1
|
Madhaiyan R, Vijayaraghavan D, Shankar S, Seeman U, Ibrahim NMM, Chinnusamy S. Fabrication of spinel NiCo 2O 4 nanoflowers by simple hydrothermal method for effective electrochemical detection of NO 2- in processed food sample. Food Chem 2025; 480:143964. [PMID: 40121882 DOI: 10.1016/j.foodchem.2025.143964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
This study introduces a novel, cost-effective, highly sensitive electrochemical sensor for detecting nitrite (NO2-) in processed food samples. The sensor was developed by fabricating spinel NiCo2O4 nanoflowers (NCO) using a hydrothermal method. Various characterization techniques, including XRD, FT-IR, XPS, HR-SEM, EDX, and HR-TEM, were used to analyze the structure and morphology of NCO. The obtained NCO exhibited a particle size of ∼16 nm and a flowered shape. Electrochemical impedance spectroscopy (EIS) was used to assess the electron-transfer properties. Cyclic voltammetry (CV) and chronoamperometry (CA) were employed to explore the electrocatalytic performance, revealing a high surface area and remarkable activity. The NCO electrode exhibited a remarkable sensitivity 44.16 μA mM-1 cm-2 at low concentrations and 33.51 μA mM-1 cm-2 at higher concentrations and a low detection limit of 0.99 μM. It is worth noting that the sensor displayed excellent reproducibility and repeatability, with relative standard deviation (RSD) values of 1.06 % and 1.37 %, respectively. Furthermore, the fabricated sensor was successfully applied for the detection of NO2- in milk, oranges, apple juice, wastewater, and processed foods such as chicken and sausage. The obtained results indicate that the proposed sensor is a promising candidate for practical NO2- detection applications.
Collapse
Affiliation(s)
- Ramesh Madhaiyan
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli - 620 022, Tamil Nadu, India; Centre for Nano and Material Sciences, Jain (Deemed-to-be) University, Bangaluru - 562112, Karnataka, India
| | | | - Srinithi Shankar
- Department of Mechanical Engineering, K.S.Rangasamy College of Technology, Tiruchengode - 637215, Tamil Nadu, India
| | - Umamatheswari Seeman
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli - 620 022, Tamil Nadu, India.
| | - Nagoor Meeran Mohamed Ibrahim
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology (Deemed University), Avadi - 600 062 Chennai, Tamil Nadu, India
| | - Sankar Chinnusamy
- Department of Chemistry, Velammal College of Engineering and Technology, Madurai - 625 009, Tamil Nadu, India.
| |
Collapse
|
2
|
Li L, Ding C, Zha W. High-entropy Ag,Pt-based catalyst toward exceptionally high-performance and stable electrochemical detection of nitrite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3111-3117. [PMID: 40177992 DOI: 10.1039/d5ay00257e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The undisclosed and exceptional electrochemical nitrite sensing performance of a high-entropy Ag,Pt-based catalyst (FeAlCoAgPt) prepared via a solvothermal synthesis method is reported. The morphology, structure, and elemental composition of the prepared FeAlCoAgPt catalysts were characterized using X-ray diffractometry (XRD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The prepared FeAlCoAgPt catalysts were utilized to modify glassy carbon electrodes (GCE), forming the modified electrode FeAlCoAgPt/GCE, which was employed for the electrochemical detection of nitrite. Electrochemical studies showed that FeAlCoAgPt/GCE exhibited a wide linear nitrite determination range of 1.0 μM to 10.0 mM, a low limit of detection (LOD) and quantification (LOQ) of 0.92 μM (S/N = 3) and 3.07 μM (S/N = 10) respectively, a high sensitivity of 42.59 μA mM-1 cm-2, and a quick nitrite response at 0.85 V (response time of 1.2 s), which compared favorably with recent reports in the literature. FeAlCoAgPt/GCE also exhibited favorable anti-interference ability, satisfactory repeatability and extraordinary stability and reusability, and has good feasibility for real sample analysis of nitrite in lake water and milk, with recovery rates ranging from 96.33 to 104.76% and RSD values of less than 4%. As an ideal catalyst with high and stable detection performance, the high-entropy Ag,Pt-based catalyst has great potential to be integrated into next-generation electrochemical sensing devices.
