1
|
Song L, Xue F, Li T, Zhang Q, Xu X, He C, Zhao B, Han XX, Cai L. Differential Diagnosis of Urinary Cancers by Surface-Enhanced Raman Spectroscopy and Machine Learning. Anal Chem 2025; 97:27-32. [PMID: 39757799 DOI: 10.1021/acs.analchem.4c05287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Bladder, kidney, and prostate cancers are prevalent urinary cancers, and developing efficient detection methods is of significance for the early diagnosis of them. However, noninvasive and sensitive detection of urinary cancers still challenges traditional techniques. In this study, we developed a SERS-based method to analyze serum samples from patients with urinary cancers. Rapid, label-free, and highly sensitive detection of human sera is achieved by cleaning and aggregating silver nanoparticles. Furthermore, a long short-term memory deep learning algorithm is used to distinguish serum spectra, and the performance of the model is evaluated by comparing the accuracy, sensitivity, specificity, and receiver operating characteristic curves. Taking advantage of SERS and machine learning in sensitivity and data processing, the three urinary cancers are clearly classified. This is the first attempt to exploit the SERS-machine learning strategy to discriminate multiple urinary cancers with clinical serum samples, and our results showed the potential application of this method in the early diagnosis and screening of cancers.
Collapse
Affiliation(s)
- Li Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Fei Xue
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Tingmiao Li
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Qian Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P. R. China
| | - Xuesong Xu
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Chengyan He
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Xu G, Yu J, Liu S, Cai L, Han XX. In situ surface-enhanced Raman spectroscopy for membrane protein analysis and sensing. Biosens Bioelectron 2025; 267:116819. [PMID: 39362137 DOI: 10.1016/j.bios.2024.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/08/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Membrane proteins are involved in a variety of dynamic cellular processes and exploration of the structural basis of membrane proteins is of significance for a better understanding of their functions. In situ analysis of membrane proteins and their dynamics is, however, challenging for conventional techniques. Surface-enhanced Raman spectroscopy (SERS) is powerful in protein structural characterization, allowing for sensitive, in-situ and real-time identification and dynamic monitoring under physiological conditions. In this review, the applications of SERS in probing membrane proteins are outlined, discussed and prospected. It starts with a brief introduction to membrane proteins, SERS theories and SERS-based strategies that commonly-used for membrane proteins. How to assemble phospholipid biolayers on SERS-active materials is highlighted, followed by respectively discussing about direct and indirect strategies for membrane protein sensing. SERS-based monitoring of protein-ligand interactions is finally introduced and its potential in biomedical applications is discussed in detail. The review ends with critical discussion about current challenges and limitations of this research field, and the promising perspectives in both fundamental and applied sciences.
Collapse
Affiliation(s)
- Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiaheng Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shiyi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
3
|
Bao Y, Oluwafemi A. Recent advances in surface modified gold nanorods and their improved sensing performance. Chem Commun (Camb) 2024; 60:469-481. [PMID: 38105689 DOI: 10.1039/d3cc04056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Gold nanorods (AuNRs) have received tremendous attention recently in the fields of sensing and detection applications due to their unique characteristic of surface plasmon resonance. Surface modification of the AuNRs is a necessary path to effectively utilize their properties for these applications. In this Article, we have focused both on demonstrating the recent advances in methods for surface functionalization of AuNRs as well as their use for improved sensing performance using various techniques. The main surface modification methods discussed include ligand exchange with the assistance of a thiol-group, the layer by layer assembly method, and depositing inorganic materials with the desired surface and morphology. Covered techniques that can then be applied for using these functionalized AuNRs include colourimetric sensing, refractive index sensing and surface enhance Raman scattering sensing. Finally, the outlook on the future development of surface modified AuNRs for improved sensing performance is considered.
Collapse
Affiliation(s)
- Ying Bao
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| | - Ayomide Oluwafemi
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| |
Collapse
|
4
|
Nejabat M, Samie A, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. An Overview on Gold Nanorods as Versatile Nanoparticles in Cancer Therapy. J Control Release 2023; 354:221-242. [PMID: 36621644 DOI: 10.1016/j.jconrel.2023.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Gold nanorods (GNRs/AuNRs) are a group of gold nanoparticles which their simple surface chemistry allows for various surface modifications, providing the possibility of using them in the fabrication of biocompatible and functional nano-agents for cancer therapy. AuNRs, moreover, exhibit a maximum absorption of longitudinal localized surface plasmon resonance (LSPR) in the near-infrared (NIR) region which overlaps with NIR bio-tissue 'window' suggesting that they are proper tools for thermal ablation of cancer cells. AuNRs can be used for induction of mono or combination therapies by administering various therapeutic approaches such as photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy (CT), radiotherapy (RT), and gene therapy (GT). In this review, anticancer therapeutic capacities of AuNRs along with different surface modifications are summarized comprehensively. The roles of AuNRs in fabrication of various nano-constructs are also discussed.
