1
|
Steiner M, Del Mar Esteban-Ortega M, Thuissard-Vasallo I, García-Lozano I, García-González AJ, Pérez-Blázquez E, Sambricio J, García-Aparicio Á, Casco-Silva BF, Sanz-Sanz J, Valdés-Sanz N, Fernández-Espartero C, Díaz-Valle T, Gurrea-Almela M, Fernández-Melón J, Gómez-Resa M, Pato-Cour E, Díaz-Valle D, Méndez-Fernández R, Navío T, Moriche-Carretero M, Muñoz-Fernández S. Choroidal Thickness Is a Biomarker Associated With Response to Treatment in Ankylosing Spondylitis. J Clin Rheumatol 2024; 30:131-137. [PMID: 33779125 DOI: 10.1097/rhu.0000000000001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Choroidal thickness (CT) has been evaluated as a marker of systemic inflammation in ankylosing spondylitis (AS). This study evaluates the CT of AS patients before and after 6 months of biological treatment. METHODS This longitudinal multicenter study evaluated CT in 44 AS patients. The correlations between CT and C-reactive protein (CRP) with disease activity indices were calculated. The concordance between CT and CRP was determined. We assessed factors associated with response to treatment. Clinically important improvement was defined as a decrease in Ankylosing Spondylitis Disease Activity Score of 1.1 points or greater. RESULTS Forty-four eyes in patients aged 18 to 65 years were included. Mean CT values were significantly higher at baseline than after 6 months of treatment (baseline: 355.28 ± 80.46 μm; 6 months: 341.26 ± 81.06 μm; p < 0.001). There was a 95% concordance between CT and CRP at baseline and 6 months. Clinically important improvement was associated with lower baseline CT and age as independent factors (odds ratios, 0.97 [95% confidence interval, 0.91-0.93; p = 0.009] and 0.81 [95% confidence interval, 0.7-0.95; p = 0.005]), with baseline CT of less than 374 μm (sensitivity 78%, specificity 78%, area under the curve 0.70, likelihood ratio 3.6). CONCLUSIONS Choroidal thickness decreased significantly after 6 months of biological treatment in all treatment groups. Choroidal thickness and CRP had a 95% concordance. A high CT was associated with a risk of biological treatment failure. Choroidal thickness can be considered a useful biomarker of inflammation and a factor associated with response to treatment in AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Javier Sambricio
- Ophthalmology Department, Hospital Universitario 12 de Octubre, Madrid
| | | | | | | | | | | | - Teresa Díaz-Valle
- Ophthalmology Department, Hospital Universitario de Móstoles, Madrid
| | | | | | - María Gómez-Resa
- Ophthalmology Department, Hospital Universitario Son Espases, Palma de Mallorca
| | | | | | | | - Teresa Navío
- Rheumatology Department, Hospital Universitario Infanta Leonor, Madrid, Spain
| | | | | |
Collapse
|
2
|
Lee JH, Lee SH, Jeon C, Han J, Kim SH, Youn J, Park YS, Kim TJ, Kim JS, Jo S, Kim TH, Son CN. The complement factor H-related protein-5 (CFHR5) exacerbates pathological bone formation in ankylosing spondylitis. J Mol Med (Berl) 2024; 102:571-583. [PMID: 38418621 DOI: 10.1007/s00109-024-02428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease, characterized by excessive new bone formation. We previously reported that the complement factor H-related protein-5 (CFHR5), a member of the human factor H protein family, is significantly elevated in patients with AS compared to other rheumatic diseases. However, the pathophysiological mechanism underlying new bone formation by CFHR5 is not fully understood. In this study, we revealed that CFHR5 and proinflammatory cytokines (TNF, IL-6, IL-17A, and IL-23) were elevated in the AS group compared to the HC group. Correlation analysis revealed that CFHR5 levels were not significantly associated with proinflammatory cytokines, while CFHR5 levels in AS were only positively correlated with the high CRP group. Notably, treatment with soluble CFHR5 has no effect on clinical arthritis scores and thickness at hind paw in curdlan-injected SKG, but significantly increased the ectopic bone formation at the calcaneus and tibia bones of the ankle as revealed by micro-CT image and quantification. Basal CFHR5 expression was upregulated in AS-osteoprogenitors compared to control cells. Also, treatment with CFHR5 remarkedly induced bone mineralization status of AS-osteoprogenitors during osteogenic differentiation accompanied by MMP13 expression. We provide the first evidence demonstrating that CFHR5 can exacerbate the pathological bone formation of AS. Therapeutic modulation of CFHR5 could be promising for future treatment of AS. KEY MESSAGES: Serum level of CFHR5 is elevated and positively correlated with high CRP group of AS patients. Recombinant CFHR5 protein contributes to pathological bone formation in in vivo model of AS. CFHR5 is highly expressed in AS-osteoprogenitors compared to disease control. Recombinant CFHR5 protein increased bone mineralization accompanied by MMP13 in vitro model of AS.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Rheumatology, Eulji Rheumatology Research Institute, Eulji University School of Medicine, 712 Dongil-Ro, Uijeongbu, Gyeonggi-Do, 11759, Republic of Korea
- Rheumarker Bio Inc, Daegu, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Chanhyeok Jeon
- Hanyang University Institute for Rheumatology Research (HYIRR), 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Jinil Han
- Gencurix Inc, Seoul, Republic of Korea
| | - Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jeehee Youn
- Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-Do, Republic of Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Asan, Chungcheongnam-do, 31358, Republic of Korea.
