1
|
Huang KY, Chen YY, Yang ZQ, Pan YP, Xie J, Chen W, Deng HH. Dual-Function Strategy for Enhanced Quercetin Detection Using Terbium(III) Ion-Bound Gold Nanoclusters. Anal Chem 2025; 97:5191-5199. [PMID: 39998817 DOI: 10.1021/acs.analchem.4c06529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The engineering of metal nanoclusters (NCs) that exhibit bright emissions and high sensing performance under physiological conditions is still a formidable challenge. In this study, we report a novel design strategy for realizing excellent performance metal NC-based probes by leveraging both concerted proton-coupled electron transfer (PCET) and photoinduced electron transfer (PET) mechanisms, with terbium(III) (Tb3+) ions serving as a key modulator. Our findings indicate that the binding of Tb3+ ions to the 6-aza-2-thiothymidine (ATT) ligand effectively inhibits the proton-transfer step in the concerted PCET pathway of Au10(ATT)6 NCs, giving rise to over a 10-fold enhancement in fluorescence and a quantum yield of 7.2%. Moreover, the capped Tb3+ ions on the surface of Au10(ATT)6 NCs can act as a bridge to facilitate an efficient donor-linker-acceptor type PET reaction from quercetin (Que) to the excited Au10 core by specifically interacting with the bare 3-OH group. These advancements enable the Tb3+/Au10(ATT)6 NC-based probe to achieve a significantly lower limit of detection for Que, reduced by nearly 3 orders of magnitude to 2.6 nM, while also addressing the critical difficulty of selectively detecting Que in the presence of its glycosylated analogues. This work opens new opportunities for the precise control of photoluminescence in metal NC probes at the molecular level, potentially promoting the development of next-generation metal NC-based sensing technologies.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Yan-Yan Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhi-Qiang Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Yan-Ping Pan
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Jun Xie
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
2
|
Wang WJ, Liu KQ, Meng XY, Sun ZY, Li F, Wang ZX. PET-based aqueous-stable two-phase perovskite nanoprobe for quantification of capsaicin in food samples. Analyst 2025; 150:1066-1070. [PMID: 39964117 DOI: 10.1039/d4an01569j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
We introduce an innovative two-phase-perovskite-based sensing platform for the ultrasensitive detection of capsaicin via a photo-induced electron transfer mechanism, with a limit of detection as low as 0.21 nM. Importantly, the successful use of this probe for monitoring capsaicin in real samples suggests its potential for use in the food sector.
Collapse
Affiliation(s)
- Wen-Juan Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Kai-Qi Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xiang-Ying Meng
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China.
| | - Ze-Yu Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Feng Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
3
|
Noreldeen HAA, Zhu CT, Huang KY, Peng HP, Deng HH, Chen W. A double probe-based fluorescence sensor array to detect rare earth element ions. Analyst 2025; 150:612-619. [PMID: 39838937 DOI: 10.1039/d4an01520g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
There is a persistent need for effective sensors to detect rare earth element ions (REEIs) due to their effects on human health and the environment. Thus, a simple and efficient fluorescence-based detection method for REEIs that offers convenience, flexibility, versatility, and efficiency is essential for ensuring environmental safety, food quality, and biomedical applications. In this study, 6-aza-2-thiothymine-gold nanoclusters (ATT-AuNCs) and bovine serum albumin/3-mercaptopropionic acid-AuNCs (BSA/MPA-AuNCs) were utilized to detect 14 REEIs (Sc3+, Gd3+, Lu3+, Y3+, Ce3+, Pr3+, Yb3+, Dy3+, Tm3+, Sm3+, Ho3+, Tb3+, La3+, and Eu3+), resulting in the creation of a simple, sensitive, and multi-target fluorescence sensor array detection platform. We observed that REEIs exert various enhancement or quenching effects on ATT-AuNCs and BSA/MPA-AuNCs. Thus, these two probes function as double signal channels, with the different effects of REEIs serving as signal inputs. Pattern recognition methods, including hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA), were used to assess the recognition performance of the constructed sensing system. Beyond the excellent ability to recognize individual REEIs, the platform is also capable of distinguishing mixed REEIs. Also, this approach was validated by applying it to detect REEIs in purified water samples. This method not only minimizes the need for synthesizing and optimizing new probes but also offers a novel approach for the determination and identification of diverse analytes, filling a gap in the detection of a large number of REEIs simultaneously.