Collapse
Affiliation(s)
- Lan Li
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China.
| | - Chao Ding
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China.
| | - Wenye Zha
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China.
| |
Collapse
|
3
|
Qian H, Guo X, Yang H, Bao T, Wu Z, Wen W, Zhang X, Wang S. Enhancing CRISPR/Cas-mediated electrochemical detection of nucleic acid using nanoparticle-labeled covalent organic frameworks reporters. Biosens Bioelectron 2024; 261:116522. [PMID: 38924815 DOI: 10.1016/j.bios.2024.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Molecular detection of nucleic acid plays an important role in early diagnosis and therapy of disease. Herein, a novel and enhanced electrochemical biosensor was exploited based on target-activated CRISPR/Cas12a system coupling with nanoparticle-labeled covalent organic frameworks (COFs) as signal reporters. Hollow spherical COFs (HCOFs) not only served as the nanocarriers of silver nanoparticles (AgNPs)-DNA conjugates for enhanced signal output but also acted as three-dimensional tracks of CRISPR/Cas12a system to improve the cleavage accessibility and efficiency. The presence of target DNA triggered the trans-cleavage activity of the CRISPR/Cas12a system, which rapidly cleaved the AgNPs-DNA conjugates on HCOFs, resulting in a remarkable decrease of the electrochemical signal. As a proof of concept, the fabricated biosensing platform realized highly sensitive and selective detection of human papillomavirus type 16 (HPV-16) DNA ranging from 100 fM to 1 nM with the detection limit of 57.2 fM. Furthermore, the proposed strategy provided a versatile and high-performance biosensor for the detection of different targets by simple modification of the crRNA protospacer, holding promising applications in disease diagnosis.
Collapse
Affiliation(s)
- Hui Qian
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiaopeng Guo
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Hongying Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Ting Bao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Zhen Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Wei Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
4
|
Xu Y, Huang W, Duan H, Xiao F. Bimetal-organic framework-integrated electrochemical sensor for on-chip detection of H 2S and H 2O 2 in cancer tissues. Biosens Bioelectron 2024; 260:116463. [PMID: 38838574 DOI: 10.1016/j.bios.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Studies on the interaction between hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) in redox signaling motivate the development of a sensitive sensing platform for their discriminatory and dynamic detection. Herein, we present a fully integrated microfluidic on-chip electrochemical sensor for the online and simultaneous monitoring of H2S and H2O2 secreted by different biological samples. The sensor utilizes a cicada-wing-like RuCu bimetal-organic framework with uniform nanorods architecture that grows on a flexible carbon fiber microelectrode. Owing to the optimized electronic structural merits and satisfactory electrocatalytic properties, the resultant microelectrode shows remarkable electrochemical sensing performance for sensitive and selective detection of H2S and H2O2 at the same time. The result exhibits low detection limits of 0.5 μM for H2S and 0.1 μM for H2O2, with high sensitivities of 61.93 μA cm-2 mM-1 for H2S, and 75.96 μA cm-2 mM-1 for H2O2. The integration of this biocompatible microelectrode into a custom wireless microfluidic chip enables the construction of a miniature intelligent system for in situ monitoring of H2S and H2O2 released from different living cells to differentiate between cancerous and normal cells. When applied for real-time tracking of H2S and H2O2 secreted by colorectal cancer tissues, it allows the evaluation of their chemotherapeutic efficacy. These findings hold paramount implications for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Wei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore.