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Chang-Nam Son
- Department of Rheumatology, Eulji Rheumatology Research Institute, Eulji University School of Medicine, 712 Dongil-Ro, Uijeongbu, Gyeonggi-Do, 11759, Republic of Korea.
- Rheumarker Bio Inc, Daegu, Republic of Korea.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW To commemorate the 50th anniversary of the groundbreaking discovery of a remarkably strong association between HLA-B*27 and ankylosing spondylitis (AS). RECENT FINDINGS In addition to HLA-B*27, more than 116 other recognized genetic risk variants have been identified, while epigenetic factors largely remain unexplored in this context. Among patients with AS who carry the HLA-B*27 gene, clonally expanded CD8 + T cells can be found in their bloodstream and within inflamed tissues. Moreover, the α and β chain motifs of these T-cell receptors demonstrate a distinct affinity for certain self- and microbial-derived peptides, leading to an autoimmune response that ultimately results in the onset of the disease. These distinctive peptide-binding and presentation characteristics are a hallmark of the disease-associated HLA-B*27:05 subtype but are absent in HLA-B*27:09, a subtype not associated with the disease, differing by only a single amino acid. This discovery represents a significant advancement in unraveling the 50-year-old puzzle of how HLA-B*27 contributes to the development of AS. These findings will significantly accelerate the process of identifying peptides, both self- and microbial-derived, that instigate autoimmunity. This, in return, will pave the way for the development of more accurate and effective targeted treatments. Moreover, the discovery of improved biomarkers, in conjunction with the emerging technology of electric field molecular fingerprinting, has the potential to greatly bolster early diagnosis capabilities. A very recently published groundbreak paper underscores the remarkable effectiveness of targeting and eliminating disease-causing T cells in a HLA-B*27 patients with AS. This pivotal advancement not only signifies a paradigm shift but also bolsters the potential for preventing the disease in individuals carrying high-risk genetic variants.
Collapse
Affiliation(s)
- Muhammad A Khan
- Case Western Reserve School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
4
|
Wu H, Xu J, Sun J, Duan J, Xiao J, Ren Q, Zhou P, Yan J, Li Y, Xiong X, Zeng E. APOE as potential biomarkers of moyamoya disease. Front Neurol 2023; 14:1156894. [PMID: 37228412 PMCID: PMC10203507 DOI: 10.3389/fneur.2023.1156894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Objective The mechanisms underpinning Moyamoya disease (MMD) remain unclear, and effective biomarkers remain unknown. The purpose of this study was to identify novel serum biomarkers of MMD. Methods Serum samples were collected from 23 patients with MMD and 30 healthy controls (HCs). Serum proteins were identified using tandem tandem-mass-tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Differentially expressed proteins (DEPs) in the serum samples were identified using the SwissProt database. The DEPs were assessed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, Gene Ontology (GO), and protein-protein interaction (PPI) networks, and hub genes were identified and visualized using Cytoscape software. Microarray datasets GSE157628, GSE189993, and GSE100488 from the Gene Expression Omnibus (GEO) database were collected. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DE-miRNAs) were identified, and miRNA targets of DEGs were predicted using the miRWalk3.0 database. Serum apolipoprotein E (APOE) levels were compared in 33 MMD patients and 28 Moyamoya syndrome (MMS) patients to investigate the potential of APOE to be as an MMD biomarker. Results We identified 85 DEPs, of which 34 were up- and 51 down-regulated. Bioinformatics analysis showed that some DEPs were significantly enriched in cholesterol metabolism. A total of 1105 DEGs were identified in the GSE157628 dataset (842 up- and 263 down-regulated), whereas 1290 were identified in the GSE189993 dataset (200 up- and 1,090 down-regulated). The APOE only overlaps with the upregulated gene expression in Proteomic Profiling and in GEO databases. Functional enrichment analysis demonstrated that APOE was associated with cholesterol metabolism. Moreover, 149 miRNAs of APOE were predicted in the miRWalk3.0 database, and hsa-miR-718 was the only DE-miRNA overlap identified in MMD samples. Serum APOE levels were significantly higher in patients with MMD than in those without. The performance of APOE as an individual biomarker to diagnose MMD was remarkable. Conclusions We present the first description of the protein profile of patients with MMD. APOE was identified as a potential biomarker for MMD. Cholesterol metabolism was found to potentially be related to MMD, which may provide helpful diagnostic and therapeutic insights for MMD.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiang Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiarong Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Duan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinlin Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Ren
