1
|
Xue Z, Wang L, Pan S, Yan J, You M, Yao C. The nucleic acid reactions on the nanomaterials surface for biomedicine. J Nanobiotechnology 2025; 23:308. [PMID: 40269855 PMCID: PMC12016162 DOI: 10.1186/s12951-025-03374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Integrating nucleic acids (NAs) with nanomaterials has substantially advanced biomedical research, enabling critical applications in biosensing, drug delivery, therapeutics, and the synthesis of nanomaterials. At the core of these advances are the reactions of NAs on nanomaterial surfaces, encompassing conjugation (covalent and non-covalent), detachment (physical and chemical), and signal amplification (enzyme-mediated signal amplification, enzyme-free signal amplification, and DNA Walker). Here, we review the fundamental mechanisms and recent progress in nucleic acid reactions on nanomaterial surfaces, discuss emerging applications for diagnostics, nanomedicine, and gene therapy, and explore persistent challenges in the field. We offer a forward-looking perspective on how future developments could better control, optimize, and harness these reactions for transformative advances in nanomedicine and biomedical engineering.
Collapse
Affiliation(s)
- Zhenrui Xue
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Lu Wang
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Shengnan Pan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Jie Yan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
2
|
Ma M, Liu G, Dai F, Wang X, Qin D, Yin M, Lu L, Wang Z, Wang T, Wang Z, Liu X, Chen Q, Jiao J. A sensing strategy based on novel pyrene-functionalized MOFs for sVCAM-1 detection and prognostic assessment in coronary heart disease. Talanta 2025; 294:128184. [PMID: 40262343 DOI: 10.1016/j.talanta.2025.128184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Coronary heart disease (CHD) remains a significant global health concern, with exercise therapy playing a crucial role in rehabilitation. Optimizing exercise intensity is essential, as both insufficient and excessive exercise may lead to suboptimal or adverse outcomes. In response to this challenge, we developed Adaptive Posture-Balance Cardiac Rehabilitation Exercise (APBCRE), which integrates postural balance training with aerobic exercise. To evaluate its therapeutic efficacy, we designed a novel fluorescent biosensor targeting soluble vascular cell adhesion molecule-1 (sVCAM-1), a key biomarker of endothelial inflammation. The biosensor utilizes pyrene-functionalized metal-organic framework (PCA-UiO-66), synthesized via a one-pot approach. Within the MOF, pyrenecarboxylic acid (PCA) exists primarily in the excimer state, exhibiting stable fluorescence emission, a narrow spectral peak, and a wide Stokes shift. For the purpose of identify sVCAM-1, the sVCAM-1-specific aptamer was functionalized to PCA-UiO-66. When sVCAM-1 is present, the aptamer is competitively stripped from the MOF surface by the target. This process induces π-π stacking interactions between the aptamer's phosphate backbone and PCA molecules, facilitating PCA release and transition from the excimer to the monomer state. By quantifying the fluorescence value of monomer state PCA, the fluorescence response allowed precise quantification of sVCAM-1, with a detection limit of 0.69 ng/mL and a range of 2 ng/mL to 50 μg/mL. We analyzed cardiopulmonary performance and serum sVCAM-1 levels in 20 CHD patients who underwent APBCRE. These findings establish APBCRE as an effective rehabilitation strategy that provides both physiological and molecular benefits while also confirming Apt@PCA-UiO-66 as a robust biosensing tool for monitoring therapeutic efficacy and elucidating CHD pathophysiology.
Collapse
Affiliation(s)
- Mei Ma
- Department of Rehabilitation Medicine, Tianjin Chest Hospital, Tianjin, 300192, PR China.
| | - Guangxin Liu
- Department of Rehabilitation Medicine, Tianjin Chest Hospital, Tianjin, 300192, PR China
| | - Fuju Dai
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Xiangrui Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Deyu Qin
- Department of Rehabilitation Medicine, Tianjin Chest Hospital, Tianjin, 300192, PR China
| | - Mengai Yin
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Lina Lu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Zhijie Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Tong Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Zibo Wang
- Department of Medical Equipment, Tianjin Chest Hospital, Tianjin, 300192, PR China
| | - Xinmeng Liu
- Department of Rehabilitation Medicine, Tianjin Chest Hospital, Tianjin, 300192, PR China
| | - Qiang Chen
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China.
| | - Jun Jiao
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China.
