobilized the store in intact cells. Super-resolution microscopy analysis confirmed the presence of IP 3 receptors within the endo-lysosomal system, both in live and fixed cells. Our data reveal a physiologically-relevant, IP 3 -sensitive store of Ca 2+ within the endo-lysosomal system.
Collapse
|
7
|
Ebner M, Puchkov D, López-Ortega O, Muthukottiappan P, Su Y, Schmied C, Zillmann S, Nikonenko I, Koddebusch J, Dornan GL, Lucht MT, Koka V, Jang W, Koch PA, Wallroth A, Lehmann M, Brügger B, Pende M, Winter D, Haucke V. Nutrient-regulated control of lysosome function by signaling lipid conversion. Cell 2023; 186:5328-5346.e26. [PMID: 37883971 DOI: 10.1016/j.cell.2023.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.
Collapse
Affiliation(s)
- Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Yanwei Su
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Silke Zillmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Iryna Nikonenko
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jochen Koddebusch
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Max T Lucht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Vonda Koka
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Alexander Wallroth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mario Pende
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
8
|
Kitata RB, Yang JC, Chen YJ. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. MASS SPECTROMETRY REVIEWS 2023; 42:2324-2348. [PMID: 35645145 DOI: 10.1002/mas.21781] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 06/15/2023]
Abstract
The data-independent acquisition mass spectrometry (DIA-MS) has rapidly evolved as a powerful alternative for highly reproducible proteome profiling with a unique strength of generating permanent digital maps for retrospective analysis of biological systems. Recent advancements in data analysis software tools for the complex DIA-MS/MS spectra coupled to fast MS scanning speed and high mass accuracy have greatly expanded the sensitivity and coverage of DIA-based proteomics profiling. Here, we review the evolution of the DIA-MS techniques, from earlier proof-of-principle of parallel fragmentation of all-ions or ions in selected m/z range, the sequential window acquisition of all theoretical mass spectra (SWATH-MS) to latest innovations, recent development in computation algorithms for data informatics, and auxiliary tools and advanced instrumentation to enhance the performance of DIA-MS. We further summarize recent applications of DIA-MS and experimentally-derived as well as in silico spectra library resources for large-scale profiling to facilitate biomarker discovery and drug development in human diseases with emphasis on the proteomic profiling coverage. Toward next-generation DIA-MS for clinical proteomics, we outline the challenges in processing multi-dimensional DIA data set and large-scale clinical proteomics, and continuing need in higher profiling coverage and sensitivity.
Collapse
Affiliation(s)
| | - Jhih-Ci Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
10
|
Gehrlein A, Udayar V, Anastasi N, Morella ML, Ruf I, Brugger D, von der Mark S, Thoma R, Rufer A, Heer D, Pfahler N, Jochner A, Niewoehner J, Wolf L, Fueth M, Ebeling M, Villaseñor R, Zhu Y, Deen MC, Shan X, Ehsaei Z, Taylor V, Sidransky E, Vocadlo DJ, Freskgård PO, Jagasia R. Targeting neuronal lysosomal dysfunction caused by β-glucocerebrosidase deficiency with an enzyme-based brain shuttle construct. Nat Commun 2023; 14:2057. [PMID: 37045813 PMCID: PMC10097658 DOI: 10.1038/s41467-023-37632-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Mutations in glucocerebrosidase cause the lysosomal storage disorder Gaucher's disease and are the most common risk factor for Parkinson's disease. Therapies to restore the enzyme's function in the brain hold great promise for treating the neurological implications. Thus, we developed blood-brain barrier penetrant therapeutic molecules by fusing transferrin receptor-binding moieties to β-glucocerebrosidase (referred to as GCase-BS). We demonstrate that these fusion proteins show significantly increased uptake and lysosomal efficiency compared to the enzyme alone. In a cellular disease model, GCase-BS rapidly rescues the lysosomal proteome and lipid accumulations beyond known substrates. In a mouse disease model, intravenous injection of GCase-BS leads to a sustained reduction of glucosylsphingosine and can lower neurofilament-light chain plasma levels. Collectively, these findings demonstrate the potential of GCase-BS for treating GBA1-associated lysosomal dysfunction, provide insight into candidate biomarkers, and may ultimately open a promising treatment paradigm for lysosomal storage diseases extending beyond the central nervous system.
