1
|
Roemling LJ, De Angelis G, Mauch A, Amstad E, Vogel N. Control of Buckling of Colloidal Supraparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411772. [PMID: 40317860 DOI: 10.1002/smll.202411772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Indexed: 05/07/2025]
Abstract
The properties of clusters of colloidal particles, often termed supraparticles, are determined by the arrangement of the primary particles. Therefore, controlling the structure formation process is of key importance. While buckled morphologies can result from fast drying kinetics as found in spray drying, controlling the morphology under slow drying conditions remains a challenge. The final morphology of a supraparticle formed from an emulsion droplet can be controlled by manipulating particle-surfactant interactions. Water/oil emulsions are used to template supraparticle formation. The interactions of negatively charged colloidal particles with the surfactants stabilizing the water/oil-interface are tailored via the local pH within the aqueous droplet. At low pH, protonation of the anionic headgroup of the surfactant decreases electrostatic repulsion of the particles, facilitates interfacial adsorption, and subsequently causes buckling. The local pH of the aqueous droplet phase continuously changes during the assembly process. The supraparticle formation pathway can therefore be controlled by determining the point in time at which interfacial adsorption is enabled by adjusting the initial pH. Consequently, the final supraparticle morphology can be tailored at will, from fully buckled structures, via undulated surface morphologies to spherically rough and spherically smooth supraparticles and crystalline colloidal clusters.
Collapse
Affiliation(s)
- Lukas J Roemling
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Interfaces and Particle Technology, 91058, Erlangen, Germany
| | - Gaia De Angelis
- Soft Materials Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Annika Mauch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Interfaces and Particle Technology, 91058, Erlangen, Germany
| | - Esther Amstad
- Soft Materials Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicolas Vogel
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Interfaces and Particle Technology, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Kuroiwa K, Takeuchi K, Hirai T, Nakamura Y, Oaki Y, Fujii S. Janus Particles Synthesized via Vapor-Phase Coupling Polymerization Protocol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5439-5448. [PMID: 39985468 DOI: 10.1021/acs.langmuir.4c05061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The vapor-phase polymerization of pyrrole in the presence of polystyrene (PS) particles adsorbed at the air-water interface successfully leads to the formation of PS/polypyrrole (PPy) Janus particles where only the surface in contact with the air phase is regioselectively covered with the PPy nanolayer. The coverage area of the PPy nanolayer on the Janus particles, and therefore the contact angle of Janus particles at the air-liquid interface, decreases with a decrease in surface tension of liquid by the addition of isopropanol. The contact angle of particles at the interface decreases after the polymerization, which should be because the pyrrole monomer dissolved in the water phase from the gas phase promotes the wetting of the liquid to the PS particles by decreasing the surface tension of the liquid. Controlling the PS particle size realizes the formation of PS/PPy Janus particles with sizes ranging between 5 and 1000 μm. Furthermore, the Janus particles are demonstrated to be oriented at the air-water interface with the hydrophilic PS side toward the water phase and the hydrophobic PPy side toward the air phase, realizing stabilization of an armored bubble in the water medium.
Collapse
Affiliation(s)
- Kazuma Kuroiwa
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
3
|
Iwata Y, Yoshida T, Hirai T, Nakamura Y, Fujii S. Non-Aqueous Polyhedral Liquid Marbles Stabilized with Polymer Plates Having Surface Roughness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402297. [PMID: 38837678 DOI: 10.1002/smll.202402297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Indexed: 06/07/2024]
Abstract
Hydrophobic polymer plates with smooth and rough surfaces are used as a stabilizer for cubic liquid marbles (LMs) to study the effect of surface roughness on their formation. The smooth and rough polymer plates can stabilize LMs using liquids with surface tensions of 72.8-26.6 and 72.8-22.9 mN m-1, respectively. It is clarified that the higher the surface roughness, the lower the surface tension of the liquids are stabilized to form the LMs. These results indicated that the introduction of surface roughness improves the hydrophobicity of the polymer plates and the rough polymer plates can stabilize LMs using liquids with a wider surface tension range. Electron microscopy studies and numerical analyses confirmed that the LMs can be formed, when the Cassie-Baxter wetting state, where θY>90° (θY: the contact angle on smooth surfaces) and θR>90° (θR: the contact angle on rough surfaces), and the metastable Cassie-Baxter wetting state, where θY<90° and θR>90°, are realized. Finally, the synthesis of cubic polymer particles are succeeded by free radical polymerization of the cubic LMs containing a hydrophobic vinyl monomer (dodecyl acrylate) in a solvent-free manner.