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Wangchuk S, Kanatharana P, Thavarungkul P, Limbut W. Nano-palladium-decorated bismuth sulfide microspheres on a disposable electrode integrated with smartphone-based electrochemical detection of nitrite in food samples. Food Chem 2024; 447:138987. [PMID: 38518621 DOI: 10.1016/j.foodchem.2024.138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Nitrite (NO2-) is widely used as an additive to extend the shelf life of food products. Excessive nitrite intake not only causes blood-related diseases but also has the potential risk of causing cancers. A disposable screen-printed electrode was modified with nano‑palladium decorated bismuth sulfide microspheres (nanoPd@Bi2S3MS/SPE), and integrated with a smartphone-interfaced potentiostat to develop a portable, electrochemical nitrite sensor. NanoPd@Bi2S3MS was prepared by the hydrothermal reduction of a Bi2S3MS and Pd2+ dispersion and drop cast on the SPE. The nanoPd@Bi2S3MS/SPE was coupled with a smartphone-controlled portable potentiostat and applied to determine nitrite in food samples. The linear range of the sensor was 0.01-500 μM and the limit of detection was 0.0033 μM. The proposed system showed good repeatability, reproducibility, catalytic stability, and immunity to interferences. The proposed electrode material and a smartphone-based small potentiostat created a simple, portable, fast electrochemical sensing system that accurately measured nitrite in food samples.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Asamee Soleh
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Kritsada Samoson
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
6
|
Santos DJAD, Oliveira TRD, Araújo GMD, Pott-Junior H, Melendez ME, Sabino EC, Leite OD, Faria RC. An electrochemical genomagnetic assay for detection of SARS-CoV-2 and Influenza A viruses in saliva. Biosens Bioelectron 2024; 255:116210. [PMID: 38537427 DOI: 10.1016/j.bios.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Viral respiratory infections represent a major threat to the population's health globally. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease and in some cases the symptoms can be confused with Influenza disease caused by the Influenza A viruses. A simple, fast, and selective assay capable of identifying the etiological agent and differentiating the diseases is essential to provide the correct clinical management to the patient. Herein, we described the development of a genomagnetic assay for the selective capture of viral RNA from SARS-CoV-2 and Influenza A viruses in saliva samples and employing a simple disposable electrochemical device for gene detection and quantification. The proposed method showed excellent performance detecting RNA of SARS-CoV-2 and Influenza A viruses, with a limit of detection (LoD) and limit of quantification (LoQ) of 5.0 fmol L-1 and 8.6 fmol L-1 for SARS-CoV-2, and 1.0 fmol L-1 and 108.9 fmol L-1 for Influenza, respectively. The genomagnetic assay was employed to evaluate the presence of the viruses in 36 saliva samples and the results presented similar responses to those obtained by the real-time reverse transcription-polymerase chain reaction (RT-PCR), demonstrating the reliability and capability of a method as an alternative for the diagnosis of COVID-19 and Influenza with point-of-care capabilities.
Collapse
Affiliation(s)
| | | | | | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Oldair Donizeti Leite
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil; Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR, 85884-000, Brazil.
| | - Ronaldo Censi Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
7
|
Hui K, Liu T, Yang ML, Tian AX, Ying J. Four polyoxomolybdated-based 3D compounds as supercapacitors and amperometric sensors. Mikrochim Acta 2024; 191:410. [PMID: 38900272 DOI: 10.1007/s00604-024-06457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Four polyoxomolybdated compounds based on Tetp (Tetp = 4-[4-(2-Thiophen-2-yl-ethyl)-4H-[1, 2, 4]triazole-3-yl]-pyridine), namely [Zn(Tetp)2(H2O)2][(β-Mo8O26)0.5] (Zn-Mo8), [Co(Tetp)2(H2O)2][(β-Mo8O26)0.5] (Co-Mo8), [Cu4(Tetp)6(H2O)2]{H3[K(H2O)3](θ-Mo8O26)(Mo12O40)}·8H2O (Cu-Mo20) and [Cu3(Tetp)3][PMo12O40]·H2O (Cu-PMo12) are synthesized by hydrothermal methods and are used as electrode materials for supercapacitors(SCs) and electrochemical sensors. Inserting polyoxometalates (POMs) with redox active sites into transition metal compounds (TMCs) can improve the internal ion/electron transfer rate, thus effectively enhancing the electrochemical performance. Compared with the parent POMs, four compounds exhibit excellent electrochemical properties. In particular, Cu-PMo12 shows an excellent specific capacitance (812.3 F g-1 at 1 A g-1) and stability (94.42%), as well as a wide detection range (0.05 to 1250 µM) and a low detection limit (0.057 µM) for NO2- sensing.