Collapse
Affiliation(s)
- Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Vinod Udayar
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nadia Anastasi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Martino L Morella
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center | VUmc, Amsterdam, Netherlands
| | - Iris Ruf
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Doris Brugger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sophia von der Mark
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ralf Thoma
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Arne Rufer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Dominik Heer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nina Pfahler
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Interfaculty Institute of Biochemistry & Structural Biology Biochemistry (IFIB), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Anton Jochner
- Roche Pharma Research and Early Development, Therapeutic Modalities Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Jens Niewoehner
- Roche Pharma Research and Early Development, Therapeutic Modalities Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Luise Wolf
- Roche Pharma Research and Early Development, Data & Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias Fueth
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Matthew C Deen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Xiaoyang Shan
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Zahra Ehsaei
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ellen Sidransky
- Molecular Neurogenetics Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Per-Ola Freskgård
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- BioArctic AB, Stockholm, Sweden
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
11
|
Schilloks MC, Giese IM, Hinrichs A, Korbonits L, Hauck SM, Wolf E, Deeg CA. Effects of GHR Deficiency and Juvenile Hypoglycemia on Immune Cells of a Porcine Model for Laron Syndrome. Biomolecules 2023; 13:biom13040597. [PMID: 37189345 DOI: 10.3390/biom13040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Laron syndrome (LS) is a rare genetic disorder characterized by low levels of insulin-like growth factor 1 (IGF1) and high levels of growth hormone (GH) due to mutations in the growth hormone receptor gene (GHR). A GHR-knockout (GHR-KO) pig was developed as a model for LS, which displays many of the same features as humans with LS-like transient juvenile hypoglycemia. This study aimed to investigate the effects of impaired GHR signaling on immune functions and immunometabolism in GHR-KO pigs. GHR are located on various cell types of the immune system. Therefore, we investigated lymphocyte subsets, proliferative and respiratory capacity of peripheral blood mononuclear cells (PBMCs), proteome profiles of CD4− and CD4+ lymphocytes and IFN-α serum levels between wild-type (WT) controls and GHR-KO pigs, which revealed significant differences in the relative proportion of the CD4+CD8α− subpopulation and in IFN-α levels. We detected no significant difference in the respiratory capacity and the capacity for polyclonal stimulation in PBMCs between the two groups. But proteome analysis of CD4+ and CD4− lymphocyte populations revealed multiple significant protein abundance differences between GHR-KO and WT pigs, involving pathways related to amino acid metabolism, beta-oxidation of fatty acids, insulin secretion signaling, and oxidative phosphorylation. This study highlights the potential use of GHR-KO pigs as a model for studying the effects of impaired GHR signaling on immune functions.
Collapse
|
12
|
Akter F, Bonini S, Ponnaiyan S, Kögler-Mohrbacher B, Bleibaum F, Damme M, Renard BY, Winter D. Multi-Cell Line Analysis of Lysosomal Proteomes Reveals Unique Features and Novel Lysosomal Proteins. Mol Cell Proteomics 2023; 22:100509. [PMID: 36791992 PMCID: PMC10025164 DOI: 10.1016/j.mcpro.2023.100509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Lysosomes, the main degradative organelles of mammalian cells, play a key role in the regulation of metabolism. It is becoming more and more apparent that they are highly active, diverse, and involved in a large variety of processes. The essential role of lysosomes is exemplified by the detrimental consequences of their malfunction, which can result in lysosomal storage disorders, neurodegenerative diseases, and cancer. Using lysosome enrichment and mass spectrometry, we investigated the lysosomal proteomes of HEK293, HeLa, HuH-7, SH-SY5Y, MEF, and NIH3T3 cells. We provide evidence on a large scale for cell type-specific differences of lysosomes, showing that levels of distinct lysosomal proteins are highly variable within one cell type, while expression of others is highly conserved across several cell lines. Using differentially stable isotope-labeled cells and bimodal distribution analysis, we furthermore identify a high confidence population of lysosomal proteins for each cell line. Multi-cell line correlation of these data reveals potential novel lysosomal proteins, and we confirm lysosomal localization for six candidates. All data are available via ProteomeXchange with identifier PXD020600.