Collapse
Affiliation(s)
- Yamato Iwata
- Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Tatsuro Yoshida
- Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering. Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering. Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering. Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
4
|
Sneha Ravi A, Dalvi S. Liquid Marbles and Drops on Superhydrophobic Surfaces: Interfacial Aspects and Dynamics of Formation: A Review. ACS OMEGA 2024; 9:12307-12330. [PMID: 38524492 PMCID: PMC10956110 DOI: 10.1021/acsomega.3c07657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Liquid marbles (LMs) are droplets encapsulated with powders presenting varied roughness and wettability. These LMs have garnered a lot of attention due to their dual properties of leakage-free and quick transport on both solid and liquid surfaces. These droplets are in a Cassie-Baxter wetting state sitting on both roughness and air pockets existing between particles. They are also reminiscent of the state of a drop on a superhydrophobic (SH) surface. In this review, LMs and bare droplets on SH surfaces are comparatively investigated in terms of two aspects: interfacial and dynamical. LMs present a fascinating class of soft matter due to their superior interfacial activity and their remarkable stability. Inherently hydrophobic powders form stable LMs by simple rolling; however, particles with defined morphologies and chemistries contribute to the varied stability of LMs. The factors contributing to this interesting robustness with respect to bare droplets are then identified by tests of stability such as evaporation and compression. Next, the dynamics of the impact of a drop on a hydrophobic powder bed to form LMs is studied vis-à̀-vis that of drop impact on flat surfaces. The knowledge from drop impact phenomena on flat surfaces is used to build and complement insights to that of drop impact on powder surfaces. The maximum spread of the drop is empirically understood in terms of dimensionless numbers, and their drawbacks are highlighted. Various stages of drop impact-spreading, retraction and rebound, splashing, and final outcome-are systematically explored on both solid and hard surfaces. The implications of crater formation and energy dissipations are discussed in the case of granular beds. While the drop impact on solid surfaces is extensively reviewed, deep interpretation of the drop impact on granular surfaces needs to be improved. Additionally, the applications of each step in the sequence of drop impact phenomena on both substrates are also identified. Next, the criterion for the formation of peculiar jammed LMs was examined. Finally, the challenges and possible future perspectives are envisaged.
Collapse
Affiliation(s)
- Apoorva Sneha Ravi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Sameer Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
5
|
Bielas R, Kubiak T, Molcan M, Dobosz B, Rajnak M, Józefczak A. Biocompatible Hydrogel-Based Liquid Marbles with Magnetosomes. MATERIALS (BASEL, SWITZERLAND) 2023; 17:99. [PMID: 38203953 PMCID: PMC10779466 DOI: 10.3390/ma17010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Liquid marbles are widely known for their potential biomedical applications, especially due to their versatility and ease of preparation. In the present work, we prepared liquid marbles with various cores composed of water, agar-based hydrogels, magnetic fluids, or non-aqueous substances. As a coating material, we used biocompatible particles of plant origin, such as turmeric grains and Lycopodium pollen. Additionally, we provided marbles with magnetic properties by incorporating either magnetosomes or iron oxide nanoparticles as a powder or by injecting another magnetic fluid. Structures obtained in this way were stable and susceptible to manipulation by an external magnetic field. The properties of the magnetic components of our marbles were verified using electron paramagnetic resonance (EPR) spectroscopy and vibrating sample magnetometry (VSM). Our approach to encapsulation of active substances such as antibiotics within a protective hydrogel core opens up new perspectives for the delivery of hydrophobic payloads to the inherently hydrophilic biological environment. Additionally, hydrogel marbles enriched with magnetic materials showed promise as biocompatible heating agents under alternating magnetic fields. A significant innovation of our research was also the fabrication of composite structures in which the gel-like core was surrounded without mixing by a magnetic fluid covered on the outside by the particle shell. Our liquid marbles, especially those with a hydrogel core and magnetic content, due to the ease of preparation and favorable properties, have great potential for biomedical use. The fact that we were able to simultaneously produce, functionalize (by filling with predefined cargo), and manipulate (by means of an external magnetic field) several marbles also seems to be important from an application point of view.
Collapse
Affiliation(s)
- Rafał Bielas
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Tomasz Kubiak
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Matus Molcan
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia; (M.M.); (M.R.)
| | - Bernadeta Dobosz
- Institute of Physics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Michal Rajnak
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia; (M.M.); (M.R.)
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
| | - Arkadiusz Józefczak
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| |
Collapse
|
6
|
Liu Y, Xu M, Portela LM, Garbin V. Diffusion across particle-laden interfaces in Pickering droplets. SOFT MATTER 2023; 20:94-102. [PMID: 38047385 DOI: 10.1039/d3sm01262j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Emulsions stabilized by nanoparticles, known as Pickering emulsions, exhibit remarkable stability, which enables applications ranging from encapsulation, to advanced materials, to chemical conversion. The layer of nanoparticles at the interface of Pickering droplets is a semi-permeable barrier between the two liquid phases, which can affect the rate of release of encapsulates, and the interfacial transfer of reactants and products in biphasic chemical conversion. A gap in our fundamental understanding of diffusion in multiphase systems with particle-laden interfaces currently limits the optimal development of these applications. To address this gap, we developed an experimental approach for in situ, real-time quantification of concentration fields in Pickering droplets in a Hele-Shaw geometry and investigated the effect of the layer of nanoparticles on diffusion of solute across a liquid-liquid interface. The experiments did not reveal a significant hindrance on the diffusion of solute across an interface densely covered by nanoparticles. We interpret this result using an unsteady diffusion model to predict the spatio-temporal evolution of the concentration of solute with a particle-laden interface. We find that the concentration field is only affected in the immediate vicinity of the layer of particles, where the area available for diffusion is affected by the particles. This defines a characteristic time scale for the problem, which is the time for diffusion across the layer of particles. The far-field concentration profile evolves towards that of a bare interface. This localized effect of the particle hindrance is not measurable in our experiments, which take place over a much longer time scale. Our model also predicts that the hindrance by particles can be more pronounced depending on the particle size and physicochemical properties of the liquids and can ultimately affect performance in applications.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Mingjun Xu