Collapse
Affiliation(s)
- Masoud Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Najeeb J, Farwa U, Ishaque F, Munir H, Rahdar A, Nazar MF, Zafar MN. Surfactant stabilized gold nanomaterials for environmental sensing applications - A review. ENVIRONMENTAL RESEARCH 2022; 208:112644. [PMID: 34979127 DOI: 10.1016/j.envres.2021.112644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Surfactant stabilized Gold (Au) nanomaterials (NMs) have been documented extensively in recent years for numerous sensing applications in the academic literature. Despite the crucial role these surfactants play in the sensing applications, the comprehensive reviews that highlights the fundamentals associated with these assemblies and impact of these surfactants on the properties and sensing mechanisms are still quite scare. This review is an attempt in organizing the vast literature associated with this domain by providing critical insights into the fundamentals, preparation methodologies and sensing mechanisms of these surfactant stabilized Au NMs. For the simplification, the surfactants are divided into the typical and advanced surfactants and the Au NMs are classified into Au nanoparticles (NPs) and Au nanoclusters (NCs) depending upon the complexity in structure and size of the NMs respectively. The preparative methodologies are also elaborated for enhancing the understanding of the readers regarding such assemblies. The case studies regarding surfactant stabilized Au NMs were further divided into colorimetric sensors, surface plasmonic resonance (SPR) based sensors, luminescence-based sensors, and electrochemical/electrical sensors depending upon the property utilized by the sensor for the sensing of an analyte. Future perspectives are also discussed in detail for the researchers looking for further progress in that particular research domain.
Collapse
Affiliation(s)
- Jawayria Najeeb
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Fatima Ishaque
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Hira Munir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98615-538, Iran
| | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Multan Campus, 60700, Pakistan.
| | | |
Collapse
|
6
|
Spedalieri C, Kneipp J. Surface enhanced Raman scattering for probing cellular biochemistry. NANOSCALE 2022; 14:5314-5328. [PMID: 35315478 PMCID: PMC8988265 DOI: 10.1039/d2nr00449f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/15/2022] [Indexed: 06/12/2023]
Abstract
Surface enhanced Raman scattering (SERS) from biomolecules in living cells enables the sensitive, but also very selective, probing of their biochemical composition. This minireview discusses the developments of SERS probing in cells over the past years from the proof-of-principle to observe a biochemical status to the characterization of molecule-nanostructure and molecule-molecule interactions and cellular processes that involve a wide variety of biomolecules and cellular compartments. Progress in applying SERS as a bioanalytical tool in living cells, to gain a better understanding of cellular physiology and to harness the selectivity of SERS, has been achieved by a combination of live cell SERS with several different approaches. They range from organelle targeting, spectroscopy of relevant molecular models, and the optimization of plasmonic nanostructures to the application of machine learning and help us to unify the information from defined biomolecules and from the cell as an extremely complex system.
Collapse
Affiliation(s)
- Cecilia Spedalieri
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Janina Kneipp
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
7
|
Paramasivam G, Palem VV, Sundaram T, Sundaram V, Kishore SC, Bellucci S. Nanomaterials: Synthesis and Applications in Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3228. [PMID: 34947577 PMCID: PMC8705396 DOI: 10.3390/nano11123228] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Nanomaterials are endowed with unique features and essential properties suitable for employing in the field of nanomedicine. The nanomaterials can be classified as 0D, 1D, 2D, and 3D based on their dimensions. The nanomaterials can be malleable and ductile and they can be drawn into wires and sheets. Examples of nanomaterials are quantum dots (0D), nanorods, nanowires (1D), nanosheets (2D), and nanocubes (3D). These nanomaterials can be synthesized using top-down and bottom-up approaches. The achievements of 0D and 1D nanomaterials are used to detect trace heavy metal (e.g., Pb2+) and have higher sensitivity with the order of five as compared to conventional sensors. The achievements of 2D and 3D nanomaterials are used as diagnostic and therapeutic agents with multifunctional ability in imaging systems such as PET, SPECT, etc. These imaging modalities can be used to track the drug in living tissues. This review comprises the state-of-the-art of the different dimensions of the nanomaterials employed in theranostics. The nanomaterials with different dimensions have unique physicochemical properties that can be utilized for therapy and diagnosis. The multifunctional ability of the nanomaterials can have a distinct advantage that is used in the field of theranostics. Different dimensions of the nanomaterials would have more scope in the field of nanomedicine.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India; (G.P.); (V.V.P.); (V.S.); (S.C.K.)
| | - Vishnu Vardhan Palem
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India; (G.P.); (V.V.P.); (V.S.); (S.C.K.)
| | - Thanigaivel Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India; (G.P.); (V.V.P.); (V.S.); (S.C.K.)
| | - Vickram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India; (G.P.); (V.V.P.); (V.S.); (S.C.K.)
| | - Somasundaram Chandra Kishore
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India; (G.P.); (V.V.P.); (V.S.); (S.C.K.)