Collapse
Affiliation(s)
- Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Chen-Ting Zhu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
4
|
Li G, Chao M, Xu H, Tai S, Mao M, Cao W, Peng C, Ma W, Feng Y, Wang Z. Preparation of Metal Nanocluster Supraparticles for Ultrasensitive Sensing of Tetracycline Based on Multiple Interactions between a Target and Sensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26536-26546. [PMID: 39555860 DOI: 10.1021/acs.jafc.4c09194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
New strategies for enhancing the fluorescence emission of metal nanoclusters (MNCs) are very crucial for the highly sensitive sensing of food hazards. In this work, we prepared MNC supraparticles (Sc-CB/AuNCs) by simultaneously introducing cucurbit[7]uril (CB[7]) and Sc3+ ions into ATT-AuNCs for the first time. The obtained supraparticles exhibited strong emission enhancement due to synergistic aggregation-induced emission enhancement and restriction of intramolecular motion effects. Notably, the fluorescence of ATT-AuNCs was enhanced by 24-fold due to the combination of CB[7] and Sc3+ ions, and the quantum yield reached 69.1%. Moreover, we found that tetracycline (TC) could bind to the Sc-CB/AuNCs through simultaneous host-guest recognition and ionic complexation, which effectively quenched the Sc-CB/AuNCs through the synergy of photoinduced electron transfer and inner filter effect. Based on the above multiple interactions between TC and Sc-CB/AuNCs, an ultrasensitive sensing method for TC was constructed with an LOD of 0.3 nM. Furthermore, a portable fluorescent gel sensor was constructed and successfully used for TC detection in honey samples. The test took only 2 min. This work not only provided a simple and effective fluorescence enhancement strategy for MNCs but also offered a novel sensing strategy, which may largely extend the potential of host-guest recognition-based sensors for food and environmental hazards.
Collapse
Affiliation(s)
- Guowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Mengjia Chao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Hengyu Xu
- China Tobacco Zhejiang Industrial Co. Ltd., Ningbo 315502, P. R. China
| | - Shengmei Tai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Minxin Mao
- Shandong Institute of Pomology, Taian 271000, P. R. China
| | - Wenbo Cao
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
| | - Chifang Peng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Wei Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Yongwei Feng
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| |
Collapse
|
5
|
Chen F, Ruan F, Xie X, Lu J, Sun W, Shao D, Chen M. Gold Nanocluster: A Photoelectric Converter for X-Ray-Activated Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402966. [PMID: 39044607 DOI: 10.1002/adma.202402966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Indexed: 07/25/2024]
Abstract
Despite the promise of activatable chemotherapy, the development of a spatiotemporally controllable strategy for prodrug activation in deep tissues remains challenging. Herein, a proof-of-concept is proposed for a gold nanocluster-based strategy that utilizes X-ray irradiation to trigger the liberation of platinum (Pt)-based prodrug conjugates, thus enabling radiotherapy-directed chemotherapy. Mechanistically, the irradiated activation of prodrugs is achieved through direct photoelectron transfer from the excited-state gold nanoclusters to the Pt(IV) center, resulting in the release of cytotoxic Pt(II) agents. Compared to the traditional combination of chemotherapy and radiotherapy, this radiotherapy-directed chemotherapy strategy offers superior antitumor efficacy and safety benefits through spatiotemporal synergy at the tumor site. Additionally, this strategy elicits robust immunogenic cell death and yields profound outcomes for combined immunotherapy of breast cancer. This versatile strategy is ushering in a new era of radiation-mediated chemistry for controlled drug delivery and the precise regulation of biological processes.