Collapse
Affiliation(s)
- Fatema Akter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany; Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sara Bonini
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Srigayatri Ponnaiyan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | - Markus Damme
- Institute for Biochemistry, University of Kiel, Kiel, Germany
| | | | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
13
|
Singh J, Elhabashy H, Muthukottiappan P, Stepath M, Eisenacher M, Kohlbacher O, Gieselmann V, Winter D. Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo. Nat Commun 2022; 13:6212. [PMID: 36266287 PMCID: PMC9584938 DOI: 10.1038/s41467-022-33951-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Lysosomes are well-established as the main cellular organelles for the degradation of macromolecules and emerging as regulatory centers of metabolism. They are of crucial importance for cellular homeostasis, which is exemplified by a plethora of disorders related to alterations in lysosomal function. In this context, protein complexes play a decisive role, regulating not only metabolic lysosomal processes but also lysosome biogenesis, transport, and interaction with other organelles. Using cross-linking mass spectrometry, we analyze lysosomes and early endosomes. Based on the identification of 5376 cross-links, we investigate protein-protein interactions and structures of lysosome- and endosome-related proteins. In particular, we present evidence for a tetrameric assembly of the lysosomal hydrolase PPT1 and a heterodimeric structure of FLOT1/FLOT2 at lysosomes and early endosomes. For FLOT1-/FLOT2-positive early endosomes, we identify >300 putative cargo proteins and confirm eleven substrates for flotillin-dependent endocytosis, including the latrophilin family of adhesion G protein-coupled receptors.
Collapse
Affiliation(s)
- Jasjot Singh
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Hadeer Elhabashy
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany
- Department of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Markus Stepath
- Medical Proteome-Center, Medical Faculty, Ruhr-University Bochum, 48801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics, Ruhr-University Bochum, 48801, Bochum, Germany
| | - Martin Eisenacher
- Medical Proteome-Center, Medical Faculty, Ruhr-University Bochum, 48801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics, Ruhr-University Bochum, 48801, Bochum, Germany
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany
- Department of Computer Science, University of Tübingen, 72076, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Le TS, Takahashi M, Maenosono S. A Robust Nanoparticle-based Magnetic Separation Method for Intact Lysosomes. Bio Protoc 2022; 12:e4453. [PMID: 35937929 PMCID: PMC9303824 DOI: 10.21769/bioprotoc.4453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/29/2022] Open
Abstract
Lysosome isolation is a preresiquite for identifying lysosomal protein composition by mass spectroscopic analysis, to reveal lysosome functions, and their involvement in some diseases. Magnetic nanoparticle-based fractionation has received great attention for lysosome isolation, owing to its high efficiency, purity, and preservation of lysosomal structures. Understanding the intracellular trafficking of magnetic probes is the key point of this technique, to determine the appropriate time for magnetic isolation of lysosomes, because this parameter changes depending on different cell lines used. The traditional magnetic probes, such as superparamagnetic iron oxide nanoparticles (SPIONs), require surface modification by fluorescent dyes to enable the investigation of their intracellular trafficking, which has some disadvantages, including the possible alternation of their bio-interaction, and the instability of fluorescence properties in the lysosomal environment. To overcome those limitations, we present a protocol that employs magnetic-plasmonic nanoparticles (MPNPs) to investigate intracellular trafficking using their intrinsic imaging capability, followed by quick lysosome isolation using a magnetic column. This protocol can be easily applied to isolate the intact lysosomes of any adherent cell lines. Graphical abstract.