| | | |
Collapse
|
8
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Improvements in Gold Nanorod Biocompatibility with Sodium Dodecyl Sulfate Stabilization. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to their well-defined plasmonic properties, gold nanorods (GNRs) can be fabricated with optimal light absorption in the near-infrared region of the electromagnetic spectrum, which make them suitable for cancer-related theranostic applications. However, their controversial safety profile, as a result of surfactant stabilization during synthesis, limits their clinical translation. We report a facile method to improve GNR biocompatibility through the presence of sodium dodecyl sulfate (SDS). GNRs (120 × 40 nm) were synthesized through a seed-mediated approach, using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant to direct the growth of nanorods and stabilize the particles. Post-synthesis, SDS was used as an exchange ligand to modify the net surface charge of the particles from positive to negative while maintaining rod stability in an aqueous environment. GNR cytotoxic effects, as well as the mechanisms of their cellular uptake, were examined in two different cancer cell lines, Lewis lung carcinoma (LLC) and HeLa cells. We not only found a significant dose-dependent effect of GNR treatment on cell viability but also a time-dependent effect of GNR surfactant charge on cytotoxicity over the two cell lines. Our results promote a better understanding of how we can mediate the undesired consequences of GNR synthesis byproducts when exposed to a living organism, which so far has limited GNR use in cancer theranostics.
Collapse
|
10
|
Živanović V, Milewska A, Leosson K, Kneipp J. Molecular Structure and Interactions of Lipids in the Outer Membrane of Living Cells Based on Surface-Enhanced Raman Scattering and Liposome Models. Anal Chem 2021; 93:10106-10113. [PMID: 34264630 DOI: 10.1021/acs.analchem.1c00964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution and interaction of lipids determine the structure and function of the cellular membrane. Surface-enhanced Raman scattering (SERS) is used for selective molecular probing of the cell membrane of living fibroblast cells grown adherently on gold nanoisland substrates across their whole contact areas with the substrate, enabling mapping of the membrane's composition and interaction. From the SERS data, the localization and distribution of different lipids and their interactions, together with proteins in the outer cell membrane, are inferred. Interpretation of the spectra is mainly supported by comparison with the spectra of model liposomes composed of phosphatidylcholine, sphingomyelin, and cholesterol obtained on the same gold substrate. The interaction of the liposomes with the substrate differs from that with gold nanoparticles. The SERS maps indicate colocalization of ordered lipid domains with cholesterol in the living cells. They support the observation of ordered membrane regions of micrometer dimensions in the outer leaflet of the cell membrane that are rich in sphingomyelin. Moreover, the spectra of the living cells contain bands from the groups of the lipid heads, phosphate, choline, and ethanolamine, combined with those from membrane proteins, as indicated by signals assigned to prenyl attachment. Elucidating the composition and structure of lipid membranes in living cells can find application in many fields of research.
Collapse
Affiliation(s)
- Vesna Živanović
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin 12489, Germany
| | - Adrianna Milewska
- Innovation Center Iceland, Árleynir 2-8, Reykjavík 112, Iceland.,The Blood Bank, Landspitali University Hospital, Snorrabraut 60, Reykjavík 105, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Sæmundargötu 2, Reykjavík 101, Iceland
| | - Kristjan Leosson
- Innovation Center Iceland, Árleynir 2-8, Reykjavík 112, Iceland.,Science Institute, University of Iceland, Dunhaga 3, Reykjavík 107, Iceland
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin 12489, Germany
| |
Collapse
|
11
|
Roach L, Booth ME, Ingram N, Paterson DA, Batchelor DVB, Moorcroft SCT, Bushby RJ, Critchley K, Coletta PL, Evans SD. Evaluating Phospholipid-Functionalized Gold Nanorods for In Vivo Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006797. [PMID: 33682366 DOI: 10.1002/smll.202006797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/02/2021] [Indexed: 05/10/2023]
Abstract
Gold nanorods (AuNRs) have attracted a great deal of attention due to their potential for use in a wide range of biomedical applications. However, their production typically requires the use of the relatively toxic cationic surfactant cetyltrimethylammonium bromide (CTAB) leading to continued demand for protocols to detoxify them for in vivo applications. In this study, a robust and facile protocol for the displacement of CTAB from the surface of AuNRs using phospholipids is presented. After the displacement, CTAB is not detectable by NMR spectroscopy, surface-enhanced Raman spectroscopy, or using pH-dependent ζ-potential measurements. The phospholipid functionalized AuNRs demonstrated superior stability and biocompatibility (IC50 > 200 µg mL-1 ) compared to both CTAB and polyelectrolyte functionalized AuNRs and are well tolerated in vivo. Furthermore, they have high near-infrared (NIR) absorbance and produce large amounts of heat under NIR illumination, hence such particles are well suited for plasmonic medical applications.
