1
|
Liu Z, Lv Y, Sun Y, Hong C, Fan Y, Ma X, Gao C, Lin J, Chen T, Chen J, Wu A. New insights of transition metal sulfide nanoparticles for tumor precision diagnosis and treatment. J Control Release 2025:113871. [PMID: 40418988 DOI: 10.1016/j.jconrel.2025.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
Transition metal sulfide nanoparticles (TMSs), with their unique photothermal conversion effects, Fenton-like catalytic activity, engineerable structure, and good biocompatibility, are becoming a cutting-edge research focus in the field of tumor precision diagnosis and therapy. This review systematically explores the groundbreaking potential of TMSs (MxSy, M = Fe, Mn, Cu, Mo, Co, Ni, W, etc.) in tumor precision diagnosis, specific non-invasive treatment, and multimodal synergistic therapy from the perspective of "structural design-function regulation-integrated diagnosis and therapy." The exceptional magnetic properties, photothermal effects, and high X-ray absorption capabilities of TMSs have driven extensive research and widespread application in tumor imaging, including magnetic resonance imaging, photoacoustic imaging, and computed tomography. Furthermore, we delve into mechanistically integrated strategies for various clinical applications, such as phototherapy, chemodynamic therapy, sonodynamic therapy, gas therapy, and immunotherapy. These new approaches demonstrate high specificity, efficacy, and low toxicity compared with traditional clinical treatments, highlighting the significant application value of TMSs in revolutionizing cancer therapy. Finally, the review addresses the opportunities and challenges of employing transition TMSs as nano-formulations for cancer. This review aims to provide new insights into the prospects and hurdles that need to be addressed to fully exploit the potential of TMSs in precision tumor therapy and integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Zhusheng Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Yagui Lv
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanzi Sun
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chengyuan Hong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Xuehua Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Changyong Gao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
2
|
Rout B, Janjal PA, Shewale RS, Peddinti V, Agnihotri TG, Gomte SS, Jain A. Harnessing the power of inorganic nanoparticles for the management of TNBC. Int J Pharm 2025; 672:125333. [PMID: 39933607 DOI: 10.1016/j.ijpharm.2025.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic form of breast cancer characterized by the absence of hormonal receptors with a poor prognosis and limited treatment options. Addressing this challenge has become an urgent priority, driving substantial scientific efforts in this area. In recent years, inorganic nanoparticles have emerged as promising agents for the therapeutic and diagnostic management of this malignancy. Their unique physicochemical properties such as exceptional stability, uniform size, ease of surface functionalization, and distinctive optical and magnetic characteristics have positioned them as highly attractive candidates for these applications. This review primarily focuses on the therapeutic and diagnostic applications of inorganic nanoparticles, summarizing key research findings that demonstrate their efficacy against TNBC. Additionally, it addresses the toxicological concerns associated with these nanoparticles and explores advanced strategies to mitigate their adverse effects, thereby improving their clinical utility. Finally, the review concludes with a concise discussion of the prospects of these nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Prashant Ambadas Janjal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Rushikesh Sanjay Shewale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India.
| |
Collapse
|
3
|
Yang Y, Jiang S, Stanciu SG, Peng H, Wu A, Yang F. Photodynamic therapy with NIR-II probes: review on state-of-the-art tools and strategies. MATERIALS HORIZONS 2024; 11:5815-5842. [PMID: 39207201 DOI: 10.1039/d4mh00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In 2022 10% of the world's population was aged 65+, and by 2100 this segment is expected to hit 25%. These demographic changes place considerable pressure over healthcare systems worldwide, which results in an urgent need for accurate, inexpensive and non-invasive ways to treat cancers, a family of diseases correlated with age. Among the therapeutic tools that gained important attention in this context, photodynamic therapies (PDT), which use photosensitizers to produce cytotoxic substances for selectively destroying tumor cells and tissues under light irradiation, profile as important players for next-generation nanomedicine. However, the development of clinical applications is progressing at slow pace, due to still pending bottlenecks, such as the limited tissue penetration of the excitation light, and insufficient targeting performance of the therapeutic probes to fully avoid damage to normal cells and tissues. The penetration depth of long-wavelength near infrared (NIR) light is significantly higher than that of short-wavelength UV and visible light, and thus NIR light in the second window (NIR-II) is acknowledged as the preferred phototherapeutic means for eliminating deep-seated tumors, given the higher maximum permissible exposure, reduced phototoxicity and low autofluorescence, among others. Upon collective multidisciplinary efforts of experts in materials science, medicine and biology, multifunctional NIR-II inorganic or organic photosensitizers have been widely developed. This review overviews the current state-of-the art on NIR-II-activated photosensitizers and their applications for the treatment of deep tumors. We also place focus on recent efforts that combine NIR-II activated PDT with other complementary therapeutic routes such as photothermal therapy, chemotherapy, immunotherapy, starvation, and gas therapies. Finally, we discuss still pending challenges and problems of PDT and provide a series of perspectives that we find useful for further extending the state-of-the art on NIR-II-triggered PDT.