| |
Collapse
|
3
|
Zhang S, Wang X, Chen X, Shu D, Lin Q, Zou H, Dong J, Wang B, Tang Q, Li H, Chen X, Pu J, Gu B, Liu P. An on-Demand Oxygen Nano-vehicle Sensitizing Protein and Nucleic Acid Drug Augment Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409378. [PMID: 39840472 DOI: 10.1002/adma.202409378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Indexed: 01/23/2025]
Abstract
Hypoxia severely limits the antitumor immunotherapy for breast cancer. Although efforts to alleviate tumor hypoxia and drug delivery using diverse nanostructures achieve promising results, the creation of a versatile controllable oxygen-releasing nano-platform for co-delivery with immunostimulatory molecules remains a persistent challenge. To address this problem, a versatile oxygen controllable releasing vehicle PFOB@F127@PDA (PFPNPs) is developed, which effectively co-delivered either protein drug lactate oxidase (LOX) or nucleic acids drug unmethylated cytosine-phosphate-guanine oligonucleotide (CpG ODNs). Upon photothermal heating, this platform triggered oxygen release, thereby augmenting LOX-mediated lactate detection rates, and improving T cells infiltrating and cytokine expression. Moreover, under an oxygenated tumor microenvironment (TME), PFPNPs co-delivered with CpG ODNs effectively reprogrammed the immunosuppressive TME by repolarizing macrophages to an M1-like phenotype, promoting dendritic cells maturation, and increasing tumor-infiltrating T cells while decreasing the ratio of regulatory T cells (Tregs). Our study demonstrated that this controlled oxygen-releasing platform possessed adaptive drug-loading capabilities to meet varied immunotherapeutic demands in clinical settings.
Collapse
Affiliation(s)
- Sidi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- State Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, 201800, P. R. China
| | - Xinghui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Xiaojing Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Duohuo Shu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Quankun Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Hanbing Zou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jialin Dong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Qianyun Tang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- State Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, 201800, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Huishan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Xiaoxiang Chen
- Allergy Department Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jun Pu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Bin Gu
- Department of Urology, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, P. R. China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- State Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, 201800, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
4
|
Bigaj-Józefowska MJ, Zalewski T, Załęski K, Coy E, Frankowski M, Mrówczyński R, Grześkowiak BF. Three musketeers of PDA-based MRI contrasting and therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:321-333. [PMID: 38795050 DOI: 10.1080/21691401.2024.2356773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.
Collapse
Affiliation(s)
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Radosław Mrówczyński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
5
|
Yang Y, Mou Z, Liu Q, Wang B, Luo C, Xu Y, Huang Q, He B, Chang K, Wang G, You Z, Qian H. Sunflower Pollen-Derived Microspheres Selectively Absorb DNA for microRNA Detection. Chembiochem 2024; 25:e202400249. [PMID: 38819725 DOI: 10.1002/cbic.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Herein, we report the finding that a naturally sunflower pollen-derived microspheres (HSECs) with hierarchical structures can selectively absorb polyC and polyA with high efficiency and affinity. HSECs exhibit the capability to selectively absorb polyC and polyA ssDNA under neutral and acidic conditions. It has been observed that the presence of metal cations, specifically Ca2+, enhances the absorption efficiency of HSECs. Mechanically, this absorption phenomenon can be attributed to both electrostatic interactions and cation-π interactions. Such an appealing property enables the functionalization of HSECs for broad potential biomedical applications, such as microRNA detection.
Collapse
Affiliation(s)
- Yao Yang
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
| | - Ziye Mou
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| | - Qian Liu
- Laboratory of Pharmacy and Chemistry, Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
| | - Chenjing Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Yuhang Xu
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
| | - Qiuhong Huang
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| | - Binfeng He
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| | - Kai Chang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
| | - Zaichun You
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| |
Collapse
|
6
|
Xie W, Xue J, Chen R, Su H, Fang X, Wu Q, Yang W, Jia L. Extraction of Genomic DNA from Soil Samples by Polyethylene Glycol-Modified Magnetic Particles via Isopropanol Promotion and Ca 2+ Mediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20550-20558. [PMID: 39288013 DOI: 10.1021/acs.langmuir.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obtaining reliable and informative DNA data from soil samples is challenging due to the presence of interfering substances and typically low DNA yields. In this work, we prepared poly(ethylene glycol)-modified magnetic particles (PEG@Fe3O4) for DNA purification. The particles leverage the facilitative effect of calcium ions (Ca2+), which act as bridges between DNA and PEG@Fe3O4 by coordinating with the phosphate groups of DNA and the hydroxyl groups on the particles. The addition of 2-propanol further enhances this Ca2+-mediated DNA adsorption by inducing a conformational change from the B-form to the more compact A-form of DNA. PEG@Fe3O4 demonstrates a DNA adsorption capacity of 144.6 mg g-1. When applied to the extraction of genomic DNA from soil samples, PEG@Fe3O4 outperforms commercial kits and traditional phenol-chloroform extraction methods in terms of DNA yield and purity. Furthermore, we developed a 16-channel automated DNA extraction device to streamline the process and reduce the extraction time. The successful amplification of target bacterial and fungal amplicons underscores the potential of this automated, device-assisted method for studying soil microbial diversity.