Collapse
Affiliation(s)
- Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Feixia Ruan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Junna Lu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| |
Collapse
|
6
|
Wang Q, Song Y, Wu S, Lv J, Xiao Y, Ning Y, Tian H, Liu B. Dual Stimulus Responsive GO-Modified Tb-MOF toward a Smart Coating for Corrosion Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29162-29176. [PMID: 38785388 DOI: 10.1021/acsami.4c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Smart-sensing coatings that exhibit multistimulus response, rapid indication, and reusability are in urgent need to effectively enhance the practicability of coatings while accurately detecting metal corrosion. In this work, a reusable corrosion self-reporting coating with multiple pH and Fe3+ stimulus responses was first constructed by the integration of a composite fluorescent probe into the resin matrix. This composite sensor was constructed by combining a lanthanide metal-organic framework (Ln-MOF) based on terbium and trimeric acid (H3BTC) with graphene oxide (GO) nanosheets (GO@Tb-BTC). The incorporation of GO formed a sea-urchin-like structure, thereby increasing the specific surface area and active sites of the probe. The coatings were characterized by using electrochemical impedance spectroscopy (EIS), visual observation, and fluorescence spectrophotometry. The surface morphology, wettability, and adhesion of the coating samples were analyzed using SEM, XPS, hydrostatic contact angle test, and an adhesion test. EIS measurements in 3.5 wt % NaCl solution for 72 h demonstrated the superior corrosion protection performance of the 0.3 wt %/GO@Tb-BTC/WEP coating compared to blank coating, with the charge-transfer resistance reaching 4.33 × 107 Ω·cm2, which was 9.5 times higher than that of the pure coating. The bright green fluorescence of GO@Tb-BTC/WEP coating exhibited a turn-off response when there was an excess of OH-/H+, but it demonstrated a reversible turn-on fluorescence when the ambient pH returned to neutral. Furthermore, such Fe3+-triggered fluorescence quenching responded to concentrations as low as 1 × 10-6 M. The fluorescence quenching rate of both intact and damaged coatings surpassed that of visual and EIS detection methods. Significantly, the fluorescence in scratches was effectively quenched within 25 min using 0.3 wt %/GO@Tb-BTC/WPU coating for visual observation. GO@Tb-BTC demonstrated exceptional corrosion self-reporting capabilities in both epoxy and polyurethane systems, making it a versatile option beyond single-coating applications.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yihan Song
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Wu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangming Lv
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujie Ning
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huayang Tian
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Paul M, Chattopadhyay A. Modulating the Photoluminescence of Europium through Crystalline Assembly Formation with Gold Nanoclusters and Then Phosphate Ions. J Phys Chem Lett 2023; 14:11250-11257. [PMID: 38060203 DOI: 10.1021/acs.jpclett.3c02834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
We report delayed fluorescence enhancement of europium (Eu3+) ions through complexation with ligand-stabilized gold nanoclusters (Au NCs). The different Eu3+-centric emissions following complexation with Au NCs exhibited selective augmentation in the spectral lines attributed to the 5D0 → 7FJ transitions. The photoluminescence (PL) properties, including delayed Eu emission, from each component could be modulated through further functionalization of phosphate ions (Pi), leading to crystallization. The assembled crystalline structure of europium-containing Au NCs (Eu Au NCs) was corroborated by selected area electron diffraction analyses and high-resolution transmission electron microscopy analyses. On the basis of PL measurements and other experimental evidence, the two different lifetimes arising from the components, prompt emission of Au NCs and delayed emission of Eu3+, were affected in the assembled nanostructure. Such a design offers the possibility of developing an optical system by conjugating molecular NCs and atomic luminescent probes that has potential uses.