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youping Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Hwang M, Assassi S, Zheng J, Castillo J, Chavez R, Vanarsa K, Mohan C, Reveille J. Quantitative proteomic screening uncovers candidate diagnostic and monitoring serum biomarkers of ankylosing spondylitis. Arthritis Res Ther 2023; 25:57. [PMID: 37041650 PMCID: PMC10088143 DOI: 10.1186/s13075-023-03044-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND We sought to discover serum biomarkers of ankylosing spondylitis (AS) for diagnosis and monitoring disease activity. METHODS We studied biologic-treatment-naïve AS and healthy control (HC) patients' sera. Eighty samples matched by age, gender, and race (1:1:1 ratio) for AS patients with active disease, inactive disease, and HC were analyzed with SOMAscan™, an aptamer-based discovery platform. T-tests tests were performed for high/low-disease activity AS patients versus HCs (diagnosis) and high versus low disease activity (Monitoring) in a 2:1 and 1:1 ratio, respectively, to identify differentially expressed proteins (DEPs). We used the Cytoscape Molecular Complex Detection (MCODE) plugin to find clusters in protein-protein interaction networks and Ingenuity Pathway Analysis (IPA) for upstream regulators. Lasso regression analysis was performed for diagnosis. RESULTS Of the 1317 proteins detected in our diagnosis and monitoring analyses, 367 and 167 (317 and 59, FDR-corrected q < .05) DEPs, respectively, were detected. MCODE identified complement, IL-10 signaling, and immune/interleukin signaling as the top 3 diagnosis PPI clusters. Complement, extracellular matrix organization/proteoglycans, and MAPK/RAS signaling were the top 3 monitoring PPI clusters. IPA showed interleukin 23/17 (interleukin 22, interleukin 23A), TNF (TNF receptor-associated factor 3), cGAS-STING (cyclic GMP-AMP synthase, Stimulator of Interferon Gene 1), and Jak/Stat (Signal transducer and activator of transcription 1), signaling in predicted upstream regulators. Lasso regression identified a Diagnostic 13-protein model predictive of AS. This model had a sensitivity of 0.75, specificity of 0.90, a kappa of 0.59, and overall accuracy of 0.80 (95% CI: 0.61-0.92). The AS vs HC ROC curve was 0.79 (95% CI: 0.61-0.96). CONCLUSION We identified multiple candidate AS diagnostic and disease activity monitoring serum biomarkers using a comprehensive proteomic screen. Enrichment analysis identified key pathways in AS diagnosis and monitoring. Lasso regression identified a multi-protein panel with modest predictive ability.
Collapse
Affiliation(s)
- Mark Hwang
- McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin MSB.5270, TX, 77030, Houston, USA.
| | - Shervin Assassi
- McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin MSB.5270, TX, 77030, Houston, USA
| | - Jim Zheng
- School of Biomedical Informatics, UTHealth Houston, Houston, TX, USA
| | | | - Reyna Chavez
- McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin MSB.5270, TX, 77030, Houston, USA
| | - Kamala Vanarsa
- Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Chandra Mohan
- Biomedical Engineering, University of Houston, Houston, TX, USA
| | - John Reveille
- McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin MSB.5270, TX, 77030, Houston, USA
| |
Collapse
|
6
|
Ge Y, Xu B, Cai H, Jing W, Ouyang Q, Yuan Q, Li X, Fan Y, Shen Y, Shi Q, Wang Q, Cui L, Yin X, Ma G. Diagnostic role of plasma ORM2 in differentiating prostate cancer from benign prostatic hyperplasia. J Cancer Res Clin Oncol 2022; 149:2301-2310. [PMID: 36198834 DOI: 10.1007/s00432-022-04380-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Markers are needed to increase the diagnostic accuracy of prostate-specific antigen (PSA) in prostate cancer (PCa) screening. Mounting evidence has shown that plasma proteins can be hopeful biomarkers for cancer diagnosis. METHODS Tandem mass tag (TMT)-based proteomics and parallel reaction monitoring (PRM) analysis were used to screen the differential proteins and further validated in other independent studies (n = 539). Receiver-operating characteristic (ROC), decision curves and nomograms were applied to assess the diagnostic accuracy of biomarkers. RESULTS Three candidate proteins (DBP, LCAT and ORM2) were preliminarily screened. Subsequent validation studies revealed significant upregulation of ORM2 in PCa patients across other independent cohorts. ORM2 yielded excellent discriminative power for PCa from benign prostatic hyperplasia (BPH) patients (AUC = 0.861 and 0.814 in validation phases 2a and 2b, respectively). Importantly, the combination of ORM2 and PSA gave better predictive accuracy than PSA alone. We incorporated age, PSA and ORM2 into a nomogram, which yielded C-index of 0.883 in validation phase 2a. A similar C-index of 0.879 was obtained in external validation phase 2b. CONCLUSIONS In summary, our study suggests that ORM2 could be treated as a complementary biomarker for PSA in distinguishing PCa from BPH.