Collapse
Affiliation(s)
- Wenting Xie
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jialiang Xue
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ruobo Chen
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huihui Su
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xun Fang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qingxi Wu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenjuan Yang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
7
|
Yang J, Su Q, Song C, Luo H, Jiang H, Ni M, Meng F. A comprehensive adsorption and desorption study on the interaction of DNA oligonucleotides with TiO 2 nanolayers. Phys Chem Chem Phys 2024; 26:22681-22695. [PMID: 39158972 DOI: 10.1039/d4cp02260b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The utilization of TiO2 nanolayers that possess excellent biocompatibility and physical properties in DNA sensing and sequencing remains largely to be explored. To examine their applicability in gene sequencing, a comprehensive study on the interaction of DNA oligonucleotides with TiO2 nanolayers was performed through adsorption and desorption experiments. TiO2 nanolayers with 10 nm thickness were fabricated via magnetron sputtering onto a 6-inch silicon wafer. A simple chip block method, validated via quartz crystal microbalance experiments with dissipation monitoring (QCM-D), was proposed to study the adsorption behaviors and interaction mechanisms under a variety of critical influencing factors, including DNA concentration, length, and type, adsorption time, pH, and metal ions. It is determined that the adsorption takes 2 h to reach saturation in the MES solution and the adsorption capacity is significantly enhanced by lowering the pH due to the isoelectric point being pH = 6 for TiO2. The adsorption percentages of nucleobases are largely similar in the MES solution while following 5T = 5G > 5C > 5A in HEPES buffer for an adsorption duration of 2.5 h. Through pre-adsorption experiments, it is deduced that DNA oligonucleotides are horizontally adsorbed on the nanolayer. This further demonstrates that mono-, di-, and tri-valent metal ions promote the adsorption, whereas Zn2+ has strong adsorption by inducing DNA condensation. Based on the desorption experiments, it is revealed that electrostatic force dominates the adsorption over van der Waals force and hydrogen bonds. The phosphate group is the main functional group for adsorption, and the adsorption strength increases with the length of the oligonucleotide. This study provides comprehensive data on the adsorption of DNA oligonucleotides onto TiO2 nanolayers and clarifies the interaction mechanisms therein, which will be valuable for applications of TiO2 in DNA-related applications.
Collapse
Affiliation(s)
- Jin Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- MGI Tech, Shenzhen 518083, China.
| | - Qiong Su
- MGI Tech, Shenzhen 518083, China.
| | | | | | | | - Ming Ni
- MGI Tech, Shenzhen 518083, China.
| | - Fanchao Meng
- Institute for Advanced Studies in Precision Materials, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
8
|
Yang W, Pu X, Xie W, Li L, Ding Z, Jia L. Isopropanol-promoted DNA extraction by polydopamine functionalized magnetic particles based on metal coordination. Talanta 2024; 275:126115. [PMID: 38663068 DOI: 10.1016/j.talanta.2024.126115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/30/2024]
Abstract
High-quality DNA is an important guarantee to start downstream experiments in many biological and medical research areas. Magnetic particle-based DNA extraction methods from blood mainly depend on electrostatic adsorption in a low-pH environment. However, the strong acidic environment can influence the DNA stability. Herein, a polydopamine-functionalized magnetic particle (PDA@Fe3O4)-based protocol was developed for DNA extraction from whole blood samples. In the protocol, Mg2+ and Ca2+ were utilized to bridge the adsorption of DNA by PDA@Fe3O4 via the metal-mediated coordination. Isopropanol was found to efficiently promote DNA adsorption by triggering the change of the conformation of DNA from B-form to more compact A-form. In 50 % isopropanol solution, the DNA adsorption efficiency was nearly 100 % in the presence of 0.5 mM Ca2+ or 1.5 mM Mg2+. The role of metal ions and isopropanol in DNA adsorption was explored. The protocol averts the strong acidic environment and PCR inhibitors, such as high concentrations of salt or polyethylene glycol. It demonstrates superiority in DNA yield (59.13 ± 3.63 ng μL-1) over the commercial kit (27.33 ± 4.98 ng μL-1) and phenol-chloroform methods (37.90 ± 0.47 ng μL-1). In addition, to simplify the operastion, an automated nucleic acid extraction device was designed and fabricated to extract whole genomic DNA from blood. The feasibility of the device was verified by extracting DNA from cattle and pig blood samples. The extracted DNA was successfully applied to discriminate the beef authenticity by a duplex PCR system. The results demonstrate that the DNA extraction protocol and the automated device have great potential in blood samples.
