1
|
Trinh TE, Ku K, Yeo H. Thermal Conductivity in Side-Chain Liquid-Crystal Epoxy Polymers: Influence of Mesogen Structure. Macromol Rapid Commun 2025; 46:e2400762. [PMID: 39648300 DOI: 10.1002/marc.202400762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Side-chain liquid-crystal epoxy polymers (SCLCEPs) are valued for their unique properties, which combine LC side chains with epoxide-based polyether main chains for ordered molecular arrangements. They have high thermal conductivity and optical properties due to their low polydispersity and high crystallinity. Achieving optimal thermal conductivity in SCLCEPs involves addressing factors such as mesogen nature, polymer design, and alignment within the polymer structure. Balancing these factors enhances their suitability for heat dissipation in advanced materials. In this study, SCLCEPs with a polyethylene glycol backbone and laterally arranged mesogens are synthesized via anionic ring opening of mesogenic epoxides with unique LC phases. These monomers, which feature biphenyl mesogens attached to glycidyloxy ether and different alkyl chain lengths on the other side, is designed to facilitate mesogen self-assembly and interaction. The resulting polymers exhibited higher crystallinity and LC phases than the monomers. Notably, because of their LC nature, their thermal conductivity exceeds 0.48 W·m-1 K-1 and increases with shortened alkyl chain lengths, reaching 0.57 W·m-1 K-1. This research expands the applications of SCLCEPs in advanced fields requiring enhanced thermal properties.
Collapse
Affiliation(s)
- Thi En Trinh
- Department of Science Education, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyosun Ku
- Advanced Institute of Water Industry, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Hyeonuk Yeo
- Department of Science Education, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
- Department of Chemistry Education, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
- School of Applied Chemical Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| |
Collapse
|
2
|
Money J, Munguia-Fernández JG, Norouzi S, Esmaeili M, Martínez-González JA, Sadati M. Photonic features of blue phase liquid crystals under curved confinement. Chem Commun (Camb) 2023; 59:12231-12247. [PMID: 37750291 DOI: 10.1039/d3cc03284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Blue phase (BP) liquid crystals represent a fascinating state of soft matter that showcases unique optical and electro-optical properties. Existing between chiral nematic and isotropic phases, BPs are characterized by a three-dimensional cubic lattice structure resulting in selective Bragg reflections of light and consequent vivid structural colors. However, the practical realization of these material systems is hampered by their narrow thermal stability and multi-domain crystalline nature. This feature article provides an overview of the efforts devoted to stabilizing these phases and creating monodomain structures. In particular, it delves into the complex relationship between geometrical confinement, induced curvature, and the structural stability and photonic features of BPs. Understanding the interaction of curved confinement and structural stability of BPs proves crucially important for the integration of these materials into flexible and miniaturized devices. By shedding light on these critical aspects, this feature review aims to highlight the significance of understanding the coupling effects of physical and mechanical forces on the structural stability of these systems, which can pave the way for the development of efficient and practical devices based on BP liquid crystals.
Collapse
Affiliation(s)
- Jeremy Money
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| | - Juan G Munguia-Fernández
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78210, SLP, México
| | - Sepideh Norouzi
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| | - Mohsen Esmaeili
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| | - José A Martínez-González
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78210, SLP, México
| | - Monirosadat Sadati
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
3
|
Wang T, Zhao J, Wu L, Liu W, Li Y, Yang Y. Polymer-Stabilized Cholesteric Liquid Crystal Films with Double Reflection Bands Prepared Based on the Competition between Photopolymerization and Photoisomerization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44314-44321. [PMID: 37674445 DOI: 10.1021/acsami.3c09576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Composite colors have been widely found in nature. Herein, polymer-stabilized cholesteric liquid crystal (PSCLC) films with composite structural colors were prepared through a one-step photopolymerization approach. The CLC mixtures were prepared using a mixture of acrylates and a mixture of two chiral dopants. One of the chiral dopants is polymerizable, and the other one is photoisomerizable. After photopolymerization, the PSCLC films with double Bragg reflection bands were obtained on the surface of a substrate. The competition between the photopolymerization of the acrylates and the photoisomerization of the chiral dopant was proposed to drive the formation of the double reflection bands. Without oxygen inhibition, the polymerization of the acrylates near the substrate surface was carried out. However, due to oxygen inhibition, the polymerization of the acrylates near the air was retarded. Then, the photoisomerization of the chiral dopant was carried out prior to the polymerization of the acrylates. The wavelengths of the double reflection bands were tunable by changing the concentrations of the acrylates and chiral dopants and the polymerization temperature. Colorful patterns with composite structural colors were prepared, which were suitable for decoration and anti-counterfeiting.
Collapse
Affiliation(s)
- Tingting Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jinghua Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Limin Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, P. R. China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Wei W, Xiong H. Liquid-Crystalline Polymers: Molecular Engineering, Hierarchical Structures, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11514-11520. [PMID: 36103648 DOI: 10.1021/acs.langmuir.2c01768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid-crystalline polymers (LCPs) are a unique class of soft materials that combine liquid crystal and polymer characteristics. This perspective highlights recent advances of LCPs on the aspects of molecular engineering, hierarchical structures, and emerging applications. The strategy of sequence control in polymer synthesis has been introduced to tailor the primary structures of LCPs as well as their phases and orders. By incorporating mesogenic motifs rich in shape, order, and interaction into LCPs, novel bulk and interfacial structures on hierarchical scales are anticipated. The intrinsic features and fascinating properties of LCPs enable them to find potential applications in emerging areas including integrated circuits, lasing, environment, and energy, implying compelling opportunities for LCPs in fundamental science and transformative technologies.