Collapse
Affiliation(s)
- Manideepa Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arun Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Shen J, Fan Z. Ce 4+/Ce 3+ as the switch of AIE-copper nanoclusters for highly selective detection of ascorbic acid in soft drinks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123070. [PMID: 37390716 DOI: 10.1016/j.saa.2023.123070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
An ultrasimple "turn-on" sensor for indirectly detecting ascorbic acid (AA) was prepared using N-acetyl-L-cysteine stabilized copper nanoclusters (NAC-CuNCs) via the AIE (aggregation-induced emission) effect controlled by Ce4+/Ce3+ redox reaction. This sensor fully utilizes the different properties of Ce4+ and Ce3+. Non-emissive NAC-CuNCs were synthesized by a facile reduction method. NAC-CuNCs easily aggregate in the presence of Ce3+ due to AIE, resulting in fluorescence enhancement. However, this phenomenon cannot be observed in the presence of Ce4+. Ce4+ possesses strong oxidizing ability and produces Ce3+ by reacting with AA via a redox reaction, followed by switching on the luminescence of NAC-CuNCs. Moreover, the fluorescence intensity (FI) of NAC-CuNCs increases with the concentration of AA in the range of 4-60 µM, with the limit of detection (LOD) as low as 0.26 µM. This probe with excellent sensitivity and selectivity was successfully used in the determination of AA in soft drinks.
Collapse
Affiliation(s)
- Jingxiang Shen
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China; Department of Chemistry, Changzhi University, Changzhi 046011, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China.
| |
Collapse
|
9
|
Deng D, Xu J, Li T, Tan D, Ji Y, Li R. Dual-mode strategy for 2,6-dipicolinic acid detection based on the fluorescence property and peroxidase-like activity inhibition of Fe-MIL-88NH 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122363. [PMID: 36702084 DOI: 10.1016/j.saa.2023.122363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
This work designed a fluorometric/colorimetric dual-mode sensor for detecting 2,6-dipicolinic acid (DPA) based on the blue emission property and peroxidase-like activity of Fe-MIL-88NH2. The fluorescence of Fe-MIL-88NH2 was obviously turned off by Cu2+, but DPA was able to bring it back because it has a strong chelate bond with Cu2+. Fe-MIL-88NH2 also displayed high peroxidase-like activity, which accelerated the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to the blue oxidation product (oxTMB) when H2O2 was present. When DPA was added, it efficiently inhibited the peroxidase-like activity of Fe-MIL-88NH2, causing less oxTMB and less absorbance at 652 nm. The fluorescence recovery of Fe-MIL-88NH2 and the change in absorbance at 652 nm were used as analytical signals for dual-mode detection of DPA. The linear responses in the range of 10-60 μM and 60-160 μM were achieved for the fluorometric mode, and the limit of detection (LOD) was 1.46 μM. The respective values of linear range and LOD for the colorimetric mode were 5-25 μM and 3.00 μM, respectively. In summary, the dual-mode testing strategy successfully detected DPA in aqueous environmental samples, suggesting great potential in disease prevention and environmental analysis.
Collapse
Affiliation(s)
- Donglian Deng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jingyuan Xu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Dongdong Tan
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
10
|
Lin X, Wu H, Zeng S, Peng T, Zhang P, Wan X, Lang Y, Zhang B, Jia Y, Shen R, Yin B. A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples. Biosens Bioelectron 2023; 230:115283. [PMID: 37019031 DOI: 10.1016/j.bios.2023.115283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
A desirable lanthanide-based ratiometric fluorescent probe was designed and integrated into a self-designed Fermat spiral microfluidic chip (FS-MC) for the automated determination of a unique bacterial endospore biomarker, dipicolinic acid (DPA), with high selectivity and sensitivity. Here, a blue emission wavelength at 425 nm was generated in the Fermat spiral structure by mixing the europium (Eu3+) and luminol to form the Eu3+/Luminol sensing probe. DPA in the reservoir can be used to specifically bind to Eu3+ under the negative pressure and transfer energy from DPA to Eu3+ sequentially via an antenna effect, thus resulting in a significant increase in the red fluorescence emission peak at 615 nm. According to the fluorescence intensity ratio (F615/F425), a good linearity can be obtained with increasing the concentration of DPA from 0 to 200 μM with a limit of detection as low as 10.11 nM. Interestingly, the designed FS-MC can achieve rapid detection of DPA in only 1 min, reducing detection time and improving sensitivity. Furthermore, a self-designed device integrated with the FS-MC and a smartphone color picker APP was employed for the rapid automatic point-of-care testing (POCT) of DPA in the field, simplifying complex processes and reducing testing times, thus confirming the great promise of this ready-to-use measurement platform for in situ inspection.
