1
|
Zhang Y, Luo J, Wang L, Zhang Y, Luan W, Wang H, Yang H, Fan Y, Fan D, Wei Q. Self-powered photochemical cathode aptamer sensor based on ZnIn 2S 4 photoanode and Cu 2O@Ag@Ag 3PO 4 photocathode for the sensitive detection of Hg 2. Mikrochim Acta 2024; 191:392. [PMID: 38874768 DOI: 10.1007/s00604-024-06486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
A self-powered photoelectrochemical (PEC) aptamer sensor based on ZnIn2S4 as the photoanode and Cu2O@Ag@Ag3PO4 as the sensing cathode is designed for the detection of Hg2+. An indium tin oxide (ITO) electrode modified with ZnIn2S4 was used instead of a platinum (Pt) counter electrode to provide an obviously stable photocurrent signal. The suitable band gap width of ZnIn2S4 can generate photogenerated electrons well. The unique hydrangea structure of ZnIn2S4 can enhance light absorption and accelerate the separation and transfer of photocarriers. At the same time, Cu2O@Ag@Ag3PO4 with excellent electrical conductivity further enhances the photocurrent provided by the ZnIn2S4 photoanode. Because the reducing substances in the biological medium can change the photoanode characteristics of the photoanode interface, the separation of the photoanode and the sensing bicathode is beneficial to improve the anti-interference ability of the sensor. Under optimized conditions, the PEC aptamer sensor realizes the detection of Hg2+ (1 mM-1 fM), and the detection limit is 0.4 fM. In addition, the constructed self-powered PEC sensor has good selectivity, repeatability, and stability, which provides a new idea for the design of the PEC aptamer sensor platform.
Collapse
Affiliation(s)
- Yunfei Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jing Luo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Ling Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yumeng Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Weichao Luan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hongxiao Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yingju Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Herber M, Jiménez Amaya A, Giese N, Bangalore Rajeeva B, Zheng Y, Hill EH. Bubble Printing of Layered Silicates: Surface Chemistry Effects and Picomolar Förster Resonance Energy Transfer Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55022-55029. [PMID: 37967152 DOI: 10.1021/acsami.3c09760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The assembly of nanoparticles on surfaces in defined patterns has long been achieved via template-assisted methods that involve long deposition and drying steps and the need for molds or masks to obtain the desired patterns. Control over deposition of materials on surfaces via laser-directed microbubbles is a nascent technique that holds promise for rapid fabrication of devices down to the micrometer scale. However, the influence of surface chemistry on the resulting assembly using such approaches has so far not been studied. Herein, the printing of layered silicate nanoclays using a laser-directed microbubble was established. Significant differences in the macroscale structure of the printed patterns were observed for hydrophilic, pristine layered silicates compared to hydrophobic, modified layered silicates, which provided the first example of how the surface chemistry of such nanoscale objects results in changes in assembly with this approach. Furthermore, the ability of layered silicates to adsorb molecules at the interface was retained, which allowed the fabrication of proof-of-concept sensors based on Förster resonance energy transfer (FRET) from quantum dots embedded in the assemblies to bound dye molecules. The detection limit for Rhodamine 800 sensing via FRET was found to be on the order of 10-12 M, suggesting signal enhancement due to favorable interactions between the dye and nanoclay. This work sets the stage for future advances in the control of hierarchical assembly of nanoparticles by modification of surface chemistry while also demonstrating a quick and versatile approach to achieve ultrasensitive molecular sensors.
Collapse
Affiliation(s)
- Marcel Herber
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany
| | - Ana Jiménez Amaya
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Nicklas Giese
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany
| |
Collapse
|
3
|
Hill EH. Investigating Solvent-Induced Aggregation in Edge-Functionalized Layered Silicates via All-Atom Molecular Dynamics Simulations. J Phys Chem B 2023; 127:8066-8073. [PMID: 37672482 DOI: 10.1021/acs.jpcb.3c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Molecular dynamics simulations can provide the means to visualize and understand the role of intermolecular interactions in the mechanisms involved in molecular aggregation. Along these lines, simulations can allow the study of how surface chemical modifications can influence nanomaterial assembly at the molecular level. Layered silicate clays have been of significant interest for some time, particularly with regard to their use in organic/inorganic nanocomposites. However, despite numerous reports on the covalent linkage of organic moieties via silanol condensation, the theoretical understanding of these systems has heretofore been limited to noncovalent interactions, specifically ionic interactions at the charged basal surfaces. Herein, a model for edge-functionalized layered aluminosilicate clay, based on the siloxane linkage, is presented. In addition to reproducing experimentally observed degrees of molecular aggregation of clay-linked perylene diimide derivatives with different terminal functional groups as a function of solvent composition, a molecular-level understanding of the role of van der Waals interactions and hydrogen bonding of the different end-groups on the aggregation state in different water/N,N-dimethylformamide mixtures is obtained. The reported model provides a means to simulate organic moieties covalently bound to the layered silicate edge, which will enable future simulations of nanocomposites and organic/inorganic hybrids based on this system.