Collapse
Affiliation(s)
- Yuqiu Ge
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Bin Xu
- Department of Urology, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210003, China
| | - Hongzhou Cai
- Department of Urologic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Wentao Jing
- Department of Urology, Yixing People's Hospital, Wuxi, 214200, China
| | - Qiong Ouyang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Qinbo Yuan
- Department of Urology, Wuxi Fifth People's Hospital, Wuxi, 214011, China
| | - Xu Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanming Fan
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Qianqian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Qiangdong Wang
- Department of Urology, Huaiyin Hospital of Huai'an City, Huai'an, China.
- Department of Urology, Huaiyin People's Hospital of Huai'an City, Huai'an, China.
| | - Li Cui
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, Clinical Metabolomics Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Gaoxiang Ma
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China.
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
7
|
Practical Significance of Biomarkers in Axial Spondyloarthritis: Updates on Diagnosis, Disease Activity, and Prognosis. Int J Mol Sci 2022; 23:ijms231911561. [PMID: 36232862 PMCID: PMC9570274 DOI: 10.3390/ijms231911561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that can lead to ankylosis by secondary ossification of inflammatory lesions, with progressive disability and a significant impact on quality of life. It is also a risk factor for the occurrence of comorbidities, especially cardiovascular diseases (CVDs), mood disorders, osteoporosis, and malignancies. Early diagnosis and treatment are needed to prevent or decrease functional decline and to improve the patient's prognosis. In respect of axSpA, there is an unmet need for biomarkers that can help to diagnose the disease, define disease activity and prognosis, and establish personalized treatment approaches. The aim of this review was to summarize the available information regarding the most promising biomarkers for axSpA. We classified and identified six core categories of biomarkers: (i) systemic markers of inflammation; (ii) molecules involved in bone homeostasis; (iii) HLA-B27 and newer genetic biomarkers; (iv) antibody-based biomarkers; (v) microbiome biomarkers; and (vi) miscellaneous biomarkers. Unfortunately, despite efforts to validate new biomarkers, few of them are used in clinical practice; however, we believe that these studies provide useful data that could aid in better disease management.
Collapse
|
8
|
TMT-based quantitative proteomics analysis and potential serum protein biomarkers for systemic lupus erythematosus. Clin Chim Acta 2022; 534:43-49. [PMID: 35810799 DOI: 10.1016/j.cca.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 01/18/2023]
Abstract
Systemic lupus erythematosus (SLE) was not only a typical systemic autoimmune disease, but also one of the most challenging heterogeneous diseases for physicians. Currently, the pathogenesis of SLE was unclear, and there were no accurate, universal or easy-to-use diagnostic criteria for assessing SLE activity and predicting SLE severity. Proteins were direct effectors of biological mechanisms, and were closer to clinical phenotypes than the other discovered biomarkers. Moreover, proteins were widely used as biomarkers for clinical diagnosis and mechanism research of many diseases. Herein, we compared the proteins profiles of healthy individuals (HCs) and SLE patients to reveal the pathogenesis and provide evidence for diagnosis and management of persons with SLE. Serum samples were collected from 28 SLE patients and 30 HCs. Tandem mass tag (TMT)-based quantitative proteomics method was used to identify, screen and detect differentially expressed proteins (DEPs) in the collected serum samples. A total of 744 proteins were identified, and 84 of them were considered as DEPs with 71 upregulated and 13 downregulated. Bioinformatics analysis suggested that these DEPs were mainly involved in many biological processes, including immune response, signal transduction, inflammatory response, proteolysis, innate immune response and apoptosis, which were closely related to the pathogenesis of SLE. After comprehensive analysis, serum amyloid A1 (SAA1) and endothelin (CD248) were identified as specific biomarkers for the diagnosis of SLE, and were confirmed by subsequent enzyme-linked immunosorbent assays (ELISA), indicating a high reliability of TMT-based quantitative proteomics results. Areas under the ROC curve (AUC) results confirmed that SAA1 and CD248 combination as early immune diagnosis biomarkers of SLE presented excellent sensitivity and specificity.