Collapse
Affiliation(s)
- The Son Le
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Mari Takahashi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
,
*For correspondence:
| |
Collapse
|
15
|
Gericke B, Wienböker I, Brandes G, Löscher W. Is P-Glycoprotein Functionally Expressed in the Limiting Membrane of Endolysosomes? A Biochemical and Ultrastructural Study in the Rat Liver. Cells 2022; 11:cells11091556. [PMID: 35563868 PMCID: PMC9102269 DOI: 10.3390/cells11091556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The drug efflux transporter P-glycoprotein (Pgp; ABCB1) plays an important role in drug absorption, disposition, and elimination. There is an ongoing debate whether, in addition to its localization at the plasma membrane, Pgp may also be expressed at the limiting membrane of endolysosomes (ELs), mediating active EL drug sequestration. If true, this would be an important mechanism to prevent drugs from reaching their intracellular targets. However, direct evidence demonstrating the functional expression of Pgp at the limiting membrane of ELs is lacking. This prompted us to perform a biochemical and ultrastructural study on the intracellular localization of Pgp in native rat liver. For this purpose, we established an improved subcellular fractionation procedure for the enrichment of ELs and employed different biochemical and ultrastructural methods to characterize the Pgp localization and function in the enriched EL fractions. Whereas the biochemical methods seemed to indicate that Pgp is functionally expressed at EL limiting membranes, transmission electron microscopy (TEM) indicated that this only occurs rarely, if at all. Instead, Pgp was found in the limiting membrane of early endosomes and intraluminal vesicles. In additional TEM experiments, using a Pgp-overexpressing brain microvessel endothelial cell line (hCMEC/D3-MDR1-EGFP), we examined whether Pgp is expressed at the limiting membrane of ELs when cells are exposed to high levels of the Pgp substrate doxorubicin. Pgp was seen in early endosomes but only rarely in endolysosomes, whereas Pgp immunogold labeling was detected in large autophagosomes. In summary, our data demonstrate the importance of combining biochemical and ultrastructural methods to investigate the relationship between Pgp localization and function.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Inka Wienböker
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany;
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
16
|
Chen C, Sidransky E, Chen Y. Lyso-IP: Uncovering Pathogenic Mechanisms of Lysosomal Dysfunction. Biomolecules 2022; 12:biom12050616. [PMID: 35625544 PMCID: PMC9138597 DOI: 10.3390/biom12050616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Lysosomes are ubiquitous membrane-bound organelles found in all eukaryotic cells. Outside of their well-known degradative function, lysosomes are integral in maintaining cellular homeostasis. Growing evidence has shown that lysosomal dysfunction plays an important role not only in the rare group of lysosomal storage diseases but also in a host of others, including common neurodegenerative disorders, such as Alzheimer disease and Parkinson disease. New technological advances have significantly increased our ability to rapidly isolate lysosomes from cells in recent years. The development of the Lyso-IP approach and similar methods now allow for lysosomal purification within ten minutes. Multiple studies using the Lyso-IP approach have revealed novel insights into the pathogenic mechanisms of lysosomal disorders, including Niemann-Pick type C disease, showing the immense potential for this technique. Future applications of rapid lysosomal isolation techniques are likely to greatly enhance our understanding of lysosomal dysfunction in rare and common neurodegeneration causes.
Collapse
Affiliation(s)
- Chase Chen
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bld 35A, Room 1E623 35 Convent Drive, MSC 3708, Rockville, MD 20892, USA;
- Aligning Science Across Parkinson’s (ASAP) Collaborative Network, Chevy Chase, MD 20815, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bld 35A, Room 1E623 35 Convent Drive, MSC 3708, Rockville, MD 20892, USA;
- Aligning Science Across Parkinson’s (ASAP) Collaborative Network, Chevy Chase, MD 20815, USA
- Correspondence: (E.S.); (Y.C.); Tel.: +1-301-496-0373 (E.S. & Y.C.)
| | - Yu Chen
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bld 35A, Room 1E623 35 Convent Drive, MSC 3708, Rockville, MD 20892, USA;
- Aligning Science Across Parkinson’s (ASAP) Collaborative Network, Chevy Chase, MD 20815, USA
- Correspondence: (E.S.); (Y.C.); Tel.: +1-301-496-0373 (E.S. & Y.C.)
| |
Collapse
|
17
|
Udayar V, Chen Y, Sidransky E, Jagasia R. Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends Neurosci 2022; 45:184-199. [PMID: 35034773 PMCID: PMC8854344 DOI: 10.1016/j.tins.2021.12.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023]
Abstract
The understanding of lysosomes has come a long way since the initial discovery of their role in degrading cellular waste. The lysosome is now recognized as a highly dynamic organelle positioned at the crossroads of cell signaling, transcription, and metabolism. Underscoring its importance is the observation that, in addition to rare monogenic lysosomal storage disorders, genes regulating lysosomal function are implicated in common sporadic neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Developing therapies for these disorders is particularly challenging, largely due to gaps in knowledge of the underlying molecular and cellular processes. In this review, we discuss technological advances that have propelled deeper understanding of the lysosome in neurodegeneration, from elucidating the functions of lysosome-related disease risk variants at the level of the organelle, cell, and tissue, to the development of disease-specific biological models that recapitulate disease manifestations. Finally, we identify key questions to be addressed to successfully bridge the gap to the clinic.