Collapse
Affiliation(s)
- Wenjuan Yang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoxiao Pu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wenting Xie
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ling Li
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zixuan Ding
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
9
|
Yang W, Feng L. Mg 2+-promoted high-efficiency DNA conjugation on polydopamine surfaces for aptamer-based ochratoxin A detection. Anal Chim Acta 2024; 1298:342382. [PMID: 38462338 DOI: 10.1016/j.aca.2024.342382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Surface immobilization of DNA is the foundation of a broad range of applications in biosensing and specific DNA extraction. Polydopamine (PDA) coatings can serve as intermediate layers to immobilize amino- or thiol-labelled molecules, including DNA, onto various materials through Michael addition and/or Schiff base reactions. However, the conjugation efficiency is limited by electrostatic repulsion between negatively charged DNA and PDA. Recently, it has been reported that polyvalent metal ions (such as Mg2+ and Ca2+) can mediate the adsorption of DNA on PDA surfaces. Inspired by this, in this work we aimed to exploit polyvalent metal ions to facilitate the conjugation of DNA on PDA. RESULTS Mg2+ was used to promote the conjugation of amino-terminated DNA complementary to ochratoxin A (OTA) aptamer (cDNA-NH2) on PDA-coated magnetic nanoparticles (Fe3O4@PDA). After the reaction, the unlinked cDNA-NH2 adsorbed on Fe3O4@PDA mediated by Mg2+ was removed with EDTA. In the presence of 20 mM Mg2+, the amount of covalently linked cDNA-NH2 increased approximately 11-fold compared to that in the absence of Mg2+. The resulting Fe3O4@PDA@cDNA conjugates exhibited superior hybridization capacity towards OTA aptamers, minimal nonspecific adsorption, and excellent chemical stability. The conjugates combined with fluorophore-labelled aptamers were employed for OTA detection, achieving a limit of detection (LOD) of 2.77 ng mL-1. To demonstrate versatility, this conjugation method was extended to Ca2+-promoted conjugation of cDNA-NH2 on Fe3O4@PDA nanoparticles and Mg2+-promoted conjugation of cDNA-NH2 on PDA-coated 96-well plates. SIGNIFICANCE The conjugation efficiency of DNA on PDA was significantly improved with the assistance of polyvalent metal ions (Mg2+ and Ca2+), providing a facile and efficient method for DNA immobilization. Due to the substrate-independent adhesion property of PDA, this method demonstrates versatility in DNA surface modification and holds great potential for applications in target extraction, biosensing, and other fields.
Collapse
Affiliation(s)
- Wei Yang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
10
|
Yang W, Ni L, Zhu M, Zhang X, Feng L. Mg 2+- or Ca 2+-regulated aptamer adsorption on polydopamine-coated magnetic nanoparticles for fluorescence detection of ochratoxin A. Mikrochim Acta 2024; 191:157. [PMID: 38409486 DOI: 10.1007/s00604-024-06252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
It has been observed that polyvalent metal ions can mediate the adsorption of DNA on polydopamine (PDA) surfaces. Exploiting this, we used two divalent metal ions (Mg2+ or Ca2+) to promote the adsorption of fluorescence-labelled ochratoxin A (OTA) aptamers on PDA-coated magnetic nanoparticles (Fe3O4@PDA). Based on the different adsorption affinities of free aptamers and OTA-bound aptamers, a facile assay method was established for OTA detection. The aptamers adsorbed on Fe3O4@PDA were removed via simple magnetic separation, and the remaining aptamers in the supernatant exhibited a positive correlation with the OTA concentration. The concentrations of Mg2+ and Ca2+ were finely tuned to attain the optimal adsorption affinity and sensitivity for OTA detection. In addition, other factors, including the Fe3O4@PDA dosage, pH, mixing order, and incubation time, were studied. Finally, under optimized conditions, a detection limit (3σ/s) of 1.26 ng/mL was achieved for OTA. Real samples of spiked red wine were analysed with this aptamer-based method. This is the first report of regulating aptamer adsorption on the PDA surface with polyvalent metal ions for OTA detection. By changing the aptamers, the method can be easily extended to other target analytes.
Collapse
Affiliation(s)
- Wei Yang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Lanxiu Ni
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Mingzhen Zhu
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
11
|
Fang Z, Lv B, Zhan J, Xing X, Ding C, Liu J, Wang L, Zou X, Qiu X. Flexible Conductive Decellularized Fish Skin Matrix as a Functional Scaffold for Myocardial Infarction Repair. Macromol Biosci 2023; 23:e2300207. [PMID: 37534715 DOI: 10.1002/mabi.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Engineering cardiac patches are proven to be effective in myocardial infarction (MI) repair, but it is still a tricky problem in tissue engineering to construct a scaffold with good biocompatibility, suitable mechanical properties, and solid structure. Herein, decellularized fish skin matrix is utilized with good biocompatibility to prepare a flexible conductive cardiac patch through polymerization of polydopamine (PDA) and polypyrrole (PPy). Compared with single modification, the double modification strategy facilitated the efficiency of pyrrole polymerization, so that the patch conductivity is improved. According to the results of experiments in vivo and in vitro, the scaffold can promote the maturation and functionalization of cardiomyocytes (CMs). It can also reduce the inflammatory response, increase local microcirculation, and reconstruct the conductive microenvironment in infarcted myocardia, thus improving the cardiac function of MI rats. In addition, the excellent flexibility of the scaffold, which enables it to be implanted in vivo through "folding-delivering-re-stretehing" pathway, provides the possibility of microoperation under endoscope, which avoids the secondary damage to myocardium by traditional thoracotomy for implantation surgery.