Collapse
|
9
|
Hou J, Deng Q, Liu S, Qiu X, Deng X, Zhong W, Zhong Z. Plasma Proteome Profiling of Patients With In-stent Restenosis by Tandem Mass Tag-Based Quantitative Proteomics Approach. Front Cardiovasc Med 2022; 9:793405. [PMID: 35265678 PMCID: PMC8899613 DOI: 10.3389/fcvm.2022.793405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Despite the widespread application of new drug-eluting stents, a considerable portion of patients experience in-stent restenosis (ISR). To date, the pathophysiologic mechanisms of ISR remain poorly understood. Methods In this study, we collected plasma samples from ISR patients (n = 29) and non-ISR patients (n = 36) after drug-eluting stent implantation, as well as from healthy controls (HCs) (n = 32). Our goal was to investigate differences in plasma protein profiles using tandem mass tag (TMT) labeling coupled with liquid chromatography and tandem mass spectrometry. The proteomic data were validated by enzyme-linked immunosorbent assay (ELISA). Bioinformatic analyses were conducted to analyze potential pathways and protein-protein interaction (PPI) involved in ISR. Results A total of 1,696 proteins were identified, of which 278 differed in protein abundance between non-ISR and HCs, 497 between ISR and HCs, and 387 between ISR and non-ISR, respectively. Bioinformatic analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and PPI, further demonstrated that differentially abundant proteins between ISR and non-ISR are involved in several crucial biological processes and signaling pathways, such as focal adhesion, platelet activation, Rap1 signaling, regulation of actin cytoskeleton, and cholesterol metabolism. Among the identified differentially abundant proteins in ISR, 170 were increased in abundance relative to both non-ISR patients and HCs. Some of these proteins were identified to have critical functions for atherosclerosis development and might be involved in ISR pathology. Among these proteins, 3 proteins with increased abundance including fetuin-B, apolipoprotein C-III (APOC3), and cholesteryl ester transfer protein (CETP) were confirmed by ELISA. Conclusions This is the first study provided a comprehensive proteomic profile to understand ISR pathology, which may help identify early diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jingyuan Hou
- Meizhou Academy of Medical Sciences Cardiovascular Disease Research Institute, Meizhou People's Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Qiaoting Deng
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Sudong Liu
- Meizhou Academy of Medical Sciences Cardiovascular Disease Research Institute, Meizhou People's Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Xiaohong Qiu
- Meizhou Academy of Medical Sciences Cardiovascular Disease Research Institute, Meizhou People's Hospital, Meizhou, China
| | - Xunwei Deng
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
- Guangdong Provincial Engineering and Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, China
| | - Zhixiong Zhong
- Meizhou Academy of Medical Sciences Cardiovascular Disease Research Institute, Meizhou People's Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
- *Correspondence: Zhixiong Zhong
| |
Collapse
|
10
|
Sun Y, Li C, Yu W, Huo G, Zhu M, Zhao P, Wang T, Huang G, Xu A. Complement system deregulation in SAPHO syndrome revealed by proteomic profiling. J Proteomics 2021; 251:104399. [PMID: 34718201 DOI: 10.1016/j.jprot.2021.104399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
SAPHO syndrome is an inflammatory disease invading the skin and bones, whose diagnosis has been difficult due to its low incidence and diversified manifestation. We investigated the serum proteomic profile of SAPHO patients to identify key proteins associated with SAPHO syndrome, trying to find clinical biomarkers or functional molecules for this rare disease. Blood samples from 8 SAPHO patients and 8 healthy controls were detected and analyzed using data independent acquisition (DIA) method to identify differentially expressed proteins (DEPs) specific to SAPHO. A total of 57 differentially expressed proteins were identified (p < 0.05, fold change >1.2), in which 27 proteins were upregulated and 30 downregulated. DEPs may participate in GO terms such as "lipid particle" and "Notch signaling pathway", as well as KEGG pathways including "complement and coagulation cascades" and "mTOR signaling pathway". The overexpression of inhibitors of the complement system (CFH and C4BP), were verified in a larger cohort (16 SAPHO patients, 8 AS patients and 24 healthy controls) with ELISA, and the combined diagnostic ability of CFH and C4BP was predicted by ROC curve with an AUC of 0.91, which may be molecular candidates for further study on diagnosis and pathology of this rare disease. SIGNIFICANCE: Our research provided the first insight into plasma proteomic profile for SAPHO patients,offering potential biomarkers for disease diagnosis. We found that inhibitors of complement system such as CFH and C4BP were up-regulated in SAPHO syndrome, which may play important roles in the pathogenesis of SAPHO syndrome.