Collapse
|
11
|
Bi X, Li L, Niu Q, Liu X, Luo L, Jiang H, You T. Highly Fluorescent Magnetic ATT-AuNCs@ZIF-8 for All-in-One Detection and Removal of Hg 2+: An Ultrasensitive Probe to Evaluate Its Removal Efficiency. Inorg Chem 2023; 62:3123-3133. [PMID: 36749708 DOI: 10.1021/acs.inorgchem.2c03994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of multifunctional materials for the synchronous detection and removal of mercury ions (Hg2+) is in high demand. Although a few multifunctional materials as a fluorescent indicator and adsorbent have achieved this aim, the feedback of their removal efficiency still depends on other methods. Herein, magnetic Fe3O4 nanoparticles (MNPs) and 6-aza-2-thiothymine-protected gold nanoclusters (ATT-AuNCs) were rationally assembled into a zeolitic imidazolate framework 8 (ZIF-8) structure via a one-pot method. The coordination assembly of ATT-AuNCs and ZIF-8 not only strengthened the aurophilic interactions of adjacent ATT-AuNCs but also induced the restriction of intramolecular motion of ATT with a six-membered heterocyclic structure. As a consequence, the fluorescence (FL) quantum yield of MNPs/ATT-AuNCs@ZIF-8 was 12.5-fold higher than that of pristine ATT-AuNCs. Benefiting from the enhanced FL emission, MNPs/ATT-AuNCs@ZIF-8 showed improved sensitivity for Hg2+ detection and therefore could evaluate the removal efficiency via FL detection, without relying on another detection method. Additionally, the nanocomposite also displayed a satisfactory removal capability for Hg2+, including a short capture time (20 min), a high removal efficiency (>96.9%), and excellent reusability (10 cycles). This work provides an approach for customizing functional nanocomposites to concurrently detect and remove Hg2+ with superior performance, especially for high detection sensitivity.
Collapse
Affiliation(s)
- Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huihui Jiang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
12
|
Sanjeevan Lekshmi R, Kodinattumkunnel Abraham M, Madanan Anju S, Omana Aswathy A, Varghese S, Nettaichuvilakom Subha V, Ibrahim Shkhair A, George S. Europium (III) Incorporated Bovine Serum Albumin Stabilized Gold Nanoclusters as Fluorescent Probes for the Detection of Sarcosine, a Prostate Cancer Biomarker. ChemistrySelect 2023. [DOI: 10.1002/slct.202204649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ragini Sanjeevan Lekshmi
- Department of Chemistry School of Physical and Mathematical Sciences Research Centre University of Kerala Kariavattom campus, Thiruvananthapuram 695581 Kerala India
| | - Merin Kodinattumkunnel Abraham
- Department of Chemistry School of Physical and Mathematical Sciences Research Centre University of Kerala Kariavattom campus, Thiruvananthapuram 695581 Kerala India
| | - Saralammma Madanan Anju
- Department of Chemistry School of Physical and Mathematical Sciences Research Centre University of Kerala Kariavattom campus, Thiruvananthapuram 695581 Kerala India
| | - Ashokan Omana Aswathy
- Department of Chemistry School of Physical and Mathematical Sciences Research Centre University of Kerala Kariavattom campus, Thiruvananthapuram 695581 Kerala India
| | - Susan Varghese
- Department of Chemistry School of Physical and Mathematical Sciences Research Centre University of Kerala Kariavattom campus, Thiruvananthapuram 695581 Kerala India
| | - Vijila Nettaichuvilakom Subha
- Department of Chemistry School of Physical and Mathematical Sciences Research Centre University of Kerala Kariavattom campus, Thiruvananthapuram 695581 Kerala India
| | - Ali Ibrahim Shkhair
- Department of Chemistry School of Physical and Mathematical Sciences Research Centre University of Kerala Kariavattom campus, Thiruvananthapuram 695581 Kerala India
| | - Sony George
- Department of Chemistry School of Physical and Mathematical Sciences Research Centre University of Kerala Kariavattom campus, Thiruvananthapuram 695581 Kerala India