Collapse
Affiliation(s)
- Zhanhong Fang
- The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528244, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bingyang Lv
- The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528244, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiamian Zhan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xianglong Xing
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chengbin Ding
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianing Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoming Zou
- The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528244, China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
12
|
Wu F, Qiang S, Zhu XD, Jiao W, Liu L, Yu J, Liu YT, Ding B. Fibrous MXene Aerogels with Tunable Pore Structures for High-Efficiency Desalination of Contaminated Seawater. NANO-MICRO LETTERS 2023; 15:71. [PMID: 36943557 PMCID: PMC10030714 DOI: 10.1007/s40820-023-01030-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 05/25/2023]
Abstract
The seawater desalination based on solar-driven interfacial evaporation has emerged as a promising technique to alleviate the global crisis on freshwater shortage. However, achieving high desalination performance on actual, oil-contaminated seawater remains a critical challenge, because the transport channels and evaporation interfaces of the current solar evaporators are easily blocked by the oil slicks, resulting in undermined evaporation rate and conversion efficiency. Herein, we propose a facile strategy for fabricating a modularized solar evaporator based on flexible MXene aerogels with arbitrarily tunable, highly ordered cellular/lamellar pore structures for high-efficiency oil interception and desalination. The core design is the creation of 1D fibrous MXenes with sufficiently large aspect ratios, whose superior flexibility and plentiful link forms lay the basis for controllable 3D assembly into more complicated pore structures. The cellular pore structure is responsible for effective contaminants rejection due to the multi-sieving effect achieved by the omnipresent, isotropic wall apertures together with underwater superhydrophobicity, while the lamellar pore structure is favorable for rapid evaporation due to the presence of continuous, large-area evaporation channels. The modularized solar evaporator delivers the best evaporation rate (1.48 kg m-2 h-1) and conversion efficiency (92.08%) among all MXene-based desalination materials on oil-contaminated seawater.
Collapse
Affiliation(s)
- Fan Wu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Siyu Qiang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiao-Dong Zhu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, People's Republic of China
| | - Wenling Jiao
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Lifang Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| |
Collapse
|
13
|
He L, Shang M, Chen Z, Yang Z. Metal-Organic Frameworks Nanocarriers for Functional Nucleic Acid Delivery in Biomedical Applications. CHEM REC 2023:e202300018. [PMID: 36912736 DOI: 10.1002/tcr.202300018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Indexed: 03/14/2023]
Abstract
Metal-organic frameworks (MOFs), a distinctive funtionalmaterials which is constructed by various metal ions and organic molecules, have gradually attracted researchers' attention from they were founded. In the last decade, MOFs emerge as a biomedical material with potential applications due to their unique properties. However, the MOFs performed as nanocarriers for functional nucleic acid delivery in biomedical applications rarely summarized. In this review, we introduce recent developments of MOFs for nucleic acid delivery in various biologically relevant applications, with special emphasis on cancer therapy (including siRNA, ASO, DNAzyme, miRNA and CpG oligodeoxynucleotides), bioimaging, biosensors and separation of biomolecules. We expect the accomplishment of this review could benefit certain researchers in biomedical field to develop novel sophisticated nanocarriers for functional nucleic acid delivery based on the promising material of MOFs.
Collapse
Affiliation(s)
- Li He
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mengdi Shang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhongkai Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
14
|
Yuan Q, Liang Z, Wang S, Zuo P, Wang Y, Luo Y. Size-controlled mesoporous magnetic silica beads effectively extract extracellular DNA in the absence of chaotropic solutions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Zandieh M, Patel K, Liu J. Adsorption of Linear and Spherical DNA Oligonucleotides onto Microplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1915-1922. [PMID: 35094514 DOI: 10.1021/acs.langmuir.1c03190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastic pollution of water and food chains can endanger human health. It has been reported that environmental DNA can be carried by microplastics and spread into the ecosystem. To better comprehend the interactions between microplastics and DNA, we herein investigated the adsorption of DNA oligonucleotides on a few important microplastics. The microplastics were prepared using common plastic objects made of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), composite of PS/PVC, and polyethylene terephthalate (PET). The effect of environmentally abundant metal ions such as Na+, Mg2+, and Ca2+ on the adsorption was also studied. Among the microplastics, PET and PS had the highest efficiency for the adsorption of linear DNA, likely due to the interactions provided by their aromatic rings. The study of DNA desorption from PET revealed the important role of hydrogen bonding and metal-mediated adsorption, while van der Waals force and hydrophobic interactions were also involved in the adsorption mechanism. The adsorption of spherical DNA (SNA) made of a high density of DNA coated on gold nanoparticles (AuNPs) was also studied, where the adsorption affinity order was found to be PET > PS/PVC > PS. Moreover, a tighter DNA adsorption was achieved in the presence of Ca2+ and Mg2+ compared to Na+.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo, Ontario N2L 3G1, Canada