Collapse
Affiliation(s)
- Yuxiu Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Li
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wanchen Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengmeng Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
11
|
Greco F, Anastasi F, Pardini LF, Dilillo M, Vannini E, Baroncelli L, Caleo M, McDonnell LA. Longitudinal Bottom-Up Proteomics of Serum, Serum Extracellular Vesicles, and Cerebrospinal Fluid Reveals Candidate Biomarkers for Early Detection of Glioblastoma in a Murine Model. Molecules 2021; 26:5992. [PMID: 34641541 PMCID: PMC8512455 DOI: 10.3390/molecules26195992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is a brain tumor with a poor prognosis and low survival rates. GBM is diagnosed at an advanced stage, so little information is available on the early stage of the disease and few improvements have been made for earlier diagnosis. Longitudinal murine models are a promising platform for biomarker discovery as they allow access to the early stages of the disease. Nevertheless, their use in proteomics has been limited owing to the low sample amount that can be collected at each longitudinal time point. Here we used optimized microproteomics workflows to investigate longitudinal changes in the protein profile of serum, serum small extracellular vesicles (sEVs), and cerebrospinal fluid (CSF) in a GBM murine model. Baseline, pre-symptomatic, and symptomatic tumor stages were determined using non-invasive motor tests. Forty-four proteins displayed significant differences in signal intensities during GBM progression. Dysregulated proteins are involved in cell motility, cell growth, and angiogenesis. Most of the dysregulated proteins already exhibited a difference from baseline at the pre-symptomatic stage of the disease, suggesting that early effects of GBM might be detectable before symptom onset.
Collapse
Affiliation(s)
- Francesco Greco
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
| | - Federica Anastasi
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
- NEST Laboratories, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Luca Fidia Pardini
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Marialaura Dilillo
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
| | - Eleonora Vannini
- CNR, Neuroscience Institute, 56124 Pisa, Italy; (E.V.); (L.B.); (M.C.)
- Fondazione Umberto Veronesi, 20122 Milano, Italy
| | - Laura Baroncelli
- CNR, Neuroscience Institute, 56124 Pisa, Italy; (E.V.); (L.B.); (M.C.)
- IRCCS Fondazione Stella Maris, 56018 Calambrone, Italy
| | - Matteo Caleo
- CNR, Neuroscience Institute, 56124 Pisa, Italy; (E.V.); (L.B.); (M.C.)
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy
| | - Liam A. McDonnell
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
| |
Collapse
|
12
|
Zhou G, Lu J, Xu T, Lu Y, Chen W, Wang J, Ke M, Shen Q, Zhu Y, Shan J, Liu S. Clinical lipidomics analysis reveals biomarkers of lipid peroxidation in serum from patients with rheumatoid arthritis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Roszkowski L, Ciechomska M. Tuning Monocytes and Macrophages for Personalized Therapy and Diagnostic Challenge in Rheumatoid Arthritis. Cells 2021; 10:cells10081860. [PMID: 34440629 PMCID: PMC8392289 DOI: 10.3390/cells10081860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Monocytes/macrophages play a central role in chronic inflammatory disorders, including rheumatoid arthritis (RA). Activation of these cells results in the production of various mediators responsible for inflammation and RA pathogenesis. On the other hand, the depletion of macrophages using specific antibodies or chemical agents can prevent their synovial tissue infiltration and subsequently attenuates inflammation. Their plasticity is a major feature that helps the switch from a pro-inflammatory phenotype (M1) to an anti-inflammatory state (M2). Therefore, understanding the precise strategy targeting pro-inflammatory monocytes/macrophages should be a powerful way of inhibiting chronic inflammation and bone erosion. In this review, we demonstrate potential consequences of different epigenetic regulations on inflammatory cytokines production by monocytes. In addition, we present unique profiles of monocytes/macrophages contributing to identification of new biomarkers of disease activity or predicting treatment response in RA. We also outline novel approaches of tuning monocytes/macrophages by biologic drugs, small molecules or by other therapeutic modalities to reduce arthritis. Finally, the importance of cellular heterogeneity of monocytes/macrophages is highlighted by single-cell technologies, which leads to the design of cell-specific therapeutic protocols for personalized medicine in RA in the future.
Collapse
|
14
|
Gao Y, Chen Y, Wang L, Li C, Ge W. Serum-derived extracellular vesicles inhibit osteoclastogenesis in active-phase patients with SAPHO syndrome. Ther Adv Musculoskelet Dis 2021; 13:1759720X211006966. [PMID: 33948126 PMCID: PMC8053764 DOI: 10.1177/1759720x211006966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is a rare chronic inflammatory disorder and the underlying pathogenesis is unclear. In this study, 88 SAPHO patients and 118 healthy controls were recruited to investigate the role of serum-derived extracellular vesicles (SEVs) in SAPHO syndrome. METHODS Quantitative proteomics was applied for SEVs proteome identification, and ELISA and Western blotting was performed to verify the results of mass spectrum data. In vitro osteoclastogenesis and osteogenesis assay was used to confirm the effects of SEVs on bone metabolism. RESULTS Tandem mass tagging-based quantitative proteomic analysis of SAPHO SEVs revealed differential expressed proteins involved in bone metabolism. Of these, serum amyloid A-1 (SAA1) and C-reactive protein (CRP) were upregulated. Higher SAA1 levels in SAPHO patients were confirmed by ELISA. In addition, SAA1 levels were positively correlated with CRP, an inflammatory marker related to the condition of patients. In vitro celluler studies confirmed that SAPHO SEVs inhibited osteoclastogenesis in patients mainly in the active phase of the disease. Further analysis demonstrated that Nucleolin was upregulated in osteoclasts of active-phase patients under SAPHO SEVs stimulation. CONCLUSION In this study, we identified SAA1 as an additional inflammation marker that can potentially assist the diagnosis of SAPHO syndrome, and speculated that Nucleolin is a key regulator of osteoclastogenesis in active-phase patients.