Collapse
Affiliation(s)
- Lucien Roach
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Mary E Booth
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Nicola Ingram
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Daniel A Paterson
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | - Kevin Critchley
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - P Louise Coletta
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Simeral ML, Zhang A, Demers SME, Hughes HJ, Abdul-Moqueet M, Mayer KM, Hafner JH. Effects of Conformational Variation on Structural Insights from Solution-Phase Surface-Enhanced Raman Spectroscopy. J Phys Chem B 2021; 125:2031-2041. [PMID: 33617719 PMCID: PMC8046088 DOI: 10.1021/acs.jpcb.0c10576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectra contain information on the chemical structure on nanoparticle surfaces through the position and alignment of molecules with the electromagnetic near field. Time-dependent density functional theory (TDDFT) can provide the Raman tensors needed for a detailed interpretation of SERS spectra. Here, the impact of molecular conformations on SERS spectra is considered. TDDFT calculations of the surfactant cetyltrimethylammonium bromide with five conformers produced more accurate unenhanced Raman spectra than a simple all-trans structure. The calculations and measurements also demonstrated a loss of structural information in the CH2/CH3 scissor vibration band at 1450 cm-1 in the SERS spectra. To study lipid bilayers, TDDFT calculations on conformers of methyl phosphorylcholine and cis-5-decene served as models for the symmetric choline stretch in the lipid headgroup and the C═C stretch in the acyl chains of 1,2-oleoyl-glycero-3-phosphocholine. Conformer considerations enabled a measurement of the distribution of double-bond orientations with an order parameter of SC═C = 0.53.
Collapse
Affiliation(s)
| | - Aobo Zhang
- Department of Physics & Astronomy, Rice University, Houston, TX
| | | | | | | | - Kathryn M. Mayer
- Department of Physics & Astronomy, University of Texas at San Antonio, San Antonio, TX
| | - Jason H. Hafner
- Department of Physics & Astronomy, Rice University, Houston, TX
- Department of Chemistry, Rice University, Houston, TX
| |
Collapse
|
13
|
Li C, Li Q, Wang Z, Han X. Phospholipid Self-Assemblies Shaped Like Ancient Chinese Coins for Artificial Organelles. Anal Chem 2020; 92:6060-6064. [PMID: 32207619 DOI: 10.1021/acs.analchem.0c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipid self-assemblies are ubiquitous in organisms. Nonspherical lipid-based proto-organelles bear the merits with structures similar to real organelles. It is still a challenge to mimic mass transport between organelles inside cells. Herein, unusual phospholipid self-assemblies shaped like ancient Chinese coins (ACC) were discovered by the recrystallization of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in an ethanol/water solution from 50 to 25 °C with a certain cooling rate. Their diameter and the ratio of the square edge to the disk diameter were controlled by varying ethanol percentage, lipid concentration, and cooling rate. The ACC-shaped phospholipid bicelles expanded to stacked cisterna structures in pure water, which were regarded as artificial organelles. Mass transport among organelles in a cell was mimicked via the membrane fusion of vesicle shuttles and artificial organelles, which induced cascade enzyme reactions inside artificial organelles. The ACC-shaped phospholipid assemblies provide nice platforms for the studies of cell biology and bottom-up synthetic biology.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| |
Collapse
|
14
|
Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chem 2020; 310:125923. [DOI: 10.1016/j.foodchem.2019.125923] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/15/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
|
15
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1667] [Impact Index Per Article: 333.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
16
|
Hughes HJ, Demers SME, Zhang A, Hafner JH. The orientation of a membrane probe from structural analysis by enhanced Raman scattering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183109. [PMID: 31785235 DOI: 10.1016/j.bbamem.2019.183109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 02/04/2023]
Abstract
Small fluorescent molecules are widely used as probes of biomembranes. Different probes optically indicate membrane properties such as the lipid phase, thickness, viscosity, and electrical potential. The detailed molecular mechanisms behind probe signals are not well understood, in part due to the lack of tools to determine probe position and orientation in the membrane. Optical measurements on aligned biomembranes and lipid bilayers provide some degree of orientational information based on anisotropy in absorption, fluorescence, or nonlinear optical properties. These methods typically find the polar tilt angle between the membrane normal and the long axis of the molecule. Here we show that solution-phase surface enhanced Raman scattering (SERS) spectra of lipid membranes on gold nanorods can be used to determine molecular orientation of molecules within the membrane. The voltage sensitive dye 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)-hydroxide, known as di-4-ANEPPS, is studied. Through the analysis of several peaks in the SERS spectrum, the polar angle from the membrane normal is found to be 66°, and the roll angle around the long axis of the molecule to be 305° from the original orientation. This structural analysis method could help elucidate the meaning of fluorescent membrane probe signals, and how they are affected by different lipid compositions.