Collapse
Affiliation(s)
- Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest 060042, Romania
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
4
|
Feng X, Brown CM, Wang H, Kashif S, Roberts S, Yan L, Munshi T, Hands PJW, Zhang W, Chen X. Carrier-free chemo-phototherapeutic nanomedicines with endo/lysosomal escape function enhance the therapeutic effect of drug molecules in tumors. J Mater Chem B 2024; 12:6703-6715. [PMID: 38895858 DOI: 10.1039/d4tb00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Carrier-free nanomedicines offer advantages of extremely high drug loading capacity (>80%), minimal non-drug constituent burden, and facile preparation processes. Numerous studies have proved that multimodal cancer therapy can enhance chemotherapy efficiency and mitigate multi-drug resistance (MDR) through synergistic therapeutic effects. Upon penetration into the tumor matrix, nanoparticles (NPs) are anticipated to be uptaken by cancer cells, primarily through clathrin-meditated endocytosis pathways, leading to their accumulation in endosomes/lysosomes within cells. However, endo/lysosomes exhibit a highly degradative environment for organic NPs and drug molecules, often resulting in treatment failure. Hence, this study designed a lysosomal escape mechanism with carrier-free nanomedicine, combining the chemotherapeutic drug, curcumin (Cur), and the photothermal/photodynamic therapeutic drug, indocyanine green (ICG), for synergistic cancer treatment (ICG-Cur NPs) via a facile preparation process. To facilitate endo/lysosomal escape, ICG-Cur NPs were modified with metal-phenolic networks (MPNs) of different thickness. The results indicate that a thick MPN coating promotes rapid endo/lysosomal escape of ICG-Cur NPs within 4 h and enhances the photothermal conversion efficiency of ICG-Cur NPs by 55.8%, significantly improving anticancer efficacy in both chemo- and photo-therapies within 3D solid tumor models. This finding underscores the critical role of endo/lysosomal escape capacity in carrier-free drug NPs for therapeutic outcomes and offers a facile solution to achieve it.
Collapse
Affiliation(s)
- Xue Feng
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Calum M Brown
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, The King's Buildings, EH9 3FF Edinburgh, UK
| | - Hongdi Wang
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Saima Kashif
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Sam Roberts
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tasnim Munshi
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, UK
| | - Philip J W Hands
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, The King's Buildings, EH9 3FF Edinburgh, UK
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| |
Collapse
|
5
|
Imanimoghadam M, Yaghoobi E, Alizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Improving Chemotherapy Effectiveness: Utilizing CuS Nanoparticles Coated with AS1411 Aptamer and Chitosan for Targeted Delivery of Doxorubicin to Cancerous Cells. J Pharm Sci 2024; 113:1865-1873. [PMID: 38342338 DOI: 10.1016/j.xphs.2024.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Here, a novel targeted nanostructure complex was designed as an alternative to the traditional treatment approaches for breast cancer. A delivery system utilizing CuS nanoparticles (CuS NPs) was developed for the purpose of targeted administration of doxorubicin (Dox), an anticancer agent. To regulate Dox release, chitosan (CS), a biodegradable and hydrophilic polymer with biocompatible properties, was applied to coat the Dox-loaded CuS NPs. Furthermore, AS1411 aptamer, served as a targeting agent for breast cancer cells (MCF-7 and 4T1 cells), was conjugated with CS-Dox-CuS NPs effectively. To assess the effectiveness of APT-CS-CuS NPs, various methods such as flow cytometry analysis, MTT assay, fluorescence imaging, and in vivo antitumor efficacy were employed. The hollow core and porous surface of CuS NPs improved the Dox loading capacity and entrapment efficiency (almost 100%). The rate of drug release at the tumor site (citrate buffer with pH 5.6) exhibited a marked increase in comparison to that observed within the physiological environment (phosphate buffer with pH 7.4). The targeted formulation (APT-CS-Dox-CuS NPs) significantly increased cytotoxicity of the Dox payload in target cells, including 4T1 (p ≤ 0.0001 (****)) and MCF7 (p ≤ 0.01 (**)) cells compared to CHO cells. Moreover, the ability of tumor growth inhibition of the targeted system was significantly (p ≤ 0.05 (*)) more than free Dox in tumor-bearing mice. The findings indicate that the targeted formulation augmented effectiveness and specificity while minimizing harm to non-targeted cells, signifying its potential as a sophisticated cancer drug delivery system.
