1
|
Baldaguez Medina P, Ardila Contreras V, Hartmann F, Schmitt D, Klimek A, Elbert J, Gallei M, Su X. Investigating the Electrochemically Driven Capture and Release of Long-Chain PFAS by Redox Metallopolymer Sorbents. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22112-22122. [PMID: 37114898 DOI: 10.1021/acsami.3c01670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The remediation of perfluoroalkyl substances (PFAS) is an urgent challenge due to their prevalence and persistence in the environment. Electrosorption is a promising approach for wastewater treatment and water purification, especially through the use of redox polymers to control the binding and release of target contaminants without additional external chemical inputs. However, the design of efficient redox electrosorbents for PFAS faces the significant challenge of balancing a high adsorption capacity while maintaining significant electrochemical regeneration. To overcome this challenge, we investigate redox-active metallopolymers as a versatile synthetic platform to enhance both electrochemical reversibility and electrosorption uptake capacity for PFAS removal. We selected and synthesized a series of metallopolymers bearing ferrocene and cobaltocenium units spanning a range of redox potentials to evaluate their performance for the capture and release of perfluorooctanoic acid (PFOA). Our results demonstrate that PFOA uptake and regeneration efficiency increased with more negative formal potential of the redox polymers, indicating possible structural correlations with the electron density of the metallocenes. Poly(2-(methacryloyloxy)ethyl cobaltoceniumcarboxylate hexafluorophosphate) (PMAECoPF6) showed the highest affinity toward PFOA, with an uptake capacity of more than 90 mg PFOA/g adsorbent at 0.0 V vs Ag/AgCl and a regeneration efficiency of more than 85% at -0.4 V vs Ag/AgCl. Kinetics of PFOA release showed that electrochemical bias greatly enhanced the regeneration efficiency when compared to open-circuit desorption. In addition, electrosorption of PFAS from different wastewater matrices and a range of salt concentrations demonstrated the capability of PFAS remediation in complex water sources, even at ppb levels of contaminants. Our work showcases the synthetic tunability of redox metallopolymers for enhanced electrosorption capacity and regeneration of PFAS.
Collapse
Affiliation(s)
- Paola Baldaguez Medina
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Valentina Ardila Contreras
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Frank Hartmann
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Deborah Schmitt
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Angelique Klimek
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Elbert
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Wang J, Üner NB, Dubowsky SE, Confer MP, Bhargava R, Sun Y, Zhou Y, Sankaran RM, Moore JS. Plasma Electrochemistry for Carbon-Carbon Bond Formation via Pinacol Coupling. J Am Chem Soc 2023; 145:10470-10474. [PMID: 37146270 DOI: 10.1021/jacs.3c01779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The formation of carbon-carbon bonds by pinacol coupling of aldehydes and ketones requires a large negative reduction potential, often realized with a stoichiometric reducing reagent. Here, we use solvated electrons generated via a plasma-liquid process. Parametric studies with methyl-4-formylbenzoate reveal that selectivity over the competing reduction to the alcohol requires careful control over mass transport. The generality is demonstrated with benzaldehydes, benzyl ketones, and furfural. A reaction-diffusion model explains the observed kinetics, and ab initio calculations provide insight into the mechanism. This study opens the possibility of a metal-free, electrically-powered, sustainable method for reductive organic reactions.
Collapse
Affiliation(s)
- Jian Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Necip B Üner
- Nuclear, Plasma and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Chemical Engineering Department, Middle East Technical University, Ankara 06800, Turkey
| | - Scott Edwin Dubowsky
- Nuclear, Plasma and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew P Confer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments of Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yunyan Sun
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuting Zhou
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - R Mohan Sankaran
- Nuclear, Plasma and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Román Santiago A, Yin S, Elbert J, Lee J, Shukla D, Su X. Imparting Selective Fluorophilic Interactions in Redox Copolymers for the Electrochemically Mediated Capture of Short-Chain Perfluoroalkyl Substances. J Am Chem Soc 2023; 145:9508-9519. [PMID: 36944079 DOI: 10.1021/jacs.2c10963] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
With increasing regulations on per- and polyfluoroalkyl substances (PFAS) across the world, understanding the molecular level interactions that drive their binding by functional adsorbent materials is key to effective PFAS removal from water streams. With the phaseout of legacy long-chain PFAS, the emergence of short-chain PFAS has posed a significant challenge for material design due to their higher mobility and hydrophilicity and inefficient removal by conventional treatment methods. Here, we demonstrate how cooperative molecular interactions are essential to target short-chain PFAS (from C4 to C7) by tailoring structural units to enhance affinity while modulating the electrochemical control of capture and release of PFAS. We report a new class of fluorinated redox-active amine-functionalized copolymers to leverage both fluorophilic and electrostatic interactions for short-chain PFAS binding. We combine molecular dynamics (MD) simulations and electrosorption to elucidate the role of the designer functional groups in enabling affinity toward short-chain PFAS. Preferential interaction coefficients from MD simulations correlated closely with experimental trends: fluorination enhanced the overall PFAS uptake and promoted the capture of less hydrophobic short-chain PFAS (C ≤ 5), while electrostatic interactions provided by secondary amine groups were sufficient to capture PFAS with higher hydrophobicity (C ≥ 6). The addition of an induced electric field showed favorable kinetic enhancement for the shortest PFAS and increased the reversibility of release from the electrode. Integration of these copolymers with electrochemical separations showed potential for removing these contaminants at environmentally relevant conditions while eliminating the need for chemical regeneration.
Collapse
Affiliation(s)
- Anaira Román Santiago
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Song Yin
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Elbert
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jiho Lee
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|