| |
Collapse
|
13
|
Sang F, Xiong T, Wang W, Pan J, Shi H, Zhao Y. A Simple Schiff Base as Fluorescent Probe for Detection of Al 3+ in Aqueous Media and its Application in Cells Imaging. J Fluoresc 2023; 33:177-184. [PMID: 36323832 DOI: 10.1007/s10895-022-03047-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
A novel fluorescence probe for the detection of Al3+ was developed based on methionine protected gold nanoclusters (Met-AuNCs). A fluorescent Schiff base (an aldimine) is formed between the aldehyde group of salicylaldehyde (SA) and the amino groups of Met on the AuNCs, and developed for selective detection of Al3+ in aqueous solution. Al3+ can strongly bind with the Schiff base ligands, accompanied by the blue-shift and an obvious fluorescence emission enhancement at 455 nm. The limits of detection (LODs) of the probe are 2 pmol L-1 for Al3+. Moreover, the probe can successfully be used in fluorescence imaging of Al3+ in living cells (SHSY5Y cells), suggesting that the simple fluorescent probe has great potential use in biological imaging.
Collapse
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China.
| | - Tiedan Xiong
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Weijie Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Jianxin Pan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Huahua Shi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Yan Zhao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| |
Collapse
|
14
|
Kateshiya MR, Desai ML, Malek NI, Kailasa SK. Advances in Ultra-small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J Fluoresc 2022; 33:775-798. [PMID: 36538145 DOI: 10.1007/s10895-022-03115-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.
Collapse
|
15
|
Weng Z, Li Z, Zhang Y, Zhang M, Huang Z, Chen W, Peng H. Gold Nanocluster Probe-Based Electron-Transfer-Mediated Electrochemiluminescence Sensing Strategy for an Ultrasensitive Copper Ion Detection. Anal Chem 2022; 94:15896-15901. [DOI: 10.1021/acs.analchem.2c04012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhimin Weng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou350122, China
| | - Zhenglian Li
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou350122, China
| | - Yixuan Zhang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou350122, China
| | - Mingying Zhang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou350122, China
| | - Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou350122, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou350122, China
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou350122, China
| |
Collapse
|
16
|
Jia X, Zhang C, Gao L, Yang X, Yu Z, Lou X, Jia G. Controllable Synthesis, Formation Process, and Luminescence Performances of Diverse Yttrium Compounds with Hollow Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11917-11928. [PMID: 36130199 DOI: 10.1021/acs.langmuir.2c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hollow spherical Y2O3 and YBO3 have been prepared by a facile template-directed strategy using phenol-formaldehyde (PF) resin spheres as templates. The PF@Y(OH)CO3 precursor can be fabricated by a simple precipitation route. The Y2O3 hollow spheres are obtained via a direct annealing process, and the hollow spherical YBO3 are fabricated via a hydrothermal route followed by an annealing process at the expense of the same PF@Y(OH)CO3 precursor. The whole synthesis procedure is performed in aqueous solution without any surfactant or catalyst. Moreover, YVO4 quasi-octahedral microcrystals with spherical holes are obtained. The formation mechanisms of the yttrium compounds with different morphologies have been discussed. By incorporating proper rare earth activator ions into the Y2O3, YBO3, and YVO4 hosts, the as-synthesized luminescent materials can exhibit eminent performances with both down-conversion and up-conversion luminescence. Furthermore, the as-fabricated light-emitting diode (LED) devices can emit dazzling characteristic emission light, which reveals that the phosphors have application potential in lighting and displays. This simple synthesis strategy may provide a new idea for the fabrication of inorganic compounds with perfect hollow structures and excellent properties.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Cuimiao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Lan Gao