| | - Kshiti Patel
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
16
|
Shi J, Yang Y, Yin N, Liu C, Zhao Y, Cheng H, Zhou T, Zhang Z, Zhang K. Engineering CXCL12 Biomimetic Decoy-Integrated Versatile Immunosuppressive Nanoparticle for Ischemic Stroke Therapy with Management of Overactivated Brain Immune Microenvironment. SMALL METHODS 2022; 6:e2101158. [PMID: 35041278 DOI: 10.1002/smtd.202101158] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Following ischemic stroke, brain-resident activated microglia and peripherally infiltrated inflammatory cells create a complicated and overactivated brain immune microenvironment, which causes neuron death and dramatically hinders neurological functional recovery. Herein, an engineering CXCL12 biomimetic decoy-integrated versatile immunosuppressive nanoparticle (VIN) for management of the overactivated brain immune microenvironment is reported. The shell of VIN (membrane of CXCR4 overexpressed mesenchymal stem cells), can not only improve the homing of nanoparticles to the cerebral ischemic lesions, but also efficiently adsorb and neutralize CXCL12 to cut off infiltration of peripheral-neutrophils and mononuclear macrophages. The loaded A151 (cGAS inhibitor, telomerase repeat sequences) can inhibit cGAS-STING pathway in microglia, leading to microglia polarization toward an anti-inflammatory M2-like phenotype. Interestingly, A151 can be efficiently loaded onto the polydopamine nanospheres (PDA, the core of VIN) through the bridge of Zn2+ . In the inflammatory site, PDA is oxidized by reactive oxygen species (ROS), with the disappearance of Zn2+ complexation effect, and then A151 realizes a controlled release. In a model of rat ischemic stroke, VIN integrates inflammation tropism, peripherally inflammatory cells filtrate, brain-resident activated microglia polarization, as well as, ROS scavenging, exerting outstanding therapeutic effects on ameliorating the mortality, reducing the infarct volume, and protecting neurogenic functions of neurons.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Changhua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tonghai Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
17
|
Jouha J, Xiong H. DNAzyme-Functionalized Nanomaterials: Recent Preparation, Current Applications, and Future Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105439. [PMID: 34802181 DOI: 10.1002/smll.202105439] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
DNAzyme-nanomaterial bioconjugates are a popular hybrid and have received major attention for diverse biomedical applications, such as bioimaging, biosensor development, cancer therapy, and drug delivery. Therefore, significant efforts are made to develop different strategies for the preparation of inorganic and organic nanoparticles (NPs) with specific morphologies and properties. DNAzymes functionalized with metal-organic frameworks (MOFs), gold nanoparticles (AuNPs), graphene oxide (GO), and molybdenum disulfide (MoS2 ) are introduced and summarized in detail in this review. Moreover, the focus is on representative examples of applications of DNAzyme-nanomaterials over recent years, especially in bioimaging, biosensing, phototherapy, and stimulation response delivery in living systems, with their several advantages and drawbacks. Finally, the perspective regarding the future directions of research addressing these challenges is also discussed and highlighted.
Collapse
Affiliation(s)
- Jabrane Jouha
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
18
|
Deng X, Liu X, Wu S, Zang S, Lin X, Zhao Y, Duan C. Ratiometric Fluorescence Imaging of Intracellular MicroRNA with NIR-Assisted Signal Amplification by a Ru-SiO 2@Polydopamine Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45214-45223. [PMID: 34524789 DOI: 10.1021/acsami.1c11324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate and sensitive fluorescence imaging of intracellular miRNA is essential for understanding the mechanism underlying some physiological and pathological events, as well as the prevention and diagnosis of diseases. Herein, a highly sensitive ratiometric fluorescent nanoprobe for intracellular miRNA imaging was fabricated by integrating a Ru-SiO2@polydopamine (Ru-SiO2@PDA) nanoplatform with a near-infrared light (NIR)-assisted DNA strand displacement signal amplification strategy. The Ru-SiO2@PDA spheres have excellent biosafety, high photothermal effect, and unique photophysical properties that can both emit a stable red fluorescence and well quench the fluorophores getting closer to them. So, when the fuel DNA and carboxyfluorescein (FAM)-labeled signal DNA are co-assembled on their outer surfaces, the FAM's green fluorescence is quenched, and a low ratiometric signal is obtained. However, in the presence of miRNA, the target displaces the signal DNA from the capture DNA, releasing the signal DNA far away from the Ru-SiO2@PDA. Then, the green fluorescence recovers and leads to an enhanced Igreen/Ired value. Under NIR light irradiation, the Ru-SiO2@PDA increases the local temperature around the probe and triggers the release of fuel DNA, which thus recycles the target miRNA and effectively amplifies the ratiometric signal. Using A549 cells as a model, the nanoprobe realizes the highly sensitive ratiometric fluorescence imaging of miRNA let-7a, as well as its in vivo up- and down-regulation expressions. It provides a facile tool for highly sensitive and accurate intracellular miRNA detection through one-step incubation and may pave a new avenue for single-cell analysis.