Collapse
Affiliation(s)
| | - Elnaz Yaghoobi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Fatemeh Alizadeh
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Vodyashkin A, Stoinova A, Kezimana P. Promising biomedical systems based on copper nanoparticles: Synthesis, characterization, and applications. Colloids Surf B Biointerfaces 2024; 237:113861. [PMID: 38552288 DOI: 10.1016/j.colsurfb.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Copper and copper oxide nanoparticles (CuNPs) have unique physicochemical properties that make them highly promising for biomedical applications. This review discusses the application of CuNPs in biomedicine, including diagnosis, therapy, and theranostics. Recent synthesis methods, with an emphasis on green approaches, are described, and the latest techniques for nanoparticle characterization are critically analyzed. CuNPs, including Cu2O, CuO, and Cu, have significant potential as anti-cancer agents, drug delivery systems, and photodynamic therapy enhancers, among other applications. While challenges such as ensuring biocompatibility and stability must be addressed, the state-of-the-art research reviewed here provides strong evidence for the efficacy and versatility of CuNPs. These multifunctional properties have been extensively researched and documented, showcasing the immense potential of CuNPs in biomedicine. Overall, the evidence suggests that CuNPs are a promising avenue for future research and development in biomedicine. We strongly support further progress in the development of synthesis and application strategies to enhance the effectiveness and safety of CuNPs for clinical purposes.
Collapse
Affiliation(s)
| | - Anastasia Stoinova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Parfait Kezimana
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| |
Collapse
|
7
|
Park JH, Sung Y, Jo S, Lee SH, Ryu JH, Sun IC, Ahn CH. Applications of Cu 2+-Loaded Silica Nanoparticles to Photothermal Therapy and Tumor-Specific Fluorescence Imaging. J Funct Biomater 2024; 15:81. [PMID: 38667538 PMCID: PMC11051373 DOI: 10.3390/jfb15040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Copper-based nanomaterials have been employed as therapeutic agents for cancer therapy and diagnosis. Nevertheless, persistent challenges, such as cellular toxicity, non-uniform sizes, and low photothermal efficiency, often constrain their applications. In this study, we present Cu2+-loaded silica nanoparticles fabricated through the chelation of Cu2+ ions by silanol groups. The integration of Cu2+ ions into uniformly sized silica nanoparticles imparts a photothermal therapy effect. Additionally, the amine functionalization of the silica coating facilitates the chemical conjugation of tumor-specific fluorescence probes. These probes are strategically designed to remain in an 'off' state through the Förster resonance energy transfer mechanism until exposed to cysteine enzymes in cancer cells, inducing the recovery of their fluorescence. Consequently, our Cu2+-loaded silica nanoparticles demonstrate an efficient photothermal therapy effect and selectively enable cancer imaging.
Collapse
Affiliation(s)
- Ji-Ho Park
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-H.P.)
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - Yejin Sung
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - SeongHoon Jo
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung Ho Lee
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-H.P.)
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - Cheol-Hee Ahn
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-H.P.)