Collapse
Affiliation(s)
- Kaili Hui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Mengle L Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China.
| | - Aixiang X Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| |
Collapse
|
8
|
Parrilla M, Sena-Torralba A, Steijlen A, Morais S, Maquieira Á, De Wael K. A 3D-printed hollow microneedle-based electrochemical sensing device for in situ plant health monitoring. Biosens Bioelectron 2024; 251:116131. [PMID: 38367566 DOI: 10.1016/j.bios.2024.116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Plant health monitoring is devised as a new concept to elucidate in situ physiological processes. The need for increased food production to nourish the growing global population is inconsistent with the dramatic impact of climate change, which hinders crop health and exacerbates plant stress. In this context, wearable sensors play a crucial role in assessing plant stress. Herein, we present a low-cost 3D-printed hollow microneedle array (HMA) patch as a sampling device coupled with biosensors based on screen-printing technology, leading to affordable analysis of biomarkers in the plant fluid of a leaf. First, a refinement of the 3D-printing method showed a tip diameter of 25.9 ± 3.7 μm with a side hole diameter on the microneedle of 228.2 ± 18.6 μm using an affordable 3D printer (<500 EUR). Notably, the HMA patch withstanded the forces exerted by thumb pressing (i.e. 20-40 N). Subsequently, the holes of the HMA enabled the fluid extraction tested in vitro and in vivo in plant leaves (i.e. 13.5 ± 1.1 μL). A paper-based sampling strategy adapted to the HMA allowed the collection of plant fluid. Finally, integrating the sampling device onto biosensors facilitated the in situ electrochemical analysis of plant health biomarkers (i.e. H2O2, glucose, and pH) and the electrochemical profiling of plants in five plant species. Overall, this electrochemical platform advances precise and versatile sensors for plant health monitoring. The wearable device can potentially improve precision farming practices, addressing the critical need for sustainable and resilient agriculture in changing environmental conditions.
Collapse
Affiliation(s)
- Marc Parrilla
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium.
| | - Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - Annemarijn Steijlen
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera S/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera S/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - Karolien De Wael
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium.