Collapse
Affiliation(s)
- Xunxun Deng
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
- Zhangdayu School of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xiaobo Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shuo Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shiyu Zang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xiaotong Lin
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yanqiu Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Chunying Duan
- Zhangdayu School of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
19
|
Zandieh M, Liu J. Metal-Doped Polydopamine Nanoparticles for Highly Robust and Efficient DNA Adsorption and Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8953-8960. [PMID: 34309391 DOI: 10.1021/acs.langmuir.1c00783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling DNA adsorption on nanomaterials is crucial for a wide range of applications in analytical and biomedical sciences. Polydopamine (PDA) is a versatile material that can be coated on nearly any surface, and thus adsorbing DNA onto PDA can be a general method for indirect DNA functionalization of surfaces. Polyvalent metal ions were reported to promote DNA adsorption on PDA nanoparticles (NPs), but previous works added the metal ions after the formation of PDA. Herein, we compared the effect of polyvalent metal ions added during the synthesis of PDA NPs (called metal-doped) with the effect of polyvalent metal ions added after the synthesis (metal-adsorbed). A series of metal ions including Ca2+, Zn2+, Ni2+, Fe3+, and Gd3+ were tested, and Zn2+ was studied in detail due to its excellent ability for promoting DNA adsorption. With 100 μM Zn2+, metal-doped NPs were ∼30% more efficient than metal-adsorbed NPs for DNA adsorption in buffer attributable to a higher metal loading on the surface of the metal-doped NPs. Metal leaching was negligible from the metal-doped NPs, and they showed a remarkably higher robustness than the metal-adsorbed NPs, resulting in a 20-fold higher DNA extraction efficiency from serum. Based on the desorption studies, a higher adsorption affinity for the metal-doped NPs was confirmed. Finally, the Zn2+-doped PDA NPs were used for sensitive DNA detection with a limit of detection of 0.45 nM, and the sensor was highly resistant to nonspecific protein and phosphate displacement.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
20
|
A new strategy for the development of efficient impedimetric tobramycin aptasensors with metallo-covalent organic frameworks (MCOFs). Food Chem 2021; 366:130575. [PMID: 34293546 DOI: 10.1016/j.foodchem.2021.130575] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Two bimetallic CoNi-based metallo-covalent organic frameworks (MCOFs) were prepared and explored as the sensitive platforms of impedimetric aptasensors for efficient detection of tobramycin (TOB). The two CoNi-MCOFs were constructed using metallophthalocyanine tetra-amine (MPc-TA, M = Co2+ or Ni2+) and 4,4'-(1,10-phen-anthroline-2,9-diyl) dibenzaldehyde (PTD) as building units and further coordinating to the secondary metal ions (Ni2+ or Co2+) by phenanthroline. Interestingly, the immobilization ability of CoPc-TA-PTD(Ni) to TOB-targeted aptamer is higher than that of NiPc-TA-PTD(Co) due to its stronger binding interactions to aptamer. As a result, the CoPc-TA-PTD(Ni)-based aptasensor shows the superior TOB detection ability, giving a low detection limit of 0.07 fg mL-1 and satisfied sensing performances, such as high selectivity, good reproducibility, and excellent stability. Also, the aptasensor shows the acceptable applicability for detecting TOB in milk or chicken egg. This MCOFs-based sensing strategy could be extensively applied to detect other analytes by anchoring the corresponding probes.
Collapse
|
21
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zandieh M, Liu J. Spherical Nucleic Acid Mediated Functionalization of Polydopamine-Coated Nanoparticles for Selective DNA Extraction and Detection. Bioconjug Chem 2021; 32:801-809. [PMID: 33711232 DOI: 10.1021/acs.bioconjchem.1c00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic nanoparticles have been widely used for the separation of biomolecules for biological applications due to the mild and efficient separation process. In previous studies, core-shell magnetic nanoparticles (NPs) were designed for DNA extraction without much sequence specificity. In this work, to achieve highly selective DNA extraction, we designed a core-shell magnetic structure by coating polydopamine (PDA) on Fe3O4 NPs. Without divalent metal ions, PDA does not adsorb DNA at neutral pH. The Fe3O4@PDA NPs were then functionalized with spherical nucleic acids (SNA) to provide a high density of probe DNA. Fe3O4@PDA@SNA was also compared with when a linear SH-DNA was covalently attached to the NPs surface, showing a higher density of the probe SNA than SH-DNA can be loaded on the NPs in a remarkably shorter time. Nonspecific DNA extraction was thoroughly inhibited by both probes. DNA extraction by the Fe3O4@PDA@SNA was more effective as well as 5-fold faster than by the Fe3O4@PDA@SH-DNA, probably due to the favorable standing conformation of DNA strands in SNA. Moreover, extraction by Fe3O4@PDA@SNA showed high robustness in fetal bovine serum, and the same design can be used for selective detection of DNA. Finally, the method was also demonstrated on silica NPs and WS2 nanosheets for coating with PDA and SNA. Altogether, our findings revealed an interesting and general surface modification strategy using PDA@SNA conjugates for sequence-specific DNA extraction.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
23
|
Tan X, Ge L, Zhang T, Lu Z. Preservation of DNA for data storage. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The preservation of DNA has attracted significant interest of scientists in diverse research fields from ancient biological remains to the information field. In light of the different DNA safekeeping requirements (e.g., storage time, storage conditions) in these disparate fields, scientists have proposed distinct methods to maintain the DNA integrity. Specifically, DNA data storage is an emerging research, which means that the binary digital information is converted to the sequences of nucleotides leading to dense and durable data storage in the form of synthesized DNA. The intact preservation of DNA plays a significant role because it is closely related to data integrity. This review discusses DNA preservation methods, aiming to confirm an appropriate one for synthetic oligonucleotides in DNA data storage. First, we analyze the impact factors of the DNA long-term storage, including the intrinsic stability of DNA, environmental factors, and storage methods. Then, the benefits and disadvantages of diverse conservation approaches (e.g., encapsulation-free, chemical encapsulation) are discussed. Finally, we provide advice for storing non-genetic information in DNA in vitro. We expect these preservation suggestions to promote further research that may extend the DNA storage time.