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Luis M Portela
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Valeria Garbin
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| |
Collapse
|
7
|
Tenjimbayashi M, Mouterde T, Roy PK, Uto K. Liquid marbles: review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. NANOSCALE 2023; 15:18980-18998. [PMID: 37990550 DOI: 10.1039/d3nr04966c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Liquid marbles (LMs) are nonsticking droplets whose surfaces are covered with low-wettability particles. Owing to their high mobility, shape reconfigurability, and widely accessible liquid/particle possibilities, the research on LMs has flourished since 2001. Their physical properties, fabrication mechanisms, and functionalisation capabilities indicate their potential for various applications. This review summarises the fundamental properties of LMs, the recent advances (mainly works published in 2020-2023) in the concept of LMs, physical properties, formation methods, LM-templated material design, and biochemical applications. Finally, the potential development and variations of LMs are discussed.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Timothée Mouterde
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Pritam Kumar Roy
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Koichiro Uto
- Research Center for Macromolecules and Biomaterials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
8
|
Atsuta Y, Takeuchi K, Shioda N, Hamada W, Hirai T, Nakamura Y, Oaki Y, Fujii S. Colloidally Stable Polypyrrole Nanoparticles Synthesized by Surfactant-Free Coupling Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14984-14995. [PMID: 37831595 DOI: 10.1021/acs.langmuir.3c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Surfactant-free polypyrrole (PPy) nanoparticles, which were colloidally stable in aqueous medium, were successfully synthesized by coupling polymerization of pyrrole using Fe(NO3)3 solids in the absence of any colloidal stabilizer. The pyrrole monomers were gradually supplied from the vapor phase, and the coupling reaction of the monomers could proceed to generate PPy in a water medium. The resulting PPy nanoparticles were extensively characterized in terms of diameter, bulk chemical composition, surface chemistry, and colloidal stability by dynamic light scattering, electron microscopy, elemental microanalysis, Fourier transform infrared spectroscopy, Raman spectroscopy, electrophoresis, and X-ray photoelectron spectroscopy. The characterization results indicated that the PPy nanoparticles can be colloidally stable based on the electrostatic stabilization mechanism due to cationic charges generated on the PPy molecules by doping during the polymerization. General chemical oxidative polymerization in aqueous medium using the Fe(NO3)3 oxidant without a colloidal stabilizer as a control experiment resulted in generation of atypical PPy aggregates with over a micrometer size, indicating that the polymerization at low ionic strength is essential for colloidal particle formation. Finally, it was demonstrated that the PPy nanoparticles worked as a surfactant-free black-colored particulate emulsifier by adsorption at the oil-water interface to stabilize Pickering-type oil-in-water emulsions.
Collapse
Affiliation(s)
- Yuya Atsuta
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Nano Shioda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Wakana Hamada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| |
Collapse
|
9
|
Manyuan N, Otsuki T, Tsumura Y, Fujii S, Kawasaki H. Dry liquid metals stabilized by silica particles: Synthesis and application in photothermoelectric power generation. J Colloid Interface Sci 2023; 649:581-590. [PMID: 37364458 DOI: 10.1016/j.jcis.2023.06.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
HYPOTHESIS Gallium-based room-temperature liquid metals (LMs) have unique physicochemical properties; however, their high surface tension, low flowability, and high corrosiveness to other materials limit their advanced processing (including precise shaping) and application. Consequently, LM-rich free-flowing powders, named "dry LMs" that offer the inherent advantages of dry powders, should play a critical role in expanding the application scope of LMs. EXPERIMENTS A general method of preparing silica-nanoparticle-stabilized LMs in the form of LM-rich powders (>95 wt% LM) is developed. FINDINGS Dry LMs can be simply prepared by mixing LMs with silica nanoparticles in a planetary centrifugal mixer in the absence of solvents. As a sustainable dry-process route alternative to wet-process routes, this ecofriendly and simple method of dry LM fabrication has several advantages, e.g., high throughput, scalability, and low toxicity owing to the lack of organic dispersion agents and milling media. Moreover, the unique photothermal properties of dry LMs are used for photothermal electric power generation. Thus, dry LMs not only pave the way for the use of LMs in powder form but also provide a new opportunity for expanding their application scope in energy conversion systems.
Collapse
Affiliation(s)
- Nichayanan Manyuan
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tomoko Otsuki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yusuke Tsumura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
10
|
Sakurai Y, Kakiuchi R, Hirai T, Nakamura Y, Fujii S. Aqueous Bubbles Stabilized with Millimeter-Sized Polymer Plates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3800-3809. [PMID: 36853615 DOI: 10.1021/acs.langmuir.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
(Sub)millimeter-sized hexagonal polymer plates that were monodisperse in shape and size were utilized as stabilizers for aqueous bubbles, and the effects of the hydrophilic-hydrophobic property, size, and solid concentration of the plates on the formability, stability, and shape and structure of aqueous bubbles were investigated. The formability and stability of the bubbles were improved by increasing the hydrophobicity of the plate surface, decreasing the plate size, and increasing the solid concentration of the plates. For plates with suitable water wettability, three-dimensional bubbles with nearly spherical and polyhedral shapes were formed by the adsorption of plates to the bare air bubbles introduced into the continuous water phase by air-water mixing. On the contrary, two-dimensional bubbles with accordion-type structures consisting of alternating layers of plates and entrapped air bubbles were formed by the transfer of multiple plates with poor wettability from the air phase to the water phase by air-water mixing. Furthermore, a correlation was found between the bubble/stabilizer size ratio and bubble shape for plates with the suitable wettability: bubbles with nearly spherical shapes were formed when the bubble/plate size ratios were >2, bubbles with hexahedral, pentahedral, and tetrahedral shapes were formed when the size ratios were approximately 1, and bubbles with triangular and sandwich shapes were formed when the size ratios were <0.8. Additionally, bubbles with similar shapes were formed when the bubble/plate size ratios were close, even when the sizes of the plates and bubbles were different.