Collapse
|
5
|
Miao T, Cheng X, Qian Y, Zhuang Y, Zhang W. Engineering Achiral Liquid Crystalline Polymers for Chiral Self-Recovery. Int J Mol Sci 2021; 22:11980. [PMID: 34769412 PMCID: PMC8584346 DOI: 10.3390/ijms222111980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/30/2023] Open
Abstract
Flexible construction of permanently stored supramolecular chirality with stimulus-responsiveness remains a big challenge. Herein, we describe an efficient method to realize the transfer and storage of chirality in intrinsically achiral films of a side-chain polymeric liquid crystal system by combining chiral doping and cross-linking strategy. Even the helical structure was destroyed by UV light irradiation, the memorized chiral information in the covalent network enabled complete self-recovery of the original chiral superstructure. These results allowed the building of a novel chiroptical switch without any additional chiral source in multiple types of liquid crystal polymers, which may be one of the competitive candidates for use in stimulus-responsive chiro-optical devices.
Collapse
Affiliation(s)
| | | | | | | | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (T.M.); (X.C.); (Y.Q.); (Y.Z.)
| |
Collapse
|
6
|
Wei W, Farooq MA, Xiong H. Cholesteric Liquid Crystalline Polyether with Broad Tunable Circularly Polarized Luminescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11922-11930. [PMID: 34601879 DOI: 10.1021/acs.langmuir.1c02144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strong circularly polarized luminescence (CPL) with high purity and broad tunability was achieved in a new type of polyether-based cholesteric liquid crystalline (CLC) copolymers comprising chiral cholesteryl, nematic mesogens, and cross-linkable moieties. The phase boundary diagram of the copolymers was constructed, wherein the CLC phase in a wide composition and temperature window down to room temperature was achieved. Furthermore, reflection colors across the infrared and visible light regions can be continuously tuned by altering composition or temperature, which can be further fixed in the flexible CLC elastomer by photo-cross-linking. Introducing achiral dyes in the CLC thin films can generate strong CPL with distinct handedness and high dissymmetry factors (glum). Particularly, the left-handed full-color CPL is obtained by selective circularly polarized scattering in the spectral region outside the band gap of the CLC thin film, and the right-handed CPL with glum up to -1.05 is achieved within the band gap of the CLC thin film following the selective circularly polarized reflection mechanism. This type of CPL active material is expected to have potential applications in liquid crystal display and photonics.
Collapse
Affiliation(s)
- Wei Wei
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Muhammad Amjad Farooq
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huiming Xiong
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Center for Soft Matter and Interdisciplinary Sciences, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Sichuan Research Institute, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Song L, Wei W, Farooq MA, Xiong H. Quasi-Living Copolymerization of Aryl Isocyanates and Epoxides. ACS Macro Lett 2020; 9:1542-1546. [PMID: 35617080 DOI: 10.1021/acsmacrolett.0c00696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nontraditional polyurethane (PU) has been successfully synthesized by anionic copolymerization of some typical aryl isocyanates and epoxides with ammonium halide onium salt (Lewis base) as the initiator and triisobutylaluminum (Lewis acid) as the activator and the synergistic coordinator. In contrast to the traditional step-growth approach, this chain-growth copolymerization can maintain the anionic propagation site and exhibit some living features with a high activity, by which the copolymers synthesized have narrow molecular weight distributions and discrete end groups. The copolymer is primarily constituted by a urethane linkage, and the byproducts of isocyanurate trimer and oxazolidinone can be effectively suppressed as the polymerization proceeds. Density functional theory (DFT) calculations were also performed to support the proposed reaction mechanism.
Collapse
Affiliation(s)
- Lidao Song
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Wei Wei
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Muhammad Amjad Farooq
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Huiming Xiong
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- Center for Soft Matter and Interdisciplinary Sciences, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
8
|
Cheng X, Miao T, Qian Y, Zhang Z, Zhang W, Zhu X. Supramolecular Chirality in Azobenzene-Containing Polymer System: Traditional Postpolymerization Self-Assembly Versus In Situ Supramolecular Self-Assembly Strategy. Int J Mol Sci 2020; 21:E6186. [PMID: 32867119 PMCID: PMC7503415 DOI: 10.3390/ijms21176186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023] Open
Abstract
Recently, the design of novel supramolecular chiral materials has received a great deal of attention due to rapid developments in the fields of supramolecular chemistry and molecular self-assembly. Supramolecular chirality has been widely introduced to polymers containing photoresponsive azobenzene groups. On the one hand, supramolecular chiral structures of azobenzene-containing polymers (Azo-polymers) can be produced by nonsymmetric arrangement of Azo units through noncovalent interactions. On the other hand, the reversibility of the photoisomerization also allows for the control of the supramolecular organization of the Azo moieties within polymer structures. The construction of supramolecular chirality in Azo-polymeric self-assembled system is highly important for further developments in this field from both academic and practical points of view. The postpolymerization self-assembly strategy is one of the traditional strategies for mainly constructing supramolecular chirality in Azo-polymers. The in situ supramolecular self-assembly mediated by polymerization-induced self-assembly (PISA) is a facile one-pot approach for the construction of well-defined supramolecular chirality during polymerization process. In this review, we focus on a discussion of supramolecular chirality of Azo-polymer systems constructed by traditional postpolymerization self-assembly and PISA-mediated in situ supramolecular self-assembly. Furthermore, we will also summarize the basic concepts, seminal studies, recent trends, and perspectives in the constructions and applications of supramolecular chirality based on Azo-polymers with the hope to advance the development of supramolecular chirality in chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (X.C.); (T.M.); (Y.Q.); (Z.Z.); (X.Z.)
| | | |
Collapse
|