1
|
Griffin VP, Escobar ELN, Ogunyankin MO, Kanthe A, Gokhale M, Dhar P. Correlating Differences in the Surface Activity to Interface-Induced Particle Formation in Different Protein Modalities: IgG mAb Versus Fc-Fusion Protein. Mol Pharm 2024; 21:5088-5103. [PMID: 39370821 DOI: 10.1021/acs.molpharmaceut.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The propensity of protein-based biologics to form protein particles during bioprocessing can be related to their interfacial properties. In this study, we compare the surface activity and interfacial film properties of two structurally different biologics, an IgG and Fc-fusion, in the absence and presence of interfacial dilatational stresses, and correlate these differences to their tendency to form interface-induced protein particles. Our results show that interface-induced particle formation is protein-dependent, with the Fc-fusion demonstrating greater interfacial stability. This observation can be correlated with faster adsorption kinetics of the Fc-fusion protein, and formation of a less incompressible film at the air-liquid interface. The addition of polysorbate 80 (PS80), commonly added to mitigate protein particle formation, led to a surfactant-dominant interface for quiescent conditions and coadsorption of protein and surfactant for the Fc-fusion when exposed to interfacial stress. On the other hand, for the IgG molecule, the surface always remained surfactant dominant. Image analysis demonstrated that PS80 was more effective in mitigating particle formation for the IgG than Fc-fusion. This suggests that a surfactant-dominant interface is necessary to prevent interface-induced protein particle formation. Further, while PS80 is effective in mitigating particle formation in the IgG formulation, it may not be the best choice for other protein modalities.
Collapse
Affiliation(s)
- Valerie P Griffin
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, Kansas 66045, United States
| | - Estephanie L N Escobar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, Kansas 66045, United States
| | - Maria O Ogunyankin
- Drug Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Ankit Kanthe
- Drug Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Madhushree Gokhale
- Drug Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Griffin VP, Pace S, Ogunyankin MO, Holstein M, Hung J, Dhar P. Understanding the Impact of Combined Hydrodynamic Shear and Interfacial Dilatational Stress, on Interface-Mediated Particle Formation for Monoclonal Antibody Formulations. J Pharm Sci 2024; 113:2081-2092. [PMID: 38615816 DOI: 10.1016/j.xphs.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
During biomanufacturing, several unit operations expose solutions of biologics to multiple stresses, such as hydrodynamic shear forces due to fluid flow and interfacial dilatational stresses due to mechanical agitation or bubble collapse. When these stresses individually act on proteins adsorbed to interfaces, it results in an increase in protein particles in the bulk solution, a phenomenon referred to as interface-induced protein particle formation. However, an understanding of the dominant cause, when multiple stresses are acting simultaneously or sequentially, on interface-induced protein particle formation is limited. In this work, we established a unique set-up using a peristaltic pump and a Langmuir-Pockels trough to study the impact of hydrodynamic shear stress due to pumping and interfacial dilatational stress, on protein particle formation. Our experimental results together demonstrate that for protein solutions subjected to various combinations of stress (i.e., interfacial and hydrodynamic stress in different sequences), surface pressure values during adsorption and when subjected to compression/dilatational stresses, showed no change, suggesting that the interfacial properties of the protein film are not impacted by pumping. The concentration of protein particles is an order of magnitude higher when interfacial dilatational stress is applied at the air-liquid interface, compared to solutions that are only subjected to pumping. Furthermore, the order in which these stresses are applied, have a significant impact on the concentration of protein particles measured in the bulk solution. Together, these studies conclude that for biologics exposed to multiple stresses throughout bioprocessing and manufacturing, exposure to air-liquid interfacial dilatational stress is the predominant mechanism impacting protein particle formation at the interface and in the bulk solution.
Collapse
Affiliation(s)
- Valerie P Griffin
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15(th) Street, Lawrence, KS 66045, USA
| | - Samantha Pace
- Department of Drug Product, Department of Discovery Pharmaceutics, Bristol-Myers Squibb, Inc., 3551 Lawrenceville Road, Lawrence Township, NJ, 08648, USA
| | - Maria Olu Ogunyankin
- Development, Bristol-Myers Squibb, Inc., One Squibb Drive, New Brunswick, NJ, 08901, USA
| | - Melissa Holstein
- Biologics Development, Bristol-Myers Squibb, Inc., 38 Jackson Road, Devens, MA, 01434, USA
| | - Jessica Hung
- Biologics Development, Bristol-Myers Squibb, Inc., 38 Jackson Road, Devens, MA, 01434, USA
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15(th) Street, Lawrence, KS 66045, USA
| |
Collapse
|