Collapse
Affiliation(s)
- Yuri Sakurai
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Rina Kakiuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
11
|
Tsumura Y, Fameau AL, Matsui K, Hirai T, Nakamura Y, Fujii S. Photo- and Thermoresponsive Liquid Marbles Based on Fatty Acid as Phase Change Material Coated by Polypyrrole: From Design to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:878-889. [PMID: 36602465 DOI: 10.1021/acs.langmuir.2c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Responsive liquid marbles (LMs), which can change their shape, stability, and motion by the application of stimuli, attract a growing interest due to their wide range of applications. Our approach to design photo- and thermoresponsive LMs is based on the use of micrometer-sized fatty acid (FA) particles as phase change material covered with polypyrrole (PPy) overlayers with photothermal property. The core-shell particles were synthesized by aqueous chemical oxidative seeded dispersion polymerization. First, we investigated the effect of the alkyl chain length of FA on the resulting FA/PPy core-shell particles by characterizing their size and its distribution, shape, morphology, chemical composition, and photothermal behavior. Then LMs were fabricated by rolling water droplets on the dried FA/PPy particle powder bed and their light and temperature dual stimuli-responsive nature was studied as a function of the FA alkyl chain length. For all FAs studied, LMs disrupted in a domino manner by light irradiation as the first trigger: the temperature of the FA/PPy particles on the LM surface increased by light irradiation, followed by phase change of FA core of the particles from solid to liquid, resulting in disruption of the LM and release of the encapsulated water. The disruption time was closely correlated to the melting point of FA linked to the alkyl chain length and light irradiation power, and it could be controlled and tuned easily between quasi instantaneous and approximately 10 s. Finally, we showed potential applications of the LMs as a carrier for controlled delivery and release of substances and a sensor.
Collapse
Affiliation(s)
- Yusuke Tsumura
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Kanade Matsui
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
12
|
Roy PK, Shoval S, Fujii S, Bormashenko E. Interfacial crystallization in the polyhedral liquid marbles. J Colloid Interface Sci 2023; 630:685-694. [DOI: 10.1016/j.jcis.2022.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
13
|
Wang Z, Zhu G, Wang Q, Ding K, Tong Y, Gao C. Preparation of hollow granules as micro-adsorber for uranium extraction from aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
He J, Liu S, Zhao Y, Wu P, Liu C, Jiang W. Preparation of Phase Change Melt Marbles with High Thermal Stability by Spontaneous Shrinkage and Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12644-12656. [PMID: 36194874 DOI: 10.1021/acs.langmuir.2c02113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid marbles (LMs) are widely used in the fields of microfluids, gas sensitivity equipment, and microreactors. However, the thermal stability of the encapsulated liquid poses difficulty to the high-temperature stability of LMs. In this study, polar phase-change materials (PCMs) with high melting points were used as the encapsulated liquid of LMs. According to the required temperature, suitable PCMs were selected as the core and encapsulated by hydrophobic SiO2 particles to form melt marbles (MMs). The types of PCMs used to prepare the MMs include erythritol, elemental sulfur, urea, and molten salts. Based on the premixed melting method, a series of MMs with high melting points and thermal stability were successfully developed. The highest acceptable temperature of the MMs exceeded 323 °C, and the evaporation rate of erythritol MMs was less than 1% at 140 °C in 8 h. Thus, the MMs maintained their excellent stability through multiple phase transitions. In the molten state, the MMs exhibited the properties of bounce ability, cuttability, and deformation resistance. The performance of the PCMs in energy storage and release during phase transition demonstrates their potential applications in the field of heat storage.
Collapse
Affiliation(s)
- Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Shuyuan Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Yunqing Zhao
- College of Electrical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| |
Collapse
|
15
|
Tsumura Y, Oyama K, Fameau AL, Seike M, Ohtaka A, Hirai T, Nakamura Y, Fujii S. Photo/Thermo Dual Stimulus-Responsive Liquid Marbles Stabilized with Polypyrrole-Coated Stearic Acid Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41618-41628. [PMID: 36043393 DOI: 10.1021/acsami.2c12681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we report on the fabrication of photo/thermo dual stimulus-responsive liquid marbles (LMs) that can be disrupted by light irradiation and/or heating. To stabilize the LMs, we synthesized micrometer-sized stearic acid (SA) particles coated with overlayers of polypyrrole (PPy) by aqueous chemical oxidative seeded dispersion polymerization. The SA/PPy core-shell particles could adsorb at the air-water interface to stabilize LMs by rolling water droplets on the particle powder bed. The presence of SA, known as a phase-change material, which undergoes a transition from solid to liquid by heating, and PPy, which can transduce light to heat, gives rise to the photo and thermo dual stimulus-responsive characters of the LMs. The disruption of the LMs could be induced in a cascade manner: light irradiation on the LM induced a temperature increase, followed by melting of the SA component on the LM surface, leading to its disruption and release of the inner water. The disruption time is linked to the PPy loading and light irradiation power, and it can be tuned from quasi-instantaneous to a few tens of seconds. The melting of SA due to a light-induced phase change from the solid to liquid state is a new mechanism to trigger the disruption of LMs. We finally demonstrated two applications of the LMs as a light-responsive microreactor and a sensor.