- Department of Biochemistry, Baoding University, Baoding 071000, P. R. China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Ziman Yu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaomeng Lou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Guang Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
17
|
A Smartphone Integrated Platform for Ratiometric Fluorescent Sensitive and Selective Determination of Dipicolinic Acid. BIOSENSORS 2022; 12:bios12080668. [PMID: 36005063 PMCID: PMC9405621 DOI: 10.3390/bios12080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
A desirable lanthanide-based ratiometric fluorescence probe was designed as a multifunctional nanoplatform for the determination of dipicolinic acid (DPA), a unique bacterial endospore biomarker, with high selectivity and sensitivity. The carbon dots (CDs) with blue emission wavelengths at 470 nm are developed with europium ion (Eu3+) to form Eu3+/CDs fluorescent probes. DPA can specifically combine with Eu3+ and then transfer energy from DPA to Eu3+ sequentially through the antenna effect, resulting in a distinct increase in the red fluorescence emission peak at 615 nm. The fluorescence intensity ratio of Eu3+/CDs (fluorescence intensity at 615 nm/fluorescence intensity at 470 nm) showed good linearity and low detection limit. The developed ratiometric nanoplatform possesses great potential for application in complex matrices owing to its specificity for DPA. In addition, the integration of a smartphone with the Color Picker APP installed enabled point-of-care testing (POCT) with quantitative measurement capabilities, confirming the great potential of the as-prepared measurement platform for on-site testing.
Collapse
|
18
|
Gold Nanocluster-Based Fluorometric Banoxantrone Assay Enabled by Photoinduced Electron Transfer. NANOMATERIALS 2022; 12:nano12111861. [PMID: 35683717 PMCID: PMC9182391 DOI: 10.3390/nano12111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Monitoring the blood concentration of banoxantrone (AQ4N) is important to evaluate the therapeutic efficacy and side effects of this new anticancer prodrug during its clinical applications. Herein, we report a fluorescence method for AQ4N detection through the modulation of the molecule-like photoinduced electron transfer (PET) behavior of gold nanoclusters (AuNCs). AQ4N can electrostatically bind to the surface of carboxylated chitosan (CC) and dithiothreitol (DTT) co-stabilized AuNCs and quench their fluorescence via a Coulomb interaction-accelerated PET process. Under optimized experimental conditions, the linear range of AQ4N is from 25 to 200 nM and the limit of detection is as low as 5 nM. In addition, this assay is confirmed to be reliable based on its successful use in AQ4N determination in mouse plasma samples. This work offers an effective strategy for AQ4N sensing based on fluorescent AuNCs and widens the application of AuNCs in clinical diagnosis and pharmaceutical analysis.
Collapse
|
19
|
Khan IM, Niazi S, Yue L, Zhang Y, Pasha I, Iqbal Khan MK, Akhtar W, Mohsin A, Chughati MFJ, Wang Z. Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta 2022; 241:123228. [DOI: 10.1016/j.talanta.2022.123228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
|
20
|
Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/18/2023]
Abstract
Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.