Collapse
Affiliation(s)
- Yanpan Gao
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lun Wang
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Li
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5 Dong Dan San Tiao, Beijing, 100005, China
| |
Collapse
|
15
|
Sorić Hosman I, Kos I, Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front Immunol 2021; 11:631299. [PMID: 33679725 PMCID: PMC7933664 DOI: 10.3389/fimmu.2020.631299] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with a significant importance for patients with inflammatory rheumatic diseases (IRD). The central role of SAA in pathogenesis of IRD has been confirmed by recent discoveries, including its involvement in the activation of the inflammasome cascade and recruitment of interleukin 17 producing T helper cells. Clinical utility of SAA in IRD was originally evaluated nearly half a century ago. From the first findings, it was clear that SAA could be used for evaluating disease severity and monitoring disease activity in patients with rheumatoid arthritis and secondary amyloidosis. However, cost-effective and more easily applicable markers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), overwhelmed its use in clinical practice. In the light of emerging evidences, SAA has been discerned as a more sensitive biomarker in a wide spectrum of IRD, especially in case of subclinical inflammation. Furthermore, a growing number of studies are confirming the advantages of SAA over many other biomarkers in predicting and monitoring response to biological immunotherapy in IRD patients. Arising scientific discoveries regarding the role of SAA, as well as delineating SAA and its isoforms as the most sensitive biomarkers in various IRD by recently developing proteomic techniques are encouraging the revival of its clinical use. Finally, the most recent findings have shown that SAA is a biomarker of severe Coronavirus disease 2019 (COVID-19). The aim of this review is to discuss the SAA-involving immune system network with emphasis on mechanisms relevant for IRD, as well as usefulness of SAA as a biomarker in various IRD. Therefore, over a hundred original papers were collected through an extensive PubMed and Scopus databases search. These recently arising insights will hopefully lead to a better management of IRD patients and might even inspire the development of new therapeutic strategies with SAA as a target.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, Zadar, Croatia
| | - Ivanka Kos
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
16
|
Kalecki J, Iskierko Z, Cieplak M, Sharma PS. Oriented Immobilization of Protein Templates: A New Trend in Surface Imprinting. ACS Sens 2020; 5:3710-3720. [PMID: 33225686 PMCID: PMC7771019 DOI: 10.1021/acssensors.0c01634] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
In this Review, we have summarized recent trends in protein template imprinting. We emphasized a new trend in surface imprinting, namely, oriented protein immobilization. Site-directed proteins were assembled through specially selected functionalities. These efforts resulted in a preferably oriented homogeneous protein construct with decreased protein conformation changes during imprinting. Moreover, the maximum functionality for protein recognition was utilized. Various strategies were exploited for oriented protein immobilization, including covalent immobilization through a boronic acid group, metal coordinating center, and aptamer-based immobilization. Moreover, we have discussed the involvement of semicovalent as well as covalent imprinting. Interestingly, these approaches provided additional recognition sites in the molecular cavities imprinted. Therefore, these molecular cavities were highly selective, and the binding kinetics was improved.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
17
|
Liu S, Guo Y, Lu L, Lu J, Ke M, Xu T, Lu Y, Chen W, Wang J, Kong D, Shen Q, Zhu Y, Tan W, Ji W, Zhou W. Fibrinogen-Like Protein 1 Is a Novel Biomarker for Predicting Disease Activity and Prognosis of Rheumatoid Arthritis. Front Immunol 2020; 11:579228. [PMID: 33123164 PMCID: PMC7574527 DOI: 10.3389/fimmu.2020.579228] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA), afflicting over 1% of the population, is an inflammatory joint disease leading to cartilage damage and ultimately impaired joint function. Disease-modifying anti-rheumatic drugs are considered as the first-line treatment to inhibit the progression of RA, and the treatment depends on the disease status assessment. The disease activity score 28 as clinical gold standard is extensively used for RA assessment, but it has the limitations of delayed assessment and the need for specialized expertise. It is necessary to discover biomarkers that can precisely monitor disease activity, and provide optimized treatment for RA patients. A total of 1,244 participants from two independent centers were divided into five cohorts. Cohorts 1–4 