Collapse
Affiliation(s)
- Yusuke Tsumura
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207─UMET─Unité Matériaux et Transformations, F-59000 Lille, France
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Atsushi Ohtaka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
16
|
Roy PK, Binks BP, Shoval S, Dombrovsky LA, Bormashenko E. Levitating clusters of fluorinated fumed silica nanoparticles enable manufacture of liquid marbles: Co-occurrence of interfacial, thermal and electrostatic events. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Feng Y, Wang L, Xu J, Liu G. Effect of particle size on the stripping dynamics during impact of liquid marbles onto a liquid film. SOFT MATTER 2022; 18:5230-5238. [PMID: 35771045 DOI: 10.1039/d2sm00506a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The robust attachment of particles at fluid interfaces is favorable for engineering new materials due to the large capillary energy, but it meets significant challenges when particle removal is a requirement. A previous study has shown that soap films can be utilized to achieve particle separation from liquid marbles. Here, we investigate the effects of particle size on the particle separation from liquid marbles using fast dynamics of drop impact on a soap film. Experimental observations disclose that the fast dynamics of the liquid marble involves coalescence, bouncing, stripping, or tunneling through the film by controlling the falling height and drop volume. More importantly, the active regime of the stripping mode can be selective-controlled by tuning the particle size, and the smaller stabilizing particles make a wider stripping regime. This is attributed to the smaller change of the surface energy resulting from the larger surface tension of LMs wrapped by smaller particles. Theoretical analysis reveals that the stripping thresholds are determined by the energy competition between kinetic energy, the increased surface energy and viscous dissipation, which offers important insights into particle separation by tuning the particle size. The present study provides guidelines for applications that involve phase separation.
Collapse
Affiliation(s)
- Yijun Feng
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, P. R. China.
| | - Lin Wang
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, P. R. China.
| | - Jinliang Xu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, P. R. China.
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, P. R. China.
| |
Collapse
|
18
|
Seike M, Uda M, Suzuki T, Minami H, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of Polypyrrole and Its Derivatives as a Liquid Marble Stabilizer via a Solvent-Free Chemical Oxidative Polymerization Protocol. ACS OMEGA 2022; 7:13010-13021. [PMID: 35474829 PMCID: PMC9026107 DOI: 10.1021/acsomega.2c00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 05/25/2023]
Abstract
Solvent-free chemical oxidative polymerizations of pyrrole and its derivatives, namely N-methylpyrrole and N-ethylpyrrole, were conducted by mechanical mixing of monomer and solid FeCl3 oxidant under nitrogen atmosphere. Polymerizations occurred at the surface of the oxidant, and optical and scanning electron microscopy studies confirmed production of atypical grains with diameters of a few tens of micrometers. Fourier transform infrared spectroscopy studies indicated the presence of hydroxy and carbonyl groups which were introduced during the polymerization due to overoxidation. The polymer grains were doped with chloride ions, and the chloride ion dopant could be removed by dedoping using an aqueous solution of sodium hydroxide, which was confirmed by elemental microanalysis and X-ray photoelectron spectroscopy studies. Water contact angle measurements confirmed that the larger the alkyl group on the nitrogen of pyrrole ring the higher the hydrophobicity and that the contact angles increased after dedoping in all cases. The grains before and after dedoping exhibited photothermal properties: the near-infrared laser irradiation induced a rapid temperature increase to greater than 430 °C. Furthermore, dedoped poly(N-ethylpyrrole) grains adsorbed to the air-water interface and could work as an effective liquid marble stabilizer. The resulting liquid marble could move on a planar water surface due to near-infrared laser-induced Marangoni flow and could disintegrate by exposure to acid vapor via redoping of the poly(N-ethylpyrrole) grains.
Collapse
Affiliation(s)
- Musashi Seike
- Division
of Applied Chemistry, Environmental and Biomedical Engineering, Graduate
School of Engineering, Osaka Institute of
Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Makoto Uda
- Division
of Applied Chemistry, Environmental and Biomedical Engineering, Graduate
School of Engineering, Osaka Institute of
Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Toyoko Suzuki
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Hideto Minami
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Shinya Higashimoto
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
19
|
Xu J, Liu Y, Guo T, Sun G, Luo J, Liu R, Steve Tse YL, Ngai T. Investigation of the Contact Angle and Packing Density of Silica Nanoparticles at a Pickering Emulsion Interface Fixed by UV Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4234-4242. [PMID: 35357199 DOI: 10.1021/acs.langmuir.1c03259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The contact angle of colloidal particles at an oil-water interface plays a crucial role in determining Pickering emulsion stability and emulsion type, but the contact angle cannot be directly determined using conventional methods. In this work, a Pickering emulsion was prepared with photocurable resin as the internal phase containing silica nanoparticle stabilizers. Particles adsorbed at the oil-water interface were then fixed through UV curing, allowing for the investigation of various parameters that influence the contact angle of colloidal particles at the interface. After curing, the contact angle can then be observed using scanning electron microscopy and subsequently measured. The contact angle of interfacial adsorbed silica nanoparticles gradually decreases as the size increases due to the line tension at the three-phase contact line, but, more importantly, we found that the surface chemistry of the silica nanoparticles plays the most important role in determining the contact angle. The fast fixation of solid nanoparticles at emulsion interfaces facilitates accurate measurements of the partition of particles between oil and water, providing a new method for studying the factors that affect Pickering emulsion stability.