| |
Collapse
|
9
|
Zhao P, Zhang Y, Liu Y, Huo D, Hou J, Hou C. Wearable electrochemical patch based on iron nano-catalysts incorporated laser-induced graphene for sweat metabolites detection. Biosens Bioelectron 2024; 249:116012. [PMID: 38232450 DOI: 10.1016/j.bios.2024.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
The development of wearable devices shows great application potential in health management. In this work, we propose the fabrication of a novel wearable electrochemical patch and prove its application in sweat metabolites detection. The patch is developed based on iron nano-catalysts incorporated laser-induced graphene (FeNCs/LIG), which is a newly integrated sensing electrode with unique three-dimensional nanostructure and good electrocatalytic activity. It shows desirable sensing performances for sweat metabolites including tyrosine (Tyr) and uric acid (UA) molecules. The detection limit of Tyr and UA can reach 5.11 μM and 1.37 μM, respectively. Besides, density functional theory calculation deeply reveals that the Fe active sites of FeNCs play an important role in molecule adsorption and electron transference, thus promoting sensing performance. To realize wearable application, a dual-channel hydrogel chip is designed and assembled with FeNCs/LIG. The developed patch is successfully utilized to accurately determination of Tyr and UA in sweat. This work is expected to provide a new non-invasive strategy for evaluating amino acid intake and metabolic level.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yong Zhang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
10
|
Muttaqien SE, Khoris IM, Suryanggono J, Sadhukhan PC, Pambudi S, Chowdhury AD, Park EY. Point-of-care dengue detection: polydopamine-modified electrode for rapid NS1 protein testing for clinical samples. Mikrochim Acta 2024; 191:174. [PMID: 38436801 DOI: 10.1007/s00604-024-06259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Early diagnosis of dengue infection by detecting the dengue virus non-structural protein 1 (DENV-NS1) is important to the patients to initiate speedy treatment. Enzyme-linked immunosorbent assay (ELISA)-based NS1 detection and RT-PCR are time-consuming and too complex to be employed in remote areas of dengue-endemic countries. Meanwhile, those of NS1 rapid test by lateral flow assay suffer from low detection limit. Electrochemical-based biosensors using screen-printed gold electrodes (SPGEs) have become a reliable detection method to convey both ELISA's high sensitivity and rapid test portability. In this research, we developed an electrochemical biosensor for DENV-NS1 detection by employing polydopamine (PDA)-modified SPGE. The electrodeposition of PDA on the surface of SPGE serves as a bioconjugation avenue for anti-NS1 antibody through a simple and low-cost immobilization procedure. The biosensor performance was evaluated to detect DENV-NS1 protein in PBS and human serum through a differential pulse voltammetric (DPV) technique. The developed sensing platform displayed a low limit of detection (LOD) of 1.63 pg mL-1 and a wide linear range of 10 pg mL-1 to 1 ng mL-1 (R2 ∼ 0.969). The sensing platform also detected DEV-NS1 from four different serotypes in the clinical samples collected from dengue patients in India and Indonesia, with acceptable sensitivity, specificity, and accuracy values of 90.00%, 80.95%, and 87.65%, respectively. This result showcased the facile and versatile method of PDA coating onto the surface of screen-printed gold electrodes for a miniaturized point-of-care (PoC) detection device.
Collapse
Affiliation(s)
- Sjaikhurrizal El Muttaqien
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan, 15314, Indonesia
| | - Indra Memdi Khoris
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan
- Nanomaterials Research Division, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Jodi Suryanggono
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan, 15314, Indonesia
| | - Provash C Sadhukhan
- ICMR-NICED Virus Laboratory, Kolkata, I.D. & B.G. Hospital, Banerjee Road, Kolkata, 700010, West Bengal, India
| | - Sabar Pambudi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan, 15314, Indonesia
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Kolkata, 700084, West Bengal, India
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
11
|
Miera GG, Heinz O, Hong W, Walker GC. Virtual Issue: Electrode Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18171-18174. [PMID: 38111359 DOI: 10.1021/acs.langmuir.3c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
|
12
|
Manikanta P, Mounesh, Nikam RR, Sandeep S, Nagaraja BM. Development of novel microsphere structured - calcium tungstate as efficacious electrocatalyst for the detection of antibiotic drug nitrofurantoin. J Mater Chem B 2023; 11:11600-11611. [PMID: 38037876 DOI: 10.1039/d3tb02087h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In this report, synthetic and nitro groups containing antibiotic drug nitrofurantoin (NFT) were electrochemically quantified under amended conditions using novel constructed calcium tungstate microspheres modified on glassy carbon electrodes (CTMs/GCE). The calcium tungstate microspheres (CTMs) were synthesized by a facile sonochemical method and characterizations were done by various techniques, such as X-ray diffraction spectrometry (XRD), Fourier transform infrared spectroscopy (FTIR), Raman, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Ahead of this, electrochemical investigations were performed using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), amperometry, and linear sweep voltammetry (LSV). The synthesis of CTMs as well-distributed microspheres allows more active metal sites regarding and remarkable electrocatalytic activity towards NFT detection with excellent sensitivity (0.724 μA μM-1 cm-2) and low detection limit (21 nmol L-1) with a wide linear range 10-140 μM. The practical feasibility of the developed CTMs/GC electrode was elucidated using distinct real sample river tap water and clinical sample (NFT capsule), and thus, the modified electrode manifested acceptable recovery results.