constituted sera samples of moderate to high active RA, low active RA, RA in remission and healthy subjects. Cohort 5 consisted of sera of RA, osteoarthritis (OA), ankylosing spondylitis (AS), systemic lupus erythematosus (SLE), primary Sjogren's syndrome (pSS) and healthy subjects. Biomarkers were found from cohorts 1–2 (screening sets), cohort 3 (discovery and external validation sets), cohort 4 (drug intervention set) and cohort 5 (biomarker-specific evaluation set). We found 68 upregulated and 74 downregulated proteins by TMT-labeled proteomics in cohort 1, and fibrinogen-like protein 1 (FGL1) had the highest area under the receiver operating characteristic curve (AUC) values in cohort 2. In cohort 3, in cross-comparison among moderate/high active RA, low active RA, RA in remission and healthy subjects, FGL1 had AUC values of approximately 0.9000 and predictive values of 90%. Additionally, FGL1 had a predictive value of 91.46% for moderate/high active RA vs. remission/low active RA and 80.77% for RA in remission vs. low active RA in cohort 4. Importantly, FGL1 levels had no significant difference in OA and AS compared with healthy persons. The concentrations in SLE and pSS were improved, but approximately 3-fold lower than that in active RA in cohort 5. In summary, FGL1 is a novel and specific biomarker that could be clinically useful for predicting progression of RA.
Collapse
Affiliation(s)
- Shijia Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunke Guo
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Lu
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiawei Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengying Ke
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lu
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjun Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jue Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Deshun Kong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuxiang Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Youjuan Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - WenFeng Tan
- Department of Rheumatology and Immunology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Wei Ji
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Esteban-Ortega MM, Steiner M, García-Lozano I, Thuissard-Vasallo I, Moriche-Carretero M, Muñoz-Fernández S. Reproducibility of manual choroidal thickness measurements using optical coherence tomography. ACTA ACUST UNITED AC 2020; 95:379-385. [PMID: 32532593 DOI: 10.1016/j.oftal.2020.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Spectral-domain optical coherence tomography (SD-OCT) is the most useful tool to measure choroidal thickness (CT). CT may be increased in ocular and systemic diseases. However, there are concerns relating reproducibility and external validity of OCT. The aim of this study was to assess the inter-observer and intra-observer variability of manual OCT measurements. METHODS CT was manually measured in the central choroid of 40 eyes from 21 subjects (11 healthy and 10 with ankylosing spondylitis) using RTVue-100 OCT (Optovue Inc., Fremont, CA, EE.UU.). Measurements were performed by 9 independent ophthalmologists from 6 different centers. To assess the inter-observer variability, the intra-class correlation coefficient (ICC) method was calculated. Also, intra-observer variability was assessed in 2 of the ophthalmologists. RESULTS The mean subfoveal CT was 364.9±85.1μm (range, 170 to 572). The inter-observer ICC was 0.823 (CI 95%, 0.749 to 0.888, p<0.001). The intra-observer ICCs were 0.885 (CI 95%, 0.783 to 0.939, p<0.001) and 0.925 (CI 95%, 0.859 to 0.960. p<0.001). CONCLUSIONS In this study, manual measurements of CT with OCT showed a good concordance. These results suggest that manual OCT is a valid tool for multicenter studies.
Collapse
Affiliation(s)
- M M Esteban-Ortega
- Sección de Oftalmología, Hospital Universitario Infanta Sofía, Madrid, España; Departamento de Medicina, Facultad de Ciencias Biomédicas, Universidad Europea, Madrid, España
| | - M Steiner
- Departamento de Medicina, Facultad de Ciencias Biomédicas, Universidad Europea, Madrid, España; Sección de Reumatología, Hospital Universitario Infanta Sofía, Madrid, España.
| | - I García-Lozano
- Sección de Oftalmología, Hospital Universitario Infanta Sofía, Madrid, España; Departamento de Medicina, Facultad de Ciencias Biomédicas, Universidad Europea, Madrid, España
| | - I Thuissard-Vasallo
- Departamento de Medicina, Facultad de Ciencias Biomédicas, Universidad Europea, Madrid, España
| | - M Moriche-Carretero
- Sección de Oftalmología, Hospital Universitario Infanta Sofía, Madrid, España; Departamento de Medicina, Facultad de Ciencias Biomédicas, Universidad Europea, Madrid, España
| | - S Muñoz-Fernández
- Departamento de Medicina, Facultad de Ciencias Biomédicas, Universidad Europea, Madrid, España; Sección de Reumatología, Hospital Universitario Infanta Sofía, Madrid, España
| | | |
Collapse
|