The bibliography includes 99 references.
Collapse
|
24
|
Wang Z, Huang Z, Han J, Xie G, Liu J. Polyvalent Metal Ion Promoted Adsorption of DNA Oligonucleotides by Montmorillonite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1037-1044. [PMID: 33435677 DOI: 10.1021/acs.langmuir.0c02529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Montmorillonite (MMT) is a two-dimensional (2D) clay material. Its abundance on the early earth has attracted studies for its role in prebiotic reactions, and adsorption of DNA to MMT is potentially important for understanding the origin of life. Although several possible models of DNA adsorption on MMT have been established, a consensus on the adsorption mechanism has yet to be formed, thereby a fundamental adsorption study is performed here. Adding up to 300 mM NaCl failed to promote DNA adsorption on MMT, Al2O3, or SiO2 nanoparticles. For polyvalent metals, DNA adsorption was achieved following the order Ce3+ > Cu2+ > Ni2+ > Zn2+. Among them, Ce3+ and Cu2+ inverted the surface charge of MMT to positive. In addition, using washing experiments, Cu2+- and Ce3+-mediated adsorption mainly depended on the DNA phosphate backbone, while Ni2+ and Zn2+ interacted with the backbone phosphate groups and adenine bases of DNA. Overall, these polyvalent metal ions promoted DNA adsorption via a cation bridge model. This research provides new insights into the surface interactions of MMT and DNA, which is conducive to future work on the interaction between clays and biopolymers.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Zandieh M, Liu J. Cooperative Metal Ion-Mediated Adsorption of Spherical Nucleic Acids with a Large Hysteresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14324-14332. [PMID: 33201706 DOI: 10.1021/acs.langmuir.0c02677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spherical nucleic acids (SNA) refer to nanoparticles attached with a high density of oligonuleotides. Linear and spherical nucleic acids have many differences such as hybridization affinity, melting transition, and cellular uptake. In this work, these two types of DNA of the same sequence were compared for adsorption on polydopamine (PDA) nanoparticles and graphene oxide (GO). We focused on the effect of metal ions including Na+, Ca2+, and Zn2+ since metal ions are indispensible for DNA adsorption on PDA and GO. Gold nanoparticles (AuNPs) of various sizes were used to prepare the SNAs. For both PDA and GO, a normal binding curve of one metal ion was obtained for adsorbing the linear DNA, while the spherical DNAs larger than 5 nm showed a sigmoidal binding curve requiring multiple metal ions. Urea and EDTA were used to probe DNA adsorption affinity, where the spherical DNA showed stronger adsorption in general. In the presence of 300 mM Na+, 4 M urea or 4 mM EDTA failed to desorb the 13 nm spherical DNA. The spherical DNA showed a very large hysteresis of metal-dependent adsorption. This study demonstrates another unique property of SNA compared to linear DNA, revealing interesting orientation and packing of DNA on AuNPs, which has deepened our understanding of DNA interface chemistry.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
26
|
Kushalkar MP, Liu B, Liu J. Promoting DNA Adsorption by Acids and Polyvalent Cations: Beyond Charge Screening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11183-11195. [PMID: 32881531 DOI: 10.1021/acs.langmuir.0c02122] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adsorbing DNA oligonucleotides onto nanoparticles is the first step in developing DNA-based biosensors, drug delivery systems, and smart materials. Since DNA is a polyanion, it is repelled by negatively charged nanoparticles, which constitute the majority of commonly used nanomaterials. Adding salt such as NaCl to screen charge repulsion is a standard method of promoting DNA adsorption. However, Na+ does not supply additional attractive forces. In addition, adding a high concentration of NaCl can cause the aggregation of nanomaterials. In this feature article, we mainly summarize the methods developed in our laboratory to promote DNA adsorption by lowering the pH and by adding polyvalent metal ions, especially transition-metal ions. Various materials including noble metals (gold, silver, and platinum), 2D materials (graphene oxide, MoS2, WS2, and MXene), polydopamine, and several metal oxides are discussed. In general, low pH can protonate DNA bases and nanoparticle surfaces, reducing charge repulsion and even leading to attraction, although DNA folding at low pH can sometimes be detrimental to adsorption. Polyvalent metal ions can bridge additional interactions to achieve otherwise impossible adsorption. On the basis of the current understanding, a few future research directions are proposed to further improve DNA adsorption.
Collapse
Affiliation(s)
- Mehal P Kushalkar
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|