Collapse
Affiliation(s)
- Vinod Udayar
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ravi Jagasia
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
18
|
Le TS, Takahashi M, Isozumi N, Miyazato A, Hiratsuka Y, Matsumura K, Taguchi T, Maenosono S. Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles. ACS NANO 2022; 16:885-896. [PMID: 34978188 DOI: 10.1021/acsnano.1c08474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and efficient isolation of intact lysosomes is necessary to study their functions and metabolites by proteomic analysis. We developed a swift and robust nanoparticle-based magnetic separation method in which magnetic-plasmonic hybrid nanoparticles (MPNPs) conjugated with amino dextran (aDxt) were targeted to the lumen of lysosomes via the endocytosis pathway. For well-directed magnetic separation of the lysosomes, it is important to trace the intracellular trafficking of the aDxt-conjugated MPNPs (aDxt-MPNPs) in the endocytosis pathway. Therefore, we analyzed the intracellular transport process of the aDxt-MPNPs by investigating the time-dependent colocalization of plasmonic scattering of aDxt-MPNPs and immunostained marker proteins of organelles using the threshold Manders' colocalization coefficient (Rt). Detailed analysis of time variations of Rt for early and late endosomes and lysosomes allowed us to derive the transport kinetics of aDxt-MPNPs in a cell. After confirming the incubation time required for sufficient accumulation of aDxt-MPNPs in lysosomes, the lysosomes were magnetically isolated as intact as possible. By varying the elapsed time from homogenization to complete isolation of lysosomes (tdelay) and temperature (T), the influences of tdelay and T on the protein composition of the lysosomes were investigated by polyacrylamide gel electrophoresis and amino acid analysis. We found that the intactness of lysosomes could become impaired quite quickly, and to isolate lysosomes as intact as possible with high purity, tdelay = 30 min and T = 4 °C were optimal settings.
Collapse
Affiliation(s)
- The Son Le
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Mari Takahashi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Akio Miyazato
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yuichi Hiratsuka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tomohiko Taguchi
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki Aoba, Sendai Aoba-ku, Miyagi 980-8578, Japan
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
19
|
Deep representation features from DreamDIA XMBD improve the analysis of data-independent acquisition proteomics. Commun Biol 2021; 4:1190. [PMID: 34650228 PMCID: PMC8517002 DOI: 10.1038/s42003-021-02726-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
We developed DreamDIAXMBD (denoted as DreamDIA), a software suite based on a deep representation model for data-independent acquisition (DIA) data analysis. DreamDIA adopts a data-driven strategy to capture comprehensive information from elution patterns of peptides in DIA data and achieves considerable improvements on both identification and quantification performance compared with other state-of-the-art methods such as OpenSWATH, Skyline and DIA-NN. Specifically, in contrast to existing methods which use only 6 to 10 selected fragment ions from spectral libraries, DreamDIA extracts additional features from hundreds of theoretical elution profiles originated from different ions of each precursor using a deep representation network. To achieve higher coverage of target peptides without sacrificing specificity, the extracted features are further processed by nonlinear discriminative models under the framework of positive-unlabeled learning with decoy peptides as affirmative negative controls. DreamDIA is publicly available at https://github.com/xmuyulab/DreamDIA-XMBD for high coverage and accuracy DIA data analysis.