Collapse
Affiliation(s)
- P Manikanta
- Centre for Nano and Material Sciences, Jain (deemed-to-be University), Jain Global Campus, Iakkasandra, Kanakapura, Bangalore-562112, Karnataka, India.
| | - Mounesh
- Centre for Nano and Material Sciences, Jain (deemed-to-be University), Jain Global Campus, Iakkasandra, Kanakapura, Bangalore-562112, Karnataka, India.
| | - Rohit Rangnath Nikam
- Centre for Nano and Material Sciences, Jain (deemed-to-be University), Jain Global Campus, Iakkasandra, Kanakapura, Bangalore-562112, Karnataka, India.
| | - S Sandeep
- Department of Chemistry, S J College of Engineering, JSS Science and Technology University, Mysuru-570008, Karnataka, India
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Sciences, Jain (deemed-to-be University), Jain Global Campus, Iakkasandra, Kanakapura, Bangalore-562112, Karnataka, India.
| |
Collapse
|
13
|
Mounesh, Yatish KV, Pandith A, Eldesoky GE, Nagaraja BM. A novel MWCNT-encapsulated (2-aminoethyl)piperazine-decorated zinc(II) phthalocyanine composite: development of an electrochemical sensor for detecting the antipsychotic drug promazine in environmental samples. J Mater Chem B 2023; 11:10692-10705. [PMID: 37917006 DOI: 10.1039/d3tb01859h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A nanocomposite of (2-aminoethyl)piperazine ligand substituted with zinc(II) tetra carboxylic acid phthalocyanine (ZnTEPZCAPC) and MWCNTs was constructed and employed to develop an electrochemical sensor with outstanding sensitivity and a low detection limit. The macrocyclic complex ZnTEPZCAPC was first synthesized and then employed for the electrochemical determination of the antipsychotic drug promazine (PMZ). The as-prepared ZnTEPZCAPC and MWCNT nanocomposite was characterized using different techniques, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), UV-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). Further, the prepared ZnTEPZCAPC@MWCNT nanocomposites were modified on a glassy carbon electrode (GCE) surface, and the electrochemical activity was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA) tests in pH 7.0 phosphate buffer solution (PBS) in the potential window of 0.0-1 V. The ZnTEPZCAPC@MWCNTs displayed a superior electrochemical performance because of their high electrochemical active surface area (0.453 cm2), good conductivity, and a synergetic effect. The developed electrochemical sensor exhibited a broad linear range of 0.05-635 μM and the lowest detection limit of 0.0125 nM, as well as excellent sensitivity, repeatability, and reproducibility. Finally, the fabricated sensor was successively used for the real-time detection of PMZ in environmental and biological samples and displayed feasible recoveries.