Collapse
Affiliation(s)
- Hannah J Hughes
- Department of Physics & Astronomy, Rice University, Houston, TX, United States of America
| | - Steven M E Demers
- Department of Physics & Astronomy, Rice University, Houston, TX, United States of America
| | - Aobo Zhang
- Department of Physics & Astronomy, Rice University, Houston, TX, United States of America
| | - Jason H Hafner
- Department of Physics & Astronomy, Rice University, Houston, TX, United States of America; Department of Chemistry, Rice University, Houston, TX, United States of America.
| |
Collapse
|
17
|
Bruzas I, Brinson BE, Gorunmez Z, Lum W, Ringe E, Sagle L. Surface-Enhanced Raman Spectroscopy of Fluid-Supported Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33442-33451. [PMID: 31411450 DOI: 10.1021/acsami.9b09988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Supported lipid bilayers are essential model systems for studying biological membranes and for membrane-based sensor development. Surface-enhanced Raman spectroscopy (SERS) stands to add considerably to our understanding of the dynamics and interactions of these systems through direct chemical information. Despite this potential, SERS of lipid bilayers is not routinely achieved. Here, we carried out the first measurements of a solid-supported lipid bilayer on a SERS-active substrate and characterized the bilayer using SERS, atomic force microscopy, surface plasmon resonance spectroscopy, ellipsometry, and fluorescence recovery after photobleaching (FRAP). The creation of a fluid, SERS-active supported lipid bilayer was accomplished through use of a novel silica-coated silver film-over-nanosphere substrate. These substrates offer a powerful new platform to couple common surface techniques that are challenging on the nanoscale, for example, ellipsometry and FRAP, with SERS for studying biological membranes and their dynamics.
Collapse
Affiliation(s)
| | - Bruce E Brinson
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | | | | | - Emilie Ringe
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
- Department of Materials Science and Metallurgy, Department of Earth Science , University of Cambridge , Cambridge CB2 3EQ , U.K
| | | |
Collapse
|
18
|
Feng X, Han T, Xiong Y, Wang S, Dai T, Chen J, Zhang X, Wang G. Plasmon-Enhanced Electrochemiluminescence of Silver Nanoclusters for microRNA Detection. ACS Sens 2019; 4:1633-1640. [PMID: 31244011 DOI: 10.1021/acssensors.9b00413] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface plasmon-enhanced electrochemiluminescence (SPEECL) with excellent sensitivity and simplicity has attracted increasing attention. In this work, we reported a novel SPEECL with DNA templated silver nanoclusters (DNA-AgNCs) as ECL emitters and gold nanoparticles (AuNPs) as localized surface plasmon resonance (LSPR) source. The SPEECL with DNA-AgNCs as ECL luminophores possessed low toxicity and avoided the labeling process, which is favorable for its further sensing application. In addition, by investigation of the SPEECL under different distances between DNA-AgNCs and AuNPs, it was demonstrated that the SPEECL was distance dependent. Meanwhile, the SPEECL intensity changed with the sizes and interdistance of AuNPs under different electrodeposition time. Furthermore, by the combination of a cyclic amplification process with enzyme-free catalytic hairpin DNA, a sensitive SPEECL biosensor was proposed for the detection of microRNA (miRNA-21) successfully with a wide linear range from 1 aM to 104 fM and a relatively low detection limit of 0.96 aM, which was applied in the detection of miRNA-21 in real samples with satisfying results. This novel, simple, sensitive, and selective SPEECL with label-free and low-toxic ECL emitters displayed a great potential for bioassay application.
Collapse
Affiliation(s)
- Xiuyun Feng
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Ting Han
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Yunfang Xiong
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Sicheng Wang
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Tianyue Dai
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Jihua Chen
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Xiaojun Zhang
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| |
Collapse
|
19
|
Fuller MA, Köper I. Biomedical applications of polyelectrolyte coated spherical gold nanoparticles. NANO CONVERGENCE 2019; 6:11. [PMID: 31016413 PMCID: PMC6478786 DOI: 10.1186/s40580-019-0183-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 05/28/2023]
Abstract
Surface modified gold nanoparticles are becoming more and more popular for use in biomaterials due to the possibility for specific targeting and increased biocompatibility. This review provides a summary of the recent literature surrounding polyelectrolyte coatings on spherical gold nanoparticles and their potential biomedical applications. The synthesis and layer-by layer coating approach are briefly discussed together with common characterisation methods. The potential applications and recent developments in drug delivery, gene therapy, photothermal therapy and imaging are summarized as well as the effects on cellular uptake and toxicity. Finally, the future outlook for polyelectrolyte coated gold nanoparticles is explored, focusing on their use in biomedicine.