| |
Collapse
|
8
|
Lan Q, Wang S, Chen Z, Hua J, Hu J, Luo S, Xu Y. Near-infrared-responsive GE11-CuS@Gal nanoparticles as an intelligent drug release system for targeting therapy against oral squamous cell carcinoma. Int J Pharm 2024; 649:123667. [PMID: 38048890 DOI: 10.1016/j.ijpharm.2023.123667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Galangin (Gal) is a natural plant flavonoid. More and more evidence shows that Gal can achieve anti-tumor effects by regulating various mechanisms. However, its poor water solubility, low bioavailability, and insufficient lesion targeting limit its clinical application. To overcome these shortcomings, we designed and developed a mesoporous nanosystem (GE11-CuS) that actively located the target area and photo-controlled drug release, which promoted the rapid accumulation of drugs in tumor tissues under NIR irradiation, thus achieving positive effects against cancer. In this study, we explored the application of the Gal-loaded nanometer system (GE11-CuS@Gal) in the treatment of oral squamous cell carcinoma (OSCC) both in vitro and in vivo. The results exhibited that GE11-CuS@Gal had excellent targeting ability and could accumulate efficiently in tumor cells (HSC-3). Meanwhile, the temperature of GE11-CuS@Gal increasing rapidly under NIR illumination damaged the integrity of the carrier and allowed Gal molecules to escape from the pores of the nanoparticles. When the accumulation of Gal in the nidus reached a certain level, the intracellular ROS level could be significantly increased and the antioxidative stress pathway mediated by Nrf2/OH-1 was effectively blocked, to inhibit the growth and migration of tumors. In conclusion, the GE11-CuS improved the antitumor activity of Gal in the body, which laid a foundation for the treatment of OSCC with traditional Chinese medicine ingredients.
Collapse
Affiliation(s)
- Qinghua Lan
- Department of Pharmacy, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shuanghu Wang
- Department of Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhouming Chen
- Department of Pharmacy, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Junyan Hua
- Department of Pharmacy, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jieru Hu
- Department of Pharmacy, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Songmei Luo
- Department of Pharmacy, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Yanyan Xu
- Department of Pharmacy, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
9
|
Fu W, Lu Q, Xing S, Yan L, Zhang X. Iron-Doped Metal-Zinc-Centered Organic Framework Mesoporous Carbon Derivatives for Single-Wavelength NIR-Activated Photothermal/Photodynamic Synergistic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6505-6513. [PMID: 37098018 DOI: 10.1021/acs.langmuir.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recently, single-wavelength synergetic photothermal/photodynamic (PTT/PDT) therapy is beginning to make its mark in cancer treatment, and the key to it is a photosensitizer. In this work, an iron-doped metal-zinc-centered organic framework mesoporous carbon derivative (denoted as Fex-Zn-NCT) with a similar porphyrin property was successfully synthesized by a mild, simple, and green aqueous reaction. The effects of different Fe contents and pyrolysis temperatures on the morphology, structure, and PTT/PDT of Fex-Zn-NCT were investigated. Most importantly, we found that Fe50-Zn-NC900 exhibited excellent PTT/PDT performance under single-wavelength near-infrared (808 nm) light irradiation in a hydrophilic environment. The photothermal conversion efficiency (η) was counted as ∼81.3%, and the singlet oxygen (1O2) quantum yield (Φ) was compared with indocyanine green (ICG) as ∼0.0041. Furthermore, Fe50-Zn-NC900 is provided with a clear ability for generating 1O2 in living tumor cells and inducted massive necrosis/apoptosis of tumor cells with single-wavelength near-infrared laser irradiation. All of these are clear to consider that Fe50-Zn-NC900 displays great potential as an excellent photosensitizer for single-wavelength dual-mode PTT/PDT therapy.
Collapse
Affiliation(s)
- Wen Fu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Qian Lu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Shu Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xian Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| |
Collapse
|
10
|
Yuan N, Shao K, Huang S, Chen C. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review. Int J Biol Macromol 2023; 240:124321. [PMID: 37019198 DOI: 10.1016/j.ijbiomac.2023.124321] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Wound healing is a complex project, and effectively promoting skin repair is a huge clinical challenge. Hydrogels have great prospect in the field of wound dressings because their physical properties are very similar to those of living tissue and have excellent properties such as high water content, oxygen permeability and softness. However, the single performance of traditional hydrogels limits their application as wound dressings. Therefore, natural polymers such as chitosan, alginate and hyaluronic acid, which are non-toxic and biocompatible, are individually or combined with other polymer materials, and loaded with typical drugs, bioactive molecules or nanomaterials. Then, the development of novel multifunctional hydrogel dressings with good antibacterial, self-healing, injectable and multi-stimulation responsiveness by using advanced technologies such as 3D printing, electrospinning and stem cell therapy has become a hot topic of current research. This paper focuses on the functional properties of novel multifunctional hydrogel dressings such as chitosan, alginate and hyaluronic acid, which lays the foundation for the research of novel hydrogel dressings with better performance.
Collapse
|