Collapse
|
20
|
Abstract
Lysosomes are the main degradative organelles of almost all eukaryotic cells. They fulfil a crucial function in cellular homeostasis, and impairments in lysosomal function are connected to a continuously increasing number of pathological conditions. In recent years, lysosomes are furthermore emerging as control centers of cellular metabolism, and major regulators of cellular signaling were shown to be activated at the lysosomal surface. To date, >300 proteins were demonstrated to be located in/at the lysosome, and the lysosomal proteome and interactome is constantly growing. For the identification of these proteins, and their involvement in cellular mechanisms or disease progression, mass spectrometry (MS)-based proteomics has proven its worth in a large number of studies. In this review, we are recapitulating the application of MS-based approaches for the investigation of the lysosomal proteome, and their application to a diverse set of research questions. Numerous strategies were applied for the enrichment of lysosomes or lysosomal proteins and their identification by MS-based methods. This allowed for the characterization of the lysosomal proteome, the investigation of lysosome-related disorders, the utilization of lysosomal proteins as biomarkers for diseases, and the characterization of lysosome-related cellular mechanisms. While these >60 studies provide a comprehensive picture of the lysosomal proteome across several model organisms and pathological conditions, various proteomics approaches have not been applied to lysosomes yet, and a large number of questions are still left unanswered.
Collapse
Affiliation(s)
- Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
21
|
Mosen P, Sanner A, Singh J, Winter D. Targeted Quantification of the Lysosomal Proteome in Complex Samples. Proteomes 2021; 9:4. [PMID: 33530589 PMCID: PMC7931001 DOI: 10.3390/proteomes9010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/29/2023] Open
Abstract
In eukaryotic cells, lysosomes play a crucial role in the breakdown of a variety of components ranging from small molecules to complex structures, ascertaining the continuous turnover of cellular building blocks. Furthermore, they act as a regulatory hub for metabolism, being crucially involved in the regulation of major signaling pathways. Currently, ~450 lysosomal proteins can be reproducibly identified in a single cell line by mass spectrometry, most of which are low-abundant, restricting their unbiased proteomic analysis to lysosome-enriched fractions. In the current study, we applied two strategies for the targeted investigation of the lysosomal proteome in complex samples: data-independent acquisition (DIA) and parallel reaction monitoring (PRM). Using a lysosome-enriched fraction, mouse embryonic fibroblast whole cell lysate, and mouse liver whole tissue lysate, we investigated the capabilities of DIA and PRM to investigate the lysosomal proteome. While both approaches identified and quantified lysosomal proteins in all sample types, and their data largely correlated, DIA identified on average more proteins, especially for lower complex samples and longer chromatographic gradients. For the highly complex tissue sample and shorter gradients, however, PRM delivered a better performance regarding both identification and quantification of lysosomal proteins. All data are available via ProteomeXchange with identifier PXDD023278.
Collapse
Affiliation(s)
| | | | | | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany; (P.M.); (A.S.); (J.S.)
| |
Collapse
|
22
|
Giese IM, Schilloks MC, Degroote RL, Weigand M, Renner S, Wolf E, Hauck SM, Deeg CA. Chronic Hyperglycemia Drives Functional Impairment of Lymphocytes in Diabetic INSC94Y Transgenic Pigs. Front Immunol 2021; 11:607473. [PMID: 33552065 PMCID: PMC7862560 DOI: 10.3389/fimmu.2020.607473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
People with diabetes mellitus have an increased risk for infections, however, there is still a critical gap in precise knowledge about altered immune mechanisms in this disease. Since diabetic INSC94Y transgenic pigs exhibit elevated blood glucose and a stable diabetic phenotype soon after birth, they provide a favorable model to explore functional alterations of immune cells in an early stage of diabetes mellitus in vivo. Hence, we investigated peripheral blood mononuclear cells (PBMC) of these diabetic pigs compared to non-diabetic wild-type littermates. We found a 5-fold decreased proliferative response of T cells in INSC94Y tg pigs to polyclonal T cell mitogen phytohemagglutinin (PHA). Using label-free LC-MS/MS, a total of 3,487 proteins were quantified, and distinct changes in protein abundances in CD4+ T cells of early-stage diabetic pigs were detectable. Additionally, we found significant increases in mitochondrial oxygen consumption rate (OCR) and higher basal glycolytic activity in PBMC of diabetic INSC94Y tg pigs, indicating an altered metabolic immune cell phenotype. Thus, our study provides new insights into molecular mechanisms of dysregulated immune cells triggered by permanent hyperglycemia.