Collapse
Affiliation(s)
- Melanie A. Fuller
- Flinders Institute for NanoScale Science and Technology, Flinders University, Bedford Park, SA 5042 Australia
| | - Ingo Köper
- Flinders Institute for NanoScale Science and Technology, Flinders University, Bedford Park, SA 5042 Australia
| |
Collapse
|
20
|
Bruzas I, Lum W, Gorunmez Z, Sagle L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst 2019; 143:3990-4008. [PMID: 30059080 DOI: 10.1039/c8an00606g] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become an essential ultrasensitive analytical tool for biomolecular analysis of small molecules, macromolecular proteins, and even cells. SERS enables label-free, direct detection of molecules through their intrinsic Raman fingerprint. In particular, protein and lipid bilayers are dynamic three-dimensional structures that necessitate label-free methods of characterization. Beyond direct detection and quantitation, the structural information contained in SERS spectra also enables deeper biophysical characterization of biomolecules near metallic surfaces. Therefore, SERS offers enormous potential for such systems, although making measurements in a nonperturbative manner that captures the full range of interactions and activity remains a challenge. Many of these challenges have been overcome through advances in SERS substrate development, which have expanded the applications and targets of SERS for direct biomolecular quantitation and biophysical characterization. In this review, we will first discuss different categories of SERS substrates including solution-phase, solid-supported, tip-enhanced Raman spectroscopy (TERS), and single-molecule substrates for biomolecular analysis. We then discuss detection of protein and biological lipid membranes. Lastly, biophysical insights into proteins, lipids and live cells gained through SERS measurements of these systems are reviewed.
Collapse
Affiliation(s)
- Ian Bruzas
- Department of Chemistry, University of Cincinnati, 301 Clifton Court, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
21
|
Lee Y, Jang J, Yoon J, Choi JW, Choi I, Kang T. Phase transfer-driven rapid and complete ligand exchange for molecular assembly of phospholipid bilayers on aqueous gold nanocrystals. Chem Commun (Camb) 2019; 55:3195-3198. [PMID: 30698575 DOI: 10.1039/c8cc10037c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A phase transfer-mediated ligand exchange method is developed for highly selective and rapid synthesis of colloidal phospholipid bilayer-coated gold nanocrystals. The complete replacement of strongly bound surface ligands such as cetyltrimethylammonium bromide (CTAB) and citrate by phospholipid bilayer can be quickly achieved by water-chloroform phase transfer.
Collapse
Affiliation(s)
- Youngjae Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea.
| | | | | | | | | | | |
Collapse
|
22
|
Mei R, Wang Y, Liu W, Chen L. Lipid Bilayer-Enabled Synthesis of Waxberry-like Core-Fluidic Satellite Nanoparticles: Toward Ultrasensitive Surface-Enhanced Raman Scattering Tags for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23605-23616. [PMID: 29938498 DOI: 10.1021/acsami.8b06253] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we presented waxberry-like core-satellite (C-S) nanoparticles (NPs) prepared by an in situ growth of satellite gold NPs on spherical phospholipid bilayer-coated gold cores. The fluidic lipid bilayer cross-linker was reported for the first time, which imparted several novel morphological and optical properties to the C-S NPs. First, it regulated the anisotropic growth of the satellite NPs into vertically oriented nanorods on the core NP surface. Thus, an interesting waxberry-like nanostructure could be obtained, which was different from the conventional raspberry-like C-S structures decorated with spherical satellite NPs. Second, the satellite NPs were "soft-landed" on the lipid bilayer and could move on the core NP surface under certain conditions. The movement induced tunable plasmonic features in the C-S NPs. Furthermore, the fluidic lipid bilayer was capable of not only holding an abundance of reporter molecules but also delivering them to the hotspots at the junctions between the core and satellite NPs, which made the C-S NPs an excellent candidate for preparing ultrasensitive surface-enhanced Raman scattering (SERS) tags. The bioimaging capabilities of the C-S NP-based SERS tags were successfully demonstrated in living cells and mice. The developed SERS tags hold great potential for bioanalysis and medical diagnostics.
Collapse
Affiliation(s)
- Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | | | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| |
Collapse
|
23
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
24
|
Structural organization of lipid-functionalized-Au nanoparticles. Colloids Surf B Biointerfaces 2018; 168:2-9. [PMID: 29728291 DOI: 10.1016/j.colsurfb.2018.04.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/15/2018] [Accepted: 04/23/2018] [Indexed: 11/22/2022]
Abstract
Gold nanoparticles (AuNPs) are considered suitable systems for drug delivery and diagnostics with several applications in biomedicine. Size, shape and surface functionalization of these nanoparticles are important parameters influencing their behavior in a biological environment. This study describes the preparation and the characterization of lysophosphocholine coated AuNPs by means of Small Angle Neutron Scattering (SANS), Electron Paramagnetic Resonance (EPR) and Fluorescence Spectroscopy. In particular the structure of the functionalized AuNP suspension, as well as the physical properties, of the nanoparticle organic coating are discussed. The experimental results indicated that functionalized lysophosphocholine-AuNPs form aggregates, which are composed by nanoparticles with core-shell structure. Nevertheless, the nanoparticle suspension resulted to be stable, without significant structural rearrangements even when the temperature was increased to 50 °C. At the same time, experimental evidences also suggested that the 18LPC layer around AuNPs presented a reduced chain packing compared to pure 18LPC aggregates.