Collapse
Affiliation(s)
- Mounesh
- Centre for Nano and Material Science (CNMS), Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| | - K V Yatish
- Department of Chemistry, Navkis College of Engineering, Hassan, Karnataka, 573217, India
| | - Anup Pandith
- International PhD Program in Biomedical Engineering (IPBME), College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Science (CNMS), Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
14
|
Valsalakumar VC, Vasudevan S. Zirconium Phosphate-Incorporated Polyaniline-Graphene Oxide Composite Modified Electrodes for Effective and Selective Detection of Nitrite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15730-15739. [PMID: 37890029 DOI: 10.1021/acs.langmuir.3c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nitrite contamination in food, water, and environmental samples poses a substantial health hazard, owing to its capacity for transformation into carcinogenic compounds. Given the profound ecological and physiological implications, precise and highly sensitive surveillance of nitrite has emerged as an imperative area of concern, addressing the substantial detrimental impact that it can have on both terrestrial and aquatic ecosystems. The novel electroactive polyaniline-graphene oxide composite, incorporating hexagonal zirconium phosphate discs (PGZrP), was systematically engineered as a foundation for an advanced electrochemical sensor, enabling precise nitrite detection in diverse aqueous and biological matrices. At a specific potential peak of +0.85 V, observed within a pH 7.0 phosphate buffer solution, the PGZrP-modified glassy carbon electrode (GCE) exhibited exceptional electrocatalytic proficiency in the sensing nitrite ions (NO2-), surpassing the performance of alternative electrode configurations, including the zirconium phosphate-modified GCE (ZrP/GCE), graphene oxide-modified GCE (GO/GCE), polyaniline-graphene oxide-modified GCE (PG/GCE), and the unmodified bare glassy carbon electrode. The constructed sensor demonstrated an impressive limit of detection at 80 nM along with a broad and linear detection range spanning from 124 nM to 40 mM. The synergistic effect created by the close contact between ZrP and PG, which resulted in a well-enhanced electrochemical sensing capability, was responsible for this exceptional activity. The developed sensor exhibited an enhanced electrochemical performance characterized by an extended operational range, a heightened detection threshold, and exceptional sensitivity. The PGZrP/GCE sensor, as fabricated, consistently demonstrated commendable operational stability, robust reproducibility, and remarkable repeatability in its capacity for nitrite detection. Furthermore, its successful application in the precise quantification of nitrite levels within environmental water samples and blood specimens showcased an impressive recovery rate, establishing it as a promising tool for diverse analytical applications. These findings indicate the promising potential of the PGZrP composite for integration into electrochemical devices designed to deliver rapid response times, heightened sensitivity, and sustained stability, thereby placing it as a potential candidate for the production of cutting-edge sensors, particularly those employed for the precise recognition of nitrite in aquatic and biological specimens.
Collapse
Affiliation(s)
- Vidhya C Valsalakumar
- Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Suni Vasudevan
- Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| |
Collapse
|
15
|
Ming P, Niu Y, Liu Y, Wang J, Lai H, Zhou Q, Zhai H. An Electrochemical Sensor Based on Cu-MOF-199@MWCNTs Laden with CuNPs for the Sensitive Detection of Creatinine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13656-13667. [PMID: 37712412 DOI: 10.1021/acs.langmuir.3c01823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In this study, the synthesis of Cu-MOF-199@multiwalled carbon nanotubes (Cu-MOF-199@MWCNTs) composites was achieved and utilized to create an advanced electrochemical sensor for creatinine (Cre) detection. The composites were modified on a glassy carbon electrode surface through direct drip coating, followed by the deposition of copper nanoparticles (CuNPs) via constant potential deposition. Characterized by various techniques and electrochemical analyses, the Cu-MOF-199@MWCNTs composite increased the CuNPs load, improving the detection sensitivity for Cre. Under optimal conditions, the modified electrode exhibited good linearity across a broad range of Cre concentrations (0.05-40.0 μM) with a low detection limit of 11.3 nM. The developed sensor demonstrated remarkable stability, reproducibility, and selectivity, showing promise in sensitive and accurate Cre detection in serum samples.