Collapse
Affiliation(s)
- Jianan Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Yang Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR
| | - Tiehuang Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Guanqing Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jing Luo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Ying-Lung Steve Tse
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR
| |
Collapse
|
20
|
Seike M, Hirai T, Nakamura Y, Fujii S. Alcohol as hydrophobizer for polypyrrole. CHEM LETT 2022. [DOI: 10.1246/cl.220109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
21
|
Lobel BT, Robertson H, Webber GB, Ireland PM, Wanless EJ. Impact of surface free energy on electrostatic extraction of particles from a bed. J Colloid Interface Sci 2022; 611:617-628. [PMID: 34974225 DOI: 10.1016/j.jcis.2021.12.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Electrostatic extraction of particles from a bed to a pendent droplet to form liquid marbles has previously been investigated with respect to particle conductivity, size and shape, however, interparticle forces have not been specifically interrogated. If cohesion is the dominant force within the particle bed, then particles will be more readily extracted with reduced surface free energy. EXPERIMENTS Glass particles were surface-modified using various alkyltrichlorosilanes. The surface free energy was measured for each sample using colloid probe atomic force microscopy (AFM) and sessile drop measurements on similarly modified glass slides. The ease of electrostatic particle extraction of each particle sample to a pendent droplet was compared by quantifying the electric field force required for successful extraction as a function of the measured surface free energy. FINDINGS Surface free energy calculated from sessile droplet measurements and AFM were not in agreement, as work of adhesion of a liquid droplet on a planar substrate is not representative of the contact between particles. Ease of electrostatic extraction of particles was observed to generally decrease as a function of AFM-derived surface free energy, confirming this is a critical factor in electrostatic delivery of particles to a pendent droplet. Roughness was also shown to inhibit particle extraction.
Collapse
Affiliation(s)
- Benjamin T Lobel
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hayden Robertson
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B Webber
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Peter M Ireland
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
22
|
Zhang Y, Yang C, Yuan S, Yao X, Chao Y, Cao Y, Song Q, Sauret A, Binks BP, Shum HC. Effects of particle size on the electrocoalescence dynamics and arrested morphology of liquid marbles. J Colloid Interface Sci 2022; 608:1094-1104. [PMID: 34879587 DOI: 10.1016/j.jcis.2021.09.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
HYPOTHESIS The coalescence of bare droplets when surface tension dominates always results in one larger spherical droplet. In contrast, droplets coated with particles may be stabilized into non-spherical structures after arrested coalescence, which can be achieved by different approaches, such as changing the particle surface coverage. The size of particles coating the initial liquid marbles can be used to control the coalescence dynamics and the resulting morphology of arrested droplets. EXPERIMENT We characterized the electrocoalescence of liquid marbles coated with particles ranging from hundred nanometers to hundred micrometers. The electrocoalescence was recorded using high-speed imaging. FINDINGS When the electrocoalescence initiates, particles jam and halt the relaxation of the marbles at different stages, resulting in four possible final morphologies that are characterized using the Gaussian curvature at the neck region. The four regimes are total coalescence, arrested puddle coalescence, arrested saddle coalescence, and non-coalescence. The coalescence is initiated at the center of the contact zone, independent of the particle size. Small particles show little resistance to the coalescence, while marbles coated by large particles demonstrate a viscous-like behavior, indicated by the growth of the liquid bridge and the damping. The present study provides guidelines for applications that involve the formulation of liquid marbles with complex morphologies.
Collapse
Affiliation(s)
- Yage Zhang
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Chentianyi Yang
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Shuai Yuan
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Xiaoxue Yao
- Department of Biomedical Engineering, Shenzhen University, Shenzhen 518000, China.
| | - Youchuang Chao
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yang Cao
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Qingchun Song
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA.
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
23
|
Lobel BT, Hobson MJ, Ireland PM, Webber GB, Thomas CA, Ogino H, Fujii S, Wanless EJ. Interparticle Repulsion of Microparticles Delivered to a Pendent Drop by an Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:670-679. [PMID: 34968053 DOI: 10.1021/acs.langmuir.1c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report an unusually large spacing observed between microparticles after delivery to the surface of a pendent water droplet using a DC nonuniform electrostatic field, primarily via dielectrophoresis. The influence of particle properties was investigated using core particles, which were either coated or surface-modified to alter their wettability and conductivity. Particles that exhibited this spacing were both hydrophobic and possessed some dielectric material exposed to the external field, such as a coating or exposed dielectric core. The origin of this behavior is proposed to be the induced dipole-dipole repulsion between particles, which increases with particle size and decreases when the magnitude of the electric field is reduced. When the particles were no longer subjected to an external field, this large interparticle repulsion ceased and the particles settled to the bottom of the droplet under the force of gravity. We derive a simple model to predict this spacing, with the dipole-dipole repulsion balanced against particle weight. The external electric field was calculated using the existing electric field models. The spacing was found to be dependent on particle density and the induced dipole moment as well as the number of particles present on the droplet interface. As the number of particles increased, a decrease in interparticle spacing was observed.