Collapse
|
25
|
da Silva JA, Meneghetti MR. New Aspects of the Gold Nanorod Formation Mechanism via Seed-Mediated Methods Revealed by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:366-375. [PMID: 29243933 DOI: 10.1021/acs.langmuir.7b03703] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
New aspects of the formation and growth mechanism of gold nanorods (AuNRs) during seed-mediated colloidal synthesis are revealed from the results of molecular dynamics simulation. The model systems consist of cetyltrimethylammonium bromide (CTAB) units adsorbed on low-index [Au(110), Au(100), and Au(111)] and high-index [Au(250)] gold surfaces. The CTAB units are adsorbed as adjacent cylindrical micelles when the relative number of adsorbed bromide ions is small. At later AuNR growth stages, the number of bromide ions increases as the [AuBr2]- species pass through the channels between the adsorbed micelles on the gold surface. Thus, the mature AuNRs have a high concentration of bromide ions at their surface, which appears to change the organization of the CTAB units on the particle surface from adsorbed micelles to a compact CTAB bilayer.
Collapse
Affiliation(s)
- José Adriano da Silva
- Grupo de Catálise e Reatividade Química-GCaR, Instituto de Química e Biotecnologia da Universidade Federal de Alagoas , Av. Lourival de Melo Mota, s/n, Cidade Universitária, CEP, 57072-970 Maceió-AL, Brazil
| | - Mario R Meneghetti
- Grupo de Catálise e Reatividade Química-GCaR, Instituto de Química e Biotecnologia da Universidade Federal de Alagoas , Av. Lourival de Melo Mota, s/n, Cidade Universitária, CEP, 57072-970 Maceió-AL, Brazil
| |
Collapse
|
26
|
Naeem S, Viswanathan G, Misran MB. Liposomes as colloidal nanovehicles: on the road to success in intravenous drug delivery. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
The advancement of research in colloidal systems has led to the increased application of this technology in more effective and targeted drug delivery. Nanotechnology enables control over functionality parameters and allows innovations in biodegradable, biocompatible, and stimuli-responsive delivery systems. The first closed bilayer phospholipid system, the liposome system, has been making steady progress over five decades of extensive research and has been efficient in achieving many desirable parameters such as remote drug loading, size-controlling measures, longer circulation half-lives, and triggered release. Liposome-mediated drug delivery has been successful in overcoming obstacles to cellular and tissue uptake of drugs with improved biodistribution in vitro and in vivo. These colloidal nanovehicles have moved on from a mere concept to clinical applications in various drug delivery systems for antifungal, antibiotic, and anticancer drugs.
Collapse
Affiliation(s)
- Sumaira Naeem
- Department of Chemistry , Faculty of Science, University of Malaya , 50603 Kuala Lumpur , Malaysia
- Department of Chemistry, Faculty of Science , University of Gujrat , Gujrat , Pakistan
| | - Geetha Viswanathan
- Department of Pharmacy , Faculty of Medicine Building, University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Misni Bin Misran
- Department of Chemistry , Faculty of Science, University of Malaya , 50603 Kuala Lumpur , Malaysia
| |
Collapse
|
27
|
Matthews JR, Shirazinejad CR, Isakson GA, Demers SME, Hafner JH. Structural Analysis by Enhanced Raman Scattering. NANO LETTERS 2017; 17:2172-2177. [PMID: 28166410 DOI: 10.1021/acs.nanolett.6b04509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gold nanostructures focus light to a molecular length scale at their surface, creating the possibility to visualize molecular structure. The high optical intensity leads to surface enhanced Raman scattering (SERS) from nearby molecules. SERS spectra contain information on molecular position and orientation relative to the surface but are difficult to interpret quantitatively. Here we describe a ratiometric analysis method that combines SERS and unenhanced Raman spectra with theoretical calculations of the optical field and molecular polarizability. When applied to the surfactant layer on gold nanorods, the alkane chain is found to be tilted 25° to the surface normal, which matches previous reports of the layer thickness. The analysis was also applied to fluid phase phospholipid bilayers that contain tryptophan on the surface of gold nanorods. The lipid double bond was found to be oriented normal to the bilayer and 13 Å from the nitrogen atom. Tryptophan was found to sit near the glycerol headgroup region with its indole ring 43° from the bilayer normal. This new method can determine specific interfacial structure under ambient conditions, with microscopic quantities of material, and without molecular labels.
Collapse
Affiliation(s)
- James R Matthews
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Cyna R Shirazinejad
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Grace A Isakson
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Steven M E Demers
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Jason H Hafner
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| |
Collapse
|
28
|
Santhosh PB, Thomas N, Sudhakar S, Chadha A, Mani E. Phospholipid stabilized gold nanorods: towards improved colloidal stability and biocompatibility. Phys Chem Chem Phys 2017; 19:18494-18504. [DOI: 10.1039/c7cp03403b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible and colloidally stable gold nanorods (GNRs) with well-defined plasmonic properties are essential for biomedical and theranostic applications.