Collapse
Affiliation(s)
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.
| |
Collapse
|
21
|
Biermann R, Niemeyer L, Rösner L, Ude C, Lindner P, Bice I, Beutel S. Facilitated endospore detection for Bacillus spp. through automated algorithm-based image processing. Eng Life Sci 2022; 22:299-307. [PMID: 35382541 PMCID: PMC8961035 DOI: 10.1002/elsc.202100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Bacillus spp. endospores are important dormant cell forms and are distributed widely in environmental samples. While these endospores can have important industrial value (e.g. use in animal feed as probiotics), they can also be pathogenic for humans and animals, emphasizing the need for effective endospore detection. Standard spore detection by colony forming units (CFU) is time-consuming, elaborate and prone to error. Manual spore detection by spore count in cell counting chambers via phase-contrast microscopy is less time-consuming. However, it requires a trained person to conduct. Thus, the development of a facilitated spore detection tool is necessary. This work presents two alternative quantification methods: first, a colorimetric assay for detecting the biomarker dipicolinic acid (DPA) adapted to modern needs and applied for Bacillus spp. and second, a model-based automated spore detection algorithm for spore count in phase-contrast microscopic pictures. This automated spore count tool advances manual spore detection in cell counting chambers, and does not require human overview after sample preparation. In conclusion, this developed model detected various Bacillus spp. endospores with a correctness of 85-89%, and allows an automation and time-saving of Bacillus endospore detection. In the laboratory routine, endospore detection and counting was achieved within 5-10 min, compared to up to 48 h with conventional methods. The DPA-assay on the other hand enabled very accurate spore detection by simple colorimetric measurement and can thus be applied as a reference method.
Collapse
Affiliation(s)
- Riekje Biermann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Laura Niemeyer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Laura Rösner
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Christian Ude
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Patrick Lindner
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Ismet Bice
- Institute of Technical ChemistryBiochem Zusatzstoffe Handels‐ und Produktionsgesellschaft mbHLohneGermany
| | - Sascha Beutel
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| |
Collapse
|
22
|
Niu X, Wang M, Zhang M, Cao R, Liu Z, Hao F, Sheng L, Xu H. Smart intercalation and coordination strategy to construct stable ratiometric fluorescence nanoprobes for the detection of anthrax biomarker. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L@Mg-Al-Ln-LDHs (Ln = Tb, Eu) constructed by the intercalation coordination strategy exhibited a strong and stable fluorescence reference signal and achieved reliable ratiometric detection of DPA in complex environments and actual spores.
Collapse
Affiliation(s)
- Xiaoxiao Niu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Meixiang Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Mengyu Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Rui Cao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhaodi Liu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Fuying Hao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Liangquan Sheng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
23
|
Yin K, Wu S, Zheng H, Gao L, Liu J, Yang C, Qi LW, Peng J. Lanthanide Metal-Organic Framework-Based Fluorescent Sensor Arrays to Discriminate and Quantify Ingredients of Natural Medicine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5321-5328. [PMID: 33882669 DOI: 10.1021/acs.langmuir.1c00412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discrimination and quantification of the ingredients from natural medicines are a challenging issue due to their complicated and various structures. Metal-organic frameworks (MOFs) have shown great promise in sensing applications. Here, we report a fluorescent sensor array for rapid identification of some natural compounds using a sensor array composed of four kinds of lanthanide (Eu3+ and Tb3+) fluorescent MOFs (Ln-MOFs), which have diversified fluorescent responses to 26 active/toxic compounds including 12 saponins, 7 flavonoids, 3 stilbenes, and 4 anthraquinones. The fluorescence of the Ln-MOFs after reaction with the compounds was summarized as datasets and processed by principle component analysis (PCA) and hierarchical cluster analysis (HCA) methods. The corresponding responses of the 4 types of compounds are well separated on 2D/3D PCA score plots and HCA dendrograms. We have also tested typical blind samples by concentration-dependent PCA, and an accuracy of 100% was obtained. In addition, the response mechanisms of the Ln-MOFs to the compounds were also studied. Compared with traditional methods using liquid chromatography-mass spectrometry, the developed fluorescent sensor array provides a more efficient and economic strategy to discriminate various active/toxic ingredients in natural medicine.
Collapse
Affiliation(s)
- Kunpeng Yin
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Siqi Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zheng
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Liang Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jinfeng Liu
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|