Collapse
Affiliation(s)
- Isabella-Maria Giese
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Roxane L. Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Maria Weigand
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Stefanie M. Hauck
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
23
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
24
|
Francis L, Harrell A, Hallifax D, Galetin A. Utilising Magnetically Isolated Lysosomes for Direct Quantification of Intralysosomal Drug Concentrations by LC-MS/MS Analysis: An Investigatory Study With Imipramine. J Pharm Sci 2020; 109:2891-2901. [PMID: 32504630 DOI: 10.1016/j.xphs.2020.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022]
Abstract
Lysosomes are acidic intracellular organelles that can extensively sequester basic lipophilic drugs due to pH and membrane partitioning, and therefore may significantly influence subcellular drug concentrations. Current in vitro methods for lysosomal drug sequestration evaluation typically lack the ability to accurately and sensitively quantify drug concentrations directly within the lysosome. In the current study, magnetic lysosomal isolation was used in the lysosome rich rat NR8383 cell line and combined with LC-MS/MS analysis to quantify intralysosomal concentrations and lysosomal partitioning (KpLysosome) values of imipramine. The purity of the isolated lysosomes was validated by enzymatic and electron microscopy analysis. Lysosomal imipramine accumulation was explored using 2 methods: addition of imipramine to cells followed by lysosomal isolation (Method 1), and direct addition of imipramine to isolated lysosomes (Method 2). This work highlighted that both experimental buffers and ATP influence intralysosomal drug concentrations, and non-specific drug binding and re-distribution limits the use of Method 1. Method 2 may benefit future lysosomal drug accumulation studies, as imipramine demonstrated high KpLysosome values (3500), comparable to in silico predictions. This study reports a novel method for the direct quantification of intralysosomal drug concentrations that has the ability to be adapted to other cell types.
Collapse
Affiliation(s)
- Laura Francis
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | - David Hallifax
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
25
|
Weigand M, Degroote RL, Amann B, Renner S, Wolf E, Hauck SM, Deeg CA. Proteome profile of neutrophils from a transgenic diabetic pig model shows distinct changes. J Proteomics 2020; 224:103843. [PMID: 32470542 DOI: 10.1016/j.jprot.2020.103843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
INSC94Y transgenic pigs develop a stable diabetic phenotype early after birth and therefore allow studying the influence of hyperglycemia on primary immune cells in an early stage of diabetes mellitus in vivo. Since immune response is altered in diabetes mellitus, with deviant neutrophil function discussed as one of the possible causes in humans and mouse models, we investigated these immune cells in INSC94Y transgenic pigs and wild type controls at protein level. A total of 2371 proteins were quantified by label-free LC-MS/MS. Subsequent differential proteome analysis of transgenic animals and controls revealed clear differences in protein abundances, indicating a deviant behavior of granulocytes in the diabetic state. Interestingly, abundance of myosin regulatory light chain 9 (MLC-2C) was increased 5-fold in cells of diabetic pigs. MLC-2C directly affects cell contractility by regulating myosin ATPase activity, can act as transcription factor and was also associated with inflammation. It might contribute to impaired neutrophil cell adhesion, migration and phagocytosis. Our study provides novel insights into proteome changes in neutrophils from a large animal model for permanent neonatal diabetes mellitus and points to dysregulation of neutrophil function even in an early stage of this disease. Data are available via ProteomeXchange with identifier PXD017274. SIGNIFICANCE: Our studies provide novel basic information about the neutrophil proteome of pigs and contribute to a better understanding of molecular mechanisms involved in altered immune cell function in an early stage diabetes. We demonstrate proteins that are dysregulated in neutrophils from a transgenic diabetic pig and have not been described in this context so far. The data presented here are highly relevant for veterinary medicine and have translational quality for diabetes in humans.
Collapse
Affiliation(s)
- Maria Weigand
- Department of Veterinary Sciences, LMU, Munich, Germany
| | | | - Barbara Amann
- Department of Veterinary Sciences, LMU, Munich, Germany
| | - Simone Renner
- Gene Center and Department of Veterinary Sciences, LMU, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, LMU, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Germany
| | | |
Collapse
|