Collapse
Affiliation(s)
- Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuanyuan Niu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongxin Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinhao Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Zhou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
16
|
Manikanta P, Mounesh, Nikam RR, Mohanty J, Balakrishna RG, Sandeep S, Nagaraja BM. CdO Decorated with Polypyrrole Nanotube Heterostructure: Potent Electrocatalyst for the Detection of Antihistamine Drug Promethazine Hydrochloride in Environmental Samples. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11099-11107. [PMID: 37490749 DOI: 10.1021/acs.langmuir.3c01445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
In the realm of electrochemical sensor application, the development and fabrication of semiconducting metal oxides with the integration of conducting polymers for the trace-level detection of pharmaceutical medicines garnered considerable interest. Herein, we reported facile cadmium oxide decorated with polypyrrole nanotubes fabricated on a glassy carbon electrode (CdO@PPy/GCE) for efficient determination of antihistamine drug promethazine hydrochloride (PMH). The as-synthesized CdO@PPy composite was characterized by various analytical tools like X-ray powder diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the electrocatalytic activity of the modified electrode for PMH detection was examined by voltammetry and amperometric methods, and the modified electrode exhibited lower charge transfer resistance compared to the bare GCE. Under the optimized condition, the fabricated electrode shows a wide linear range (50-550 μM), better sensitivity (0.13 μAμM-1 cm-2), low detection limit (10.83 nM) (S/N = 3), and excellent selectivity and reproducibility toward PMH detection. Moreover, the modified GCE depicted eminent practical ability for PMH detection in lake water and pharmaceutical tablets.
Collapse
Affiliation(s)
- P Manikanta
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Mounesh
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Rohit Rangnath Nikam
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Jubate Mohanty
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - S Sandeep
- Department of Chemistry, S J College of Engineering, JSS Science and Technology University, Mysuru 570008, India
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| |
Collapse
|
17
|
Manikanta P, Reddy KRV, Selvaraj M, Vidyasagar CC, Nagaraja BM. Novel decorated aluminium(iii) phthalocyanine complex with the application of MWCNTs on electrodes: electrochemical non-enzymatic oxidation and reduction of glucose and hydrogen peroxide. RSC Adv 2023; 13:20723-20736. [PMID: 37441052 PMCID: PMC10334413 DOI: 10.1039/d3ra02617e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we performed the physicochemical and electrochemical characterization of a decorated macrocyclic aluminium(iii) phthalocyanine complex (AlTMQNCAPc). Subsequently, the AlTMQNCAPc@MWCNT/GC electrode was used for the electrochemical detection of glucose and hydrogen peroxide (H2O2) by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA). Moreover, the limit of detection, linear range, and sensitivity for glucose and H2O2 were investigated (CV: 2.5 nM L-1 and 25 nM L-1, 50-500 μM, 0.052 and 0.072 μA μmol cm-2; DPV: 3.1 nM L-1 and 18 nM L-1, 50-500 μM, 0.062 and 0.066 μA μmol cm-2 and CA: 10 nM L-1 and 20 nM L-1, 50-500 μM, 0.098 and 0.07 μA μmol cm-2, respectively). In addition, the AlTMQNCAPc@MWCNT/GC electrode showed good selectivity for the detection of glucose and H2O2 in the presence of common interfering substances, such as AA, DA, UA, glycine, l-cysteine, nitrite, Pb(ii), Cd(ii), Cu(ii), Co(ii), Hg(ii), Zn(ii), and glucose. For the detection of glucose and H2O2, the kinetic parameters, including the electron transfer coefficient and catalytic reaction rate constant, were also established. Finally, for usage in practical applications, the modified electrode was employed to achieve the quantitative detection of glucose and H2O2 in human urine and commercial samples of 3% H2O2, respectively.
Collapse
Affiliation(s)
- P Manikanta
- Centre for Nano and Material Science (CNMS), Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India
| | - K R Venugopala Reddy
- Department of Studies and Research in Chemistry Vijayanagara Sri Krishnadevaraya University Ballari - 583105 Karnataka India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University PO Box 9004 Abha 61413 Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University PO Box 9004 Abha 61413 Saudi Arabia
| | - C C Vidyasagar
- Department of Studies and Research in Chemistry, Rani Channamma University Belagavi - 591156 Karnataka India
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Science (CNMS), Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India
| |
Collapse
|