1
|
Matsuda Y, Ishizaki T, Uto T, Onoda I, Wong RW, Takahashi K, Hirata E, Kuroda K. Dual-Functionalized Zwitterionic Polymers for Cell Cryopreservation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3888-3894. [PMID: 39924883 DOI: 10.1021/acs.langmuir.4c04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Cryopreservation is an essential technique for the long-term preservation of cells. Some cells are challenging to cryopreserve, and novel cryoprotective agents are required. We previously reported a zwitterionic polymer (poly(ZI)) as a cryoprotectant that forms a polymer matrix surrounding the cells and partially prevents intracellular ice formation. In this study, we developed a novel zwitterionic copolymer (poly(ZI-C16)) with an improved cryoprotective ability. Poly(ZI-C16) contains long alkyl chains, which enable poly(ZI-C16) to anchor to the cell surface and consequently strengthen the polymer matrix. In addition, because poly(ZI-C16) is cationic, it enters cells and directly prevents intracellular ice formation. Due to its dual functions, poly(ZI-C16) demonstrated a higher cryoprotective effect than the original poly(ZI). This molecular design for dual functionalization provides an efficient approach to cryopreservation.
Collapse
Affiliation(s)
- Yuya Matsuda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeru Ishizaki
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takuya Uto
- Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen Kibanadai, Miyazaki 889-2192, Japan
| | - Issei Onoda
- Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen Kibanadai, Miyazaki 889-2192, Japan
| | - Richard W Wong
- Nano Life Science Institute of Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Eishu Hirata
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kosuke Kuroda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- NanoMaterials Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Sakata M, Imaizumi Y, Iwasawa T, Kato K, Goda T. Semiconductor Transistor-Based Detection of Epithelial-Mesenchymal Transition via Weak Acid-Induced Proton Perturbation. ACS Biomater Sci Eng 2025; 11:586-594. [PMID: 39663573 DOI: 10.1021/acsbiomaterials.4c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Developing new detection methods for the epithelial-mesenchymal transition (EMT), where epithelial cells acquire mesenchymal traits, is crucial for understanding tissue development, cancer invasion, and metastasis. Conventional in vitro EMT evaluation methods like permeability measurements are time-consuming and low-throughput, while the transepithelial electrical resistance measurements struggle to differentiate between cell membrane damage and tight junction (TJ) loss and are affected by cell proliferation. In this study, we developed a pH perturbation method to detect TJ barrier disruption during epithelial EMT by sensing proton leakage induced by a weak acid using a pH-responsive semiconductor. Mardin-Darby canine kidney (MDCK) epithelial cell sheets cultured on an ion-sensitive field effect transistor's gate insulator were induced into EMT by exposure to the cytokine transforming growth factor-β1 (TGF-β). Our pH perturbation method successfully detected EMT in MDCK sheets at a TGF-β concentration one-tenth of that required for conventional methods. The high sensitivity and selectivity arise from using minimal protons as indicators of TJ barrier disruption. TGF-β-induced EMT detection results using our method align with EMT-related gene and protein expression data. In drug screening with EMT inhibitors, this novel method showed similar trends to conventional ones. The pH perturbation method enables highly sensitive, real-time EMT detection, contributing to elucidating biological phenomena and pharmaceutical development.
Collapse
Affiliation(s)
- Momoko Sakata
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Biomedical Engineering Center, Toyo University, 48-1 Oka, Asaka, Saitama 351-8510, Japan
| | - Yuki Imaizumi
- Biomedical Engineering Center, Toyo University, 48-1 Oka, Asaka, Saitama 351-8510, Japan
| | - Takumi Iwasawa
- Institute of Life Innovation Studies, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo 115-8650, Japan
| | - Kazunori Kato
- Biomedical Engineering Center, Toyo University, 48-1 Oka, Asaka, Saitama 351-8510, Japan
- Institute of Life Innovation Studies, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo 115-8650, Japan
| | - Tatsuro Goda
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Biomedical Engineering Center, Toyo University, 48-1 Oka, Asaka, Saitama 351-8510, Japan
| |
Collapse
|
3
|
Kato Y, Uto T, Ishizaki T, Tanaka D, Ishibashi K, Matsuda Y, Onoda I, Kobayashi A, Hazawa M, Wong RW, Takahashi K, Hirata E, Kuroda K. Optimization of Zwitterionic Polymers for Cell Cryopreservation. Macromol Biosci 2024; 24:e2300499. [PMID: 38329319 DOI: 10.1002/mabi.202300499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Cryopreservation techniques are valuable for the preservation of genetic properties in cells, and the development of this technology contributes to various fields. In a previous study, an isotonic freezing medium composed of poly(zwitterion) (polyZI) has been reported, which alleviates osmotic shock, unlike typical hypertonic freezing media. In this study, the primitive freezing medium composed of emerging polyZI is optimized. Imidazolium/carboxylate-type polyZI (VimC3C) is the optimal chemical structure. The molecular weight and degree of ion substitution (DSion) are not significant factors. There is an impediment with the primitive polyZI freezing media. While the polyZI forms a matrix around the cell membrane to protect cells, the matrix is difficult to remove after thawing, resulting in low cell proliferation. Unexpectedly, increasing the poly(VimC3C) concentration from 10% to 20% (w/v) improves cell proliferation. The optimized freezing medium, 20% (w/v) poly(VimC3C)_DSion(100%)/1% (w/v) NaCl aqueous solution, exhibited a better cryoprotective effect.