Collapse
Affiliation(s)
- Benjamin T Lobel
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Matthew J Hobson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Peter M Ireland
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Casey A Thomas
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Haruka Ogino
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
24
|
Uda M, Fujiwara J, Seike M, Segami S, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Controllable Positive/Negative Phototaxis of Millimeter-Sized Objects with Sensing Function. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11093-11101. [PMID: 34473503 DOI: 10.1021/acs.langmuir.1c01833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phototaxis, which is the directional motion toward or away from light, is common in nature and inspires development of artificial light-steered active objects. Most of the light-steered objects developed so far exhibit either positive or negative phototaxis, and there are few examples of research on objects that exhibit both positive and negative phototaxis. Herein, small objects showing both positive and negative phototaxis on the water surface upon near-infrared (NIR) light irradiation, with the direction controlled by the position of light irradiation, are reported. The millimeter-sized tetrahedral liquid marble containing gelled water coated by one polymer plate with light-to-heat photothermal characteristic, which adsorbs onto the bottom of the liquid marble, and three polymer plates with highly transparent characteristic, which adsorb onto the upper part of the liquid marble, is utilized as a model small object. Light irradiation on the front side of the object induces negative phototaxis and that on the other side induces positive phototaxis, and the motion can be controlled to 360° arbitrary direction by precise control of the light irradiation position. Thermographic studies confirm that the motions are realized through Marangoni flow generated around the liquid marble, which is induced by position-selective NIR light irradiation. The object can move centimeter distances, and numerical analysis indicates that average velocity and acceleration are approximately 12 mm/s and 71 mm/s2, respectively, which are independent of the direction of motions. The generated force is estimated to be approximately 0.4 μN based on Newton's equation. Furthermore, functional cargo can be loaded into the inner phase of the small objects, which can be delivered and released on demand and endows them with environmental sensing ability.
Collapse
Affiliation(s)
- Makoto Uda
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Junya Fujiwara
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Musashi Seike
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Shinji Segami
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Shinya Higashimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
25
|
Polypyrrole-coated Pickering-type droplet as light-responsive carrier of oily material. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Tenjimbayashi M, Fujii S. How Liquid Marbles Break Down: Direct Evidence for Two Breakage Scenarios. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102438. [PMID: 34346161 DOI: 10.1002/smll.202102438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Liquid marbles are nonsticking droplets wrapped with hydrophobic nano- to micrometer particles and are expected to be useful for various applications, especially in industrial and biomedical fields. However, the practical use of liquid marbles is limited by their fragility. In this study, the dynamics of particle monolayer-stabilized liquid marble breakage upon impacting a solid surface are monitored in situ by high-speed interfacial microscopy. The experiments show that the breakage of liquid marbles can be induced by either i) cracking or ii) water penetration depending on the impact energy. The applicable scenario is determined by whether a jamming transition of the wrapping particles occurs during impact. The breakage mechanisms provide insights on how to improve the robustness of liquid marbles in accordance with these scenarios.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
27
|
Osumi T, Seike M, Oyama K, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of dioctyl sulfosuccinate‐doped polypyrrole grains by aqueous chemical oxidative polymerization and their use as light‐responsive liquid marble stabilizer. J Appl Polym Sci 2021. [DOI: 10.1002/app.51009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tomoki Osumi
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering Osaka Institute of Technology Osaka Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering Osaka Institute of Technology Osaka Japan
| | - Shinya Higashimoto
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology Osaka Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology Osaka Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology Osaka Japan
| |
Collapse
|
28
|
Fujiwara J, Yokoyama A, Seike M, Vogel N, Rey M, Oyama K, Hirai T, Nakamura Y, Fujii S. Boxes fabricated from plate-stabilized liquid marbles. MATERIALS ADVANCES 2021; 2:4604-4609. [PMID: 34355189 PMCID: PMC8290327 DOI: 10.1039/d1ma00398d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Polyhedral liquid marbles were fabricated using hydrophobic polymer plates in the shape of a circle, a heart and a star as a stabilizer and water as an inner liquid phase. Boxes could be fabricated by the evaporation of the inner water from the liquid marbles. The fabrication efficiency and stability of these boxes as a function of the plate shape were investigated. Functional materials such as polymers and colloidal particles were successfully introduced into the boxes.