Collapse
Affiliation(s)
- Poornima Budime Santhosh
- Polymer Engineering and Colloid Science Laboratory
- Department of Chemical Engineering
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | - Neethu Thomas
- Polymer Engineering and Colloid Science Laboratory
- Department of Chemical Engineering
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | - Swathi Sudhakar
- Polymer Engineering and Colloid Science Laboratory
- Department of Chemical Engineering
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Laboratory
- Department of Chemical Engineering
- Indian Institute of Technology Madras
- Chennai-600036
- India
| |
Collapse
|
29
|
Wan M, Li X, Gao L, Fang W. Self-assembly of gold nanorods coated with phospholipids: a coarse-grained molecular dynamics study. NANOTECHNOLOGY 2016; 27:465704. [PMID: 27758977 DOI: 10.1088/0957-4484/27/46/465704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The self-assembly of phospholipid-coated gold nanorods (GNRs) was investigated by coarse-grained molecular dynamics simulations. We predict that in addition to the formation of deformed vesicles encapsulating GNRs with diverse orientations, the lipid-coated GNRs can form a semi-ring attached to an excess vesicle phase, a branch with excess vesicle phase, a ring phase, a branch phase, a stack phase, and a vortex phase. The morphologies of the lipid-GNR complexes depend on the lipid/GNR molar ratio and the interaction strength between the nanorod surface and the lipid head groups. At given lipid-nanorod interactions, removing the lipid induces a phase transition from an isolated ring or branch phase to an aggregated vortex or stack phase and vice versa. As the lipid-coated GNRs transit from an isolated phase to an aggregated phase, the structure of the lipid at the nanorod surface converts from a bilayer state to a non-bilayer state.
Collapse
Affiliation(s)
- Mingwei Wan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | |
Collapse
|
30
|
Abstract
Background: Photothermal response of plasmonic nanomaterials can be utilized for a number of therapeutic applications such as the ablation of solid tumors. Methods & results: Gold nanoparticles were prepared using different methods. After optimization, we applied an aqueous plant extract as the reducing and capping agent of gold and maximized the near-infrared absorption (650–900 nm). Resultant nanoparticles showed good biocompatibility when tested in vitro in human keratinocytes and yeast Saccharomyces cerevisiae. Gold nanoparticles were easily activated by controlled temperature with an ultrasonic water bath and application of a pulsed laser. Conclusion: These gold nanoparticles can be synthesized with reproducibility, modified with seemingly limitless chemical functional groups, with adequate controlled optical properties for laser phototherapy of tumors and targeted drug delivery.
Collapse
|
31
|
Su X, Wang Y, Wang W, Sun K, Chen L. Phospholipid Encapsulated AuNR@Ag/Au Nanosphere SERS Tags with Environmental Stimulus Responsive Signal Property. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10201-11. [PMID: 27052206 DOI: 10.1021/acsami.6b01523] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surface-enhanced Raman scattering (SERS) tags draw much attention due to the ultrasensitivity and multiplex labeling capability. Recently, a new kind of SERS tags was rationally designed by encapsulating metal nanoparticles with phospholipid bilayers, showing great potential in theranostics. The lipid bilayer coating confers biocompatibility and versatility to changing surface chemistry of the tag; however, its "soft" feature may influence SERS signal stability, which is rarely investigated. Herein, we prepared phospholipid-coated AuNR@Ag/Au nanosphere SERS tags by using three different kinds of Raman reporters, i.e., thio-containing 4-nitrothiophenol (NT), nitrogen-containing hydrophobic chromophore cyanine 7 monoacid (Cy7), and alkyl chain-chromophore conjugate 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD). It was found that signal responses were different upon additional stimulation which the tags may encounter in theranostic applications including the presence of detergent Triton X-100, lipid membrane, and photothermal treatment. Living-cell imaging also showed signal changing distinction. The different SERS signal performances were attributed to the different Raman reporter releasing behaviors from the tags. This work revealed that Raman reporter structure determined signal stability of lipid-coated SERS tags, providing guidance for the design of stimulus responsive tags. Moreover, it also implied the potential of SERS technique for real time drug release study of lipid based nanomedicine.
Collapse
Affiliation(s)
- Xueming Su
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai 264005, China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Yunqing Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Wenhai Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Kaoxiang Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai 264005, China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| |
Collapse
|
32
|
Li MX, Zhao W, Qian GS, Feng QM, Xu JJ, Chen HY. Distance mediated electrochemiluminescence enhancement of CdS thin films induced by the plasmon coupling of gold nanoparticle dimers. Chem Commun (Camb) 2016; 52:14230-14233. [DOI: 10.1039/c6cc08441a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Theoretical and experimental studies of plasmon enhanced electrochemiluminescence of CdS QDs by gold nanoparticle monomers and dimers.
Collapse
Affiliation(s)
- Mei-Xing Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Guang-Sheng Qian
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Qiu-Mei Feng
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|