Collapse
Affiliation(s)
- Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
- The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, Hamburg 22761, Germany
| |
Collapse
|
4
|
Cai Y, Luo F, Guo Y, Guo F, Shi W, Yang S. Near-Infrared Light Driven ZnIn 2S 4-Based Photocatalysts for Environmental and Energy Applications: Progress and Perspectives. Molecules 2023; 28:molecules28052142. [PMID: 36903386 PMCID: PMC10004320 DOI: 10.3390/molecules28052142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Zinc indium sulfide (ZnIn2S4), as a significant visible-light-responsive photocatalyst, has become a research hotspot to tackle energy demand and environmental issues owing to its excellent properties of high stability, easy fabrication, and remarkable catalytic activity. However, its drawbacks, including low utilization of solar light and fast photoinduced charge carriers, limit its applications. Promoting the response for near-infrared (NIR) light (~52% solar light) of ZnIn2S4-based photocatalysts is the primary challenge to overcome. In this review, various modulation strategies of ZnIn2S4 have been described, which include hybrid with narrow optical gap materials, bandgap engineering, up-conversion materials, and surface plasmon materials for enhanced NIR photocatalytic performance in the applications of hydrogen evolution, pollutants purification, and CO2 reduction. In addition, the synthesis methods and mechanisms of NIR light-driven ZnIn2S4-based photocatalysts are summarized. Finally, this review presents perspectives for future development of efficient NIR photon conversion of ZnIn2S4-based photocatalysts.
Collapse
Affiliation(s)
- Yi Cai
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Fangxin Luo
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yujun Guo
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
- Correspondence: (W.S.); (S.Y.)
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (W.S.); (S.Y.)
| |
Collapse
|
5
|
Jatav S, Herber M, Xiang H, Hill EH. Layered Double Hydroxide-Bismuth Molybdate Hybrids toward Water Remediation via Selective Adsorption of Anionic Species. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51921-51930. [PMID: 36355751 DOI: 10.1021/acsami.2c14979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The steady release of anthropogenic toxins into the biosphere is compromising water security globally. Herein, CoAl layered double hydroxide, a clay-like layered material with a cationic surface charge, was organically modified and used to template the growth of Bi2MoO6. The resulting nanohybrid selectively removed the anionic dye methyl orange from aqueous solution and showed an enhancement of greater than 300% in the maximum adsorptivity (1.95 mmol/g) compared to modified CoAl layered double hydroxide (0.42 mmol/g). Interestingly, the observed improvement in adsorption occurs without any significant increase in the surface area of the hybrids. Furthermore, these hybrids exhibit increased broadband visible light absorption, and their photoactivity is slightly improved compared to CoAl layered double hydroxide. This study demonstrates that composites of clay-like materials with Aurivillius oxides are promising sorbent materials for water decontamination and photocatalytic antifouling membranes and shows that the synthetic strategy that was first established with an anionic layered silicate nanoclay can be generalized to other ionic layered materials.
Collapse
Affiliation(s)
- Sanjay Jatav
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Marcel Herber
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Hongxiao Xiang
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Jatav S, Herber M, Xiang H, Hill EH. Surface-Encapsulated Bismuth Molybdate-Layered Silicate Hybrids as Sorbents for Photocatalytic Filtration Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22790-22798. [PMID: 35015519 DOI: 10.1021/acsami.1c20503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Groundwater is being depleted globally at an average rate of more than one meter per year, during a period when more than a quarter of the human population has no access to potable water. Aside from overexploitation, freshwater security is also threatened by climate change and chemical pollution. The contamination of surface and groundwater by industrial substances is also undermining the vitality of ecosystems. It was previously shown that {100}-faceted Bi2MoO6-Laponite hybrids effectively bind and photodegrade molecular species, aiding in the decontamination of water. In this study, the encapsulation of Bi2MoO6-Laponite particles with the polymers butyl acrylate and styrene further enhanced adsorption of methylene blue by 31.4%, with a specific adsorption capacity of 192 μmol/g. The polymer-particle composites were deposited to form membranes and their efficacies in water filtration and photodegradation were examined. Among the different surface modifications examined, the highest dye sorption was obtained by butyl acrylate and styrene (3:2) with a 5 mol % cross-linker. This study provides a method for enhancing the molecular adsorption of composite particles used in membranes capable of multiple cycles of adsorption and photodegradation, advancing the application of such systems to water filtration.
Collapse
Affiliation(s)
- Sanjay Jatav
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Marcel Herber
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Hongxiao Xiang
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
- The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, Hamburg 22761, Germany
| |
Collapse
|
7
|
Jatav S, Liu J, Herber M, Hill EH. Facet Engineering of Bismuth Molybdate via Confined Growth in a Nanoscale Template toward Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18713-18723. [PMID: 33856756 DOI: 10.1021/acsami.1c01144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Certain nanomaterials can filter and alter unwanted compounds due to a high surface area, surface reactivity, and microporous structure. Herein, γ-Bi2MoO6 particles are synthesized via a colloidal hydrothermal approach using organically modified Laponite as a template. This organically modified Laponite interlayer serves as a template promoting the growth of the bismuth molybdate crystals in the [010] direction to result in hybrid Laponite-Bi2MoO6 particles terminating predominantly in the {100} crystal facets. This resulted in an increase in particle size from lateral dimensions of <100 nm to micron scale and superior adsorption capacity compared to bismuth molybdate nanoparticles. These {100}-facet terminated particles can load both cationic and anionic dyes on their surfaces near-spontaneously and retain the photocatalytic properties of Bi2MoO6. Furthermore, dye-laden hybrid particles quickly sediment, rendering the task of particle recovery trivial. The adsorption of dyes is completed within minutes, and near-complete photocatalytic degradation of the adsorbed dye in visible light allowed recycling of these particles for multiple cycles of water decontamination. Their adsorption capacity, facile synthesis, good recycling performance, and increased product yield compared to pure bismuth molybdate make them promising materials for environmental remediation. Furthermore, this synthetic approach could be exploited for facet engineering in other Aurivillius-type perovskites and potentially other materials.
Collapse
Affiliation(s)
- Sanjay Jatav
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Junying Liu
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Marcel Herber
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany
| |
Collapse
|