1
|
Hata Y, Serizawa T. Nanoarchitectonics of cello-oligosaccharides: A route toward artificial nanocelluloses. Adv Colloid Interface Sci 2025; 336:103361. [PMID: 39642432 DOI: 10.1016/j.cis.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Colloidal cellulose nanoparticles, or nanocelluloses, are derived from natural cellulose sources in a top-down manner via physical and/or chemical treatments that extract naturally occurring cellulose nanostructures. Naturally derived nanocelluloses have been successfully commercialized in various fields, and their potential is still being widely explored in materials science. Moreover, recent advances in nanoarchitectonics of low-molecular-weight cellulose, or cello-oligosaccharides, have opened new avenues for developing "artificial nanocelluloses". Artificial nanocelluloses composed of cello-oligosaccharides synthesized via enzymatic oligomerization or solid-phase glycan synthesis technology are termed "synthetic nanocelluloses". These nanostructures are abiotically constructed in a bottom-up manner at the molecular level via self-assembly of cello-oligosaccharides in vitro. Modulation of the assembly process and molecular design provides control over the molecular alignment, nanomorphology, and surface functionality of artificial nanocelluloses. This review summarizes recent research progress in artificial nanocelluloses, from the preparation and self-assembly of cello-oligosaccharides to their potential applications.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
2
|
Evans ST, Tizzard GJ, Field RA, Miller GJ. Towards the synthesis of a 2-deoxy-2-fluoro-d-mannose building block and characterisation of an unusual 2-S-phenyl anomeric pyridinium triflate salt via 1 → 2 S-migration. Carbohydr Res 2024; 545:109275. [PMID: 39341003 DOI: 10.1016/j.carres.2024.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Regio- and stereo-selective synthetic routes to 2-deoxy-2-fluoro-d-mannose building blocks are often experimentally challenging when using Selectfluor with the corresponding glycal. We targeted a late-stage method to introduce fluorine in a stereospecific manner using inversion via a triflate. Accordingly, synthesis of a conventionally protected 2-deoxy-2-fluoro-d-mannose β-thioglycoside donor, directly applicable to oligosaccharide synthesis, was attempted using C2-triflate inversion of the corresponding d-glucoside with TBAF. Unexpectedly, an anomeric pyridinium salt was isolated when attempting to form the C2-triflate using Tf2O in pyridine. Indicatively, this proceeds via a 1 → 2 S-migration delivering a 1,2-trans product with α-d-manno configuration and the anomeric pyridinium in a pseudo-equatorial position. The structure of this unexpected intermediate was confirmed in the solid-state using X-ray crystallography. Omission of the pyridine solvent led to dimer formation. Switching the aglycone to an O-para-methoxyphenyl enabled smooth C2 inversion to the desired 2-deoxy-2-fluoro d-mannose system, suitably equipped for further anomeric manipulation.
Collapse
Affiliation(s)
- Sean T Evans
- Centre for Glycoscience and Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry and Chemical Engineering, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Robert A Field
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Gavin J Miller
- Centre for Glycoscience and Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
3
|
Kuperman OA, de Andrade P, Sui X, Maria R, Kaplan-Ashiri I, Jiang Q, Terlier T, Kirkensgaard JJK, Field RA, Natalio F. Harnessing precursor-directed biosynthesis with glucose derivatives to access cotton fibers with enhanced physical properties. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101963. [PMID: 38798901 PMCID: PMC11112985 DOI: 10.1016/j.xcrp.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Cotton ovule in vitro cultures are a promising platform for exploring biofabrication of fibers with tailored properties. When the ovules' growth medium is supplemented with chemically synthesized cellulose precursors, it results in their integration into the developing fibers, thereby tailoring their end properties. Here, we report the feeding of synthetic glucosyl phosphate derivative, 6-deoxy-6-fluoro-glucose-1-phosphate (6F-Glc-1P) to cotton ovules growing in vitro, demonstrating the metabolic incorporation of 6F-Glc into the fibers with enhanced mechanical properties and moisture-retention capacity while emphasizing the role of molecular hierarchical architecture in defining functional characteristics and mechanical properties. This incorporation strategy bypasses the early steps of conventional metabolic pathways while broadening the range of functionalities that can be employed to customize fiber end properties. Our approach combines materials science, chemistry, and plant sciences to illustrate the innovation required to find alternative solutions for sustainable production of functional cotton fibers with enhanced and emergent properties.
Collapse
Affiliation(s)
- Ofir Aharon Kuperman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Peterson de Andrade
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, Manchester, UK
| | - XiaoMeng Sui
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Qixiang Jiang
- Institute for Materials Chemistry & Research, Polymer and Composite Engineering Group (PaCE), Universität Wien, Vienna, Austria
| | - Tanguy Terlier
- SIMS laboratory, Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert A. Field
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, Manchester, UK
- Iceni Glycoscience Ltd, Norwich Research Park, UK
| | - Filipe Natalio
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Zhong C, Zajki-Zechmeister K, Nidetzky B. Effect of ionic liquid on the enzymatic synthesis of cello-oligosaccharides and their assembly into cellulose materials. Carbohydr Polym 2022; 301:120302. [DOI: 10.1016/j.carbpol.2022.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|
5
|
Gabrielli V, Muñoz-García JC, Pergolizzi G, de Andrade P, Khimyak YZ, Field RA, Angulo J. Molecular Recognition of Natural and Non-Natural Substrates by Cellodextrin Phosphorylase from Ruminiclostridium Thermocellum Investigated by NMR Spectroscopy. Chemistry 2021; 27:15688-15698. [PMID: 34436794 PMCID: PMC9293210 DOI: 10.1002/chem.202102039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/08/2022]
Abstract
β‐1→4‐Glucan polysaccharides like cellulose, derivatives and analogues, are attracting attention due to their unique physicochemical properties, as ideal candidates for many different applications in biotechnology. Access to these polysaccharides with a high level of purity at scale is still challenging, and eco‐friendly alternatives by using enzymes in vitro are highly desirable. One prominent candidate enzyme is cellodextrin phosphorylase (CDP) from Ruminiclostridium thermocellum, which is able to yield cellulose oligomers from short cellodextrins and α‐d‐glucose 1‐phosphate (Glc‐1‐P) as substrates. Remarkably, its broad specificity towards donors and acceptors allows the generation of highly diverse cellulose‐based structures to produce novel materials. However, to fully exploit this CDP broad specificity, a detailed understanding of the molecular recognition of substrates by this enzyme in solution is needed. Herein, we provide a detailed investigation of the molecular recognition of ligands by CDP in solution by saturation transfer difference (STD) NMR spectroscopy, tr‐NOESY and protein‐ligand docking. Our results, discussed in the context of previous reaction kinetics data in the literature, allow a better understanding of the structural basis of the broad binding specificity of this biotechnologically relevant enzyme.
Collapse
Affiliation(s)
- Valeria Gabrielli
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Juan C Muñoz-García
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Giulia Pergolizzi
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, NR4 7TH, UK
| | - Peterson de Andrade
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, NR4 7TH, UK.,Present address, Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, NR4 7TH, UK.,Present address, Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Jesús Angulo
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012, Seville, Spain.,Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092, Sevilla, Spain
| |
Collapse
|