Collapse
Affiliation(s)
- Junya Fujiwara
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Ai Yokoyama
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Musashi Seike
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 Erlangen 91058 Germany
| | - Marcel Rey
- Department of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road Edinburgh EH9 3FD UK
| | - Keigo Oyama
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| |
Collapse
|
29
|
Frank B, Perovic M, Djalali S, Antonietti M, Oschatz M, Zeininger L. Synthesis of Polymer Janus Particles with Tunable Wettability Profiles as Potent Solid Surfactants to Promote Gas Delivery in Aqueous Reaction Media. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32510-32519. [PMID: 34185504 PMCID: PMC8283753 DOI: 10.1021/acsami.1c07259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Janus particles exhibit a strong tendency to directionally assemble and segregate to interfaces and thus offer advantages as colloidal analogues of molecular surfactants to improve the stability of multiphasic mixtures. Investigation and application of the unique adsorption properties require synthetic procedures that enable careful design and reliable control over the particles' asymmetric chemistry and wettability profiles with high morphological uniformity across a sample. Herein, we report on a novel one-step synthetic approach for the generation of amphiphilic polymer Janus particles with highly uniform and tunable wettability contrasts, which is based on using reconfigurable bi-phasic Janus emulsions as versatile particle scaffolds. Two phase-separated acrylate oils were used as the constituent droplet phases and transformed into their solidified Janus particle replicas via UV-induced radical polymerization. Using Janus emulsions as particle precursors offers the advantage that their internal droplet geometry can be fine-tuned by changing the force balance of surface tensions acting at the individual interfaces via surfactants or the volume ratio of the constituent phases. In addition, preassembled functional surfactants at the droplet interfaces can be locked in position upon polymerization, which enables both access toward postfunctionalization reaction schemes and the generation of highly uniform Janus particles with adjustable wettability profiles. Depending on the particle morphology and wettability, their interfacial position can be adjusted, which allows us to stabilize either air bubbles-in-water or water droplets-in-air (liquid marbles). Motivated by the interfacial activity of the particles and particularly the longevity of the resulting particle-stabilized air-in-water bubbles, we explored their ability to promote the delivery of oxygen inside a liquid-phase reaction medium, namely, for the heterogeneous Au-NP-mediated catalytic oxidation of d-glucose. We observed a 2.2-fold increase in the reaction rate attributed to the increase of the local concentration of oxygen around catalysts, thus showcasing a new strategy to overcome the limited solubility of gases in aqueous reaction media.
Collapse
Affiliation(s)
- Bradley
D. Frank
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Milena Perovic
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saveh Djalali
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martin Oschatz
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Faculty
of Chemistry and Earth Sciences, Friedrich-Schiller-University
of Jena, Philosophenweg
7a, 07743 Jena, Germany
| | - Lukas Zeininger
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
30
|
Oyama K, Seike M, Mitamura K, Watase S, Suzuki T, Omura T, Minami H, Hirai T, Nakamura Y, Fujii S. Monodispersed Nitrogen-Containing Carbon Capsules Fabricated from Conjugated Polymer-Coated Particles via Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4599-4610. [PMID: 33827217 DOI: 10.1021/acs.langmuir.1c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR) light irradiation induced the transformation of polypyrrole (PPy) to nitrogen-containing carbon (NCC) material due to its light-to-heat photothermal property. The temperature of the PPy increased over 700 °C within a few seconds by the NIR laser irradiation, and elemental microanalysis confirmed the decreases of hydrogen and chloride contents and increases of carbon and nitrogen contents. Monodispersed polystyrene (PS)-core/PPy shell particles (PS/PPy particles) synthesized by aqueous chemical oxidative seeded polymerization were utilized as a precursor toward monodispersed NCC capsules. When the NIR laser was irradiated to the PS/PPy particles, the temperature rose to approximately 300 °C and smoke was generated, indicating that the PS component forming the core was thermally decomposed and vaporized. Scanning electron microscopy studies revealed the successful formation of spherical and highly monodispersed capsules, and Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy studies confirmed the capsules consisted of NCC materials. Furthermore, sunlight was also demonstrated to work as a light source to fabricate NCC capsules. The size and thickness of the capsules can be controlled between 1 and 80 μm and 146 and 231 nm, respectively, by tuning the size of the original PS/PPy particles and PPy shell thickness.
Collapse
Affiliation(s)
- Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Koji Mitamura
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Seiji Watase
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Toyoko Suzuki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Taro Omura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Hideto Minami
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
31
|
Uda M, Kawashima H, Mayama H, Hirai T, Nakamura Y, Fujii S. Locomotion of a Nonaqueous Liquid Marble Induced by Near-Infrared-Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4172-4182. [PMID: 33788574 DOI: 10.1021/acs.langmuir.1c00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micrometer-sized hydrophobic polyaniline (PANI) grains were synthesized via an aqueous chemical oxidative polymerization protocol in the presence of dopant carrying perfluoroalkyl or alkyl groups. The critical surface tensions of the PANIs synthesized in the presence of heptadecafluorooctanesulfonic acid and sodium dodecyl sulfate dopants were lower than that of PANI synthesized in the absence of dopant, indicating the presence of hydrophobic dopant on the grain surfaces. The PANI grains could adsorb to air-liquid interfaces, and aqueous and nonaqueous liquid marbles (LMs) were successfully fabricated using liquids with surface tensions ranging between 72.8 and 42.9 mN/m. Thermography studies confirmed that the surface temperature of the LMs increased by near-infrared light irradiation thanks to the photothermal property of the PANI, and the maximum temperatures measured for nonaqueous LMs were higher than that measured for aqueous LM. We demonstrated that transport of the LMs on a planar water surface can be achieved via Marangoni flow generated by the near-infrared light-induced temperature gradient. Numerical analyses indicated that the LMs containing liquids with lower specific heat and thermal conductivity and higher density showed longer path length per one light irradiation shot and longer decay time. This is because generated heat could efficiently transfer from the LMs to the water surface and larger inertial force could work on the LMs. The LMs could also move over the solid substrate thanks to their near-spherical shapes. Furthermore, it was also demonstrated that the inner liquids of the LMs could be released on site by an external stimulus.
Collapse
Affiliation(s)
- Makoto Uda
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hisato Kawashima
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
32
|
Uda M, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of poly(alkylaniline)s by aqueous chemical oxidative polymerization and their use as stimuli-responsive liquid marble stabilizer. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|