Collapse
Affiliation(s)
- Yui Kato
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takuya Uto
- University of Miyazaki, Faculty of Engineering, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan
| | - Takeru Ishizaki
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke Tanaka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Kannondai, Tsukuba, 305-8602, Japan
| | - Kojiro Ishibashi
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yuya Matsuda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Issei Onoda
- University of Miyazaki, Faculty of Engineering, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, 920-1192, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Eishu Hirata
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute of Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kosuke Kuroda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
4
|
Yamasaki R, Rajan R, Matsumura K. Enhancement of cryopreservation with intracellularly permeable zwitterionic polymers. Chem Commun (Camb) 2023; 59:14001-14004. [PMID: 37941405 DOI: 10.1039/d3cc04092e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A novel copolymer containing zwitterionic and methylsulfinyl structures was developed, which enhanced cryoprotective efficacy by enabling intracellular cytoplasmic permeation without relying on mediated endocytosis and diffused out of the cells within approximately 30 min, making it more advantageous than polymeric nanoparticles for the transport of membrane-impermeable cryoprotectants such as trehalose.
Collapse
Affiliation(s)
- Ryota Yamasaki
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
5
|
Tamura A, Nishida K, Zhang S, Kang TW, Tonegawa A, Yui N. Cografting of Zwitterionic Sulfobetaines and Cationic Amines on β-Cyclodextrin-Threaded Polyrotaxanes Facilitates Cellular Association and Tissue Accumulation with High Biocompatibility. ACS Biomater Sci Eng 2022; 8:2463-2476. [PMID: 35536230 DOI: 10.1021/acsbiomaterials.2c00324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Cyclodextrins (β-CDs) and β-CD-containing polymers have attracted considerable attention as potential candidates for the treatment of cholesterol-related metabolic and intractable diseases. We have advocated the use of β-CD-threaded acid-degradable polyrotaxanes (PRXs) as intracellular delivery carriers for β-CDs. As unmodified PRXs are insoluble in aqueous solutions, chemical modification of PRXs is an essential process to improve their solubility and impart novel functionalities. In this study, we investigated the effect of the modification of zwitterionic sulfobetaines on PRXs due to their excellent solubility, biocompatibility, and bioinert properties. Sulfobetaine-modified PRXs were synthesized by converting the tertiary amino groups of precursor 2-(N,N-dimethylamino)ethyl carbamate-modified PRXs (DMAE-PRXs) using 1,3-propanesultone. The resulting sulfobetaine-modified PRXs showed high solubility in aqueous solutions and no cytotoxicity, while their intracellular uptake levels were low. To further improve this system, we designed PRXs cografted with zwitterionic sulfobetaine and cationic DMAE groups via partial betainization of the DMAE groups. Consequently, the interaction with proteins, intracellular uptake levels, and liver accumulation of partly betainized PRXs were found to be higher than those of completely betainized PRXs. Additionally, partly betainized PRXs showed no toxicity in vitro or in vivo despite the presence of residual cationic DMAE groups. Furthermore, partly betainized PRXs ameliorated the abnormal free cholesterol accumulation in Niemann-Pick type C disease patient-derived cells at lower concentrations than β-CD derivatives and previously designed PRXs. Overall, the cografting of sulfobetaines and amines on PRXs is a promising chemical modification for therapeutic applications due to the high cholesterol-reducing ability and biocompatibility of such modified PRXs. In addition, modification with both zwitterionic and cationic groups can be used for the design of various polymeric materials exhibiting both bioinert and bioactive characteristics.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tae Woong Kang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
6
|
Hatano H, Meng F, Sakata M, Matsumoto A, Ishihara K, Miyahara Y, Goda T. Transepithelial delivery of insulin conjugated with phospholipid-mimicking polymers via biomembrane fusion-mediated transcellular pathways. Acta Biomater 2022; 140:674-685. [PMID: 34896268 DOI: 10.1016/j.actbio.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial barriers that seal cell gaps by forming tight junctions to prevent the free permeation of nutrients, electrolytes, and drugs, are essential for maintaining homeostasis in multicellular organisms. The development of nanocarriers that can permeate epithelial tissues without compromising barrier function is key for establishing a safe and efficient drug delivery system (DDS). Previously, we have demonstrated that a water-soluble phospholipid-mimicking random copolymer, poly(2-methacryloyloxyethyl phosphorylcholine30-random-n‑butyl methacrylate70) (PMB30W), enters the cytoplasm of live cells by passive diffusion manners, without damaging the cell membranes. The internalization mechanism was confirmed to be amphiphilicity-induced membrane fusion. In the present study, we demonstrated energy-independent permeation of PMB30W through the model epithelial barriers of Madin-Darby canine kidney (MDCK) cell monolayers in vitro. The polymer penetrated epithelial MDCK monolayers via transcellular pathways without breaching the barrier functions. This was confirmed by our unique assay that can monitor the leakage of the proton as the smallest indicator across the epithelial barriers. Moreover, energy-independent transepithelial permeation was achieved when insulin was chemically conjugated with the phospholipid-mimicking nanocarrier. The bioactivity of insulin as a growth factor was found to be maintained even after translocation. These fundamental findings may aid the establishment of transepithelial DDS with advanced drug efficiency and safety. STATEMENT OF SIGNIFICANCE: A nanocarrier that can freely permeate epithelial tissues without compromising barrier function is key for successful DDS. Existing strategies mainly rely on paracellular transport associated with tight junction breakdown or transcellular transport via transporter recognition-mediated active uptake. These approaches raise concerns about efficiency and safety. In this study, we performed non-endocytic permeation of phospholipid-mimicking polymers through the model epithelial barriers in vitro. The polymer penetrated via transcytotic pathways without breaching the barriers of biomembrane and tight junction. Moreover, transepithelial permeation occurred when insulin was covalently attached to the nanocarrier. The bioactivity of insulin was maintained even after translocation. The biomimetic design of nanocarrier may realize safe and efficient transepithelial DDS.
Collapse
|
7
|
Morimoto N, Ota K, Miura Y, Shin H, Yamamoto M. Sulfobetaine polymers for effective permeability into multicellular tumor spheroids (MCTSs). J Mater Chem B 2022; 10:2649-2660. [PMID: 35024722 DOI: 10.1039/d1tb02337c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicellular tumor spheroids (MCTSs) are attractive for drug screening before animal tests because they emulate an in vivo microenvironment. The permeability of the MCTSs and tumor tissues towards the candidate drugs is not sufficient even though the drugs can penetrate monolayer cultured cells; therefore, nanocarriers are required to enhance permeability and deliver drugs. In this study, we prepared zwitterionic polymers of sulfobetaine methacrylates and (meth)acrylamides with or without hydroxy groups between the zwitterions to serve as highly permeable nanocarriers. In the sulfobetaine polymers, poly(2-hydroxy-3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate), P(OH-MAAmSB), the hydroxy group containing methacrylamide polymer exhibited little cytotoxicity and membrane translocation ability against monolayer cultured cells. Moreover, the excellent permeability of the hepatocyte MCTS enabled P(OH-MAAmSB) to permeate it and reach the center region (∼325 μm in diameter) at approximately 150 s, although poly(trimethyl-2-methacroyloxyethylammonium), a cationic polymer, penetrated just 1 to 2 layers from the periphery. The superior permeability of P(OH-MAAmSB) might be due to its good solubility and side chain conformation. P(OH-MAAmSB) is a promising nanocarrier with membrane translocation and permeability.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Keisuke Ota
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Yuki Miura
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea.,BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Masaya Yamamoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan. .,Graduate School of Medical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
8
|
Chemically Induced pH Perturbations for Analyzing Biological Barriers Using Ion-Sensitive Field-Effect Transistors. SENSORS 2021; 21:s21217277. [PMID: 34770587 PMCID: PMC8588202 DOI: 10.3390/s21217277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Potentiometric pH measurements have long been used for the bioanalysis of biofluids, tissues, and cells. A glass pH electrode and ion-sensitive field-effect transistor (ISFET) can measure the time course of pH changes in a microenvironment as a result of physiological and biological activities. However, the signal interpretation of passive pH sensing is difficult because many biological activities influence the spatiotemporal distribution of pH in the microenvironment. Moreover, time course measurement suffers from stability because of gradual drifts in signaling. To address these issues, an active method of pH sensing was developed for the analysis of the cell barrier in vitro. The microenvironmental pH is temporarily perturbed by introducing a low concentration of weak acid (NH4+) or base (CH3COO−) to cells cultured on the gate insulator of ISFET using a superfusion system. Considering the pH perturbation originates from the semi-permeability of lipid bilayer plasma membranes, induced proton dynamics are used for analyzing the biomembrane barriers against ions and hydrated species following interaction with exogenous reagents. The unique feature of the method is the sensitivity to the formation of transmembrane pores as small as a proton (H+), enabling the analysis of cell–nanomaterial interactions at the molecular level. The new modality of cell analysis using ISFET is expected to be applied to nanomedicine, drug screening, and tissue engineering.
Collapse
|