1
|
Ncobeni N, de la Torre BG, Albericio F, Kruger HG, Parboosing R. Active targeting of CD4 +T lymphocytes by PEI-capped, peptide-functionalized gold nanoparticles. NANOTECHNOLOGY 2022; 33:405101. [PMID: 35700711 DOI: 10.1088/1361-6528/ac7885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Active targeting is a promising approach for the treatment of viral infections. In particular, site-specific formulations for the treatment of HIV infection may overcome challenges associated with current ARV regimens. In this study we explored active targeting by synthesizing a gold nanoparticle construct decorated with an anti-CD4 cyclic peptide. The aim was to demonstrate selectivity of the system for the CD4 receptor and to deliver the RNA payload into T-lymphocytes. Colloidal gold nanoparticles functionalized withN-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) were formed by a one-pot synthesis method where thiol modified polyethyleneimine (PEI) was mixed with chloroauric acid. PEI-SPDP AuNPs (gold nanoparticles) were conjugated to an anti-CD4 peptide and loaded with RNA. We measured toxicity and uptake using TZM-bl and HeLa cells. Our findings show that the nanoparticles bind selectively to CD4 + cells. UV-vis characterisation of the nanoparticles revealed a surface plasmon resonance (SPR) peak at 527 nm, corresponding to a 6 nm diameter. HRTEM of the complete nanoparticles visualised circular shaped particles with average diameter of ∼7 nm. The polydispersity index was calculated to be 0.08, indicating monodispersity of complete NPS in solution. Through the pyridine-2-thione assay each nanoparticle was calculated to carry 1.37 × 105SPDP molecules available for peptide binding. Flow cytometry showed that 13.6% of TZM-bl cells, and 0.14% of HeLa cells retained fluorescence after an overnight incubation, an indication of system binding. No internal RNA delivery was demonstrated. Further work is required to improve internalization.
Collapse
Affiliation(s)
- Nomfundo Ncobeni
- Department of Virology-University of KwaZulu-Natal and National Health Laboratory Service, Durban, South Africa
- Catalysis and Peptide Research Labs, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Beatriz G de la Torre
- KwaZulu Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, E-08028 Barcelona, Spain
| | - Hendrik G Kruger
- Catalysis and Peptide Research Labs, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- Department of Virology-University of KwaZulu-Natal and National Health Laboratory Service, Durban, South Africa
| |
Collapse
|
3
|
Ding S, Attia MF, Wallyn J, Taddei C, Serra CA, Anton N, Kassem M, Schmutz M, Er-Rafik M, Messaddeq N, Collard A, Yu W, Giordano M, Vandamme TF. Microfluidic-Assisted Production of Size-Controlled Superparamagnetic Iron Oxide Nanoparticles-Loaded Poly(methyl methacrylate) Nanohybrids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1981-1991. [PMID: 29334739 DOI: 10.1021/acs.langmuir.7b01928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.
Collapse
Affiliation(s)
- Shukai Ding
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
- Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology , CN-710021 Xi'an, Shaanxi, China
| | - Mohamed F Attia
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
- National Research Centre , 12622 Cairo, Egypt
- Department of Bioengineering, Clemson University , Clemson, South Carolina 29634, United States
| | - Justine Wallyn
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
| | - Chiara Taddei
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR , Portici 80055, Italy
| | | | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
| | - Mohamad Kassem
- Vascular and Tissue Stress in Transplantation: Microparticles and Environment EA7293, Université de Strasbourg , F-67000 Strasbourg, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Meriem Er-Rafik
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Nadia Messaddeq
- Université de Strasbourg CNRS, INSERM, Collège de France, IGBMC UMR 7104/UMR_S 964 , F-67000 Strasbourg, France
| | - Alexandre Collard
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Wei Yu
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Michele Giordano
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR , Portici 80055, Italy
| | - Thierry F Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
| |
Collapse
|
4
|
Martínez L, Mayoral A, Espiñeira M, Roman E, Palomares FJ, Huttel Y. Core@shell, Au@TiO x nanoparticles by gas phase synthesis. NANOSCALE 2017; 9:6463-6470. [PMID: 28466930 PMCID: PMC5509011 DOI: 10.1039/c7nr01148b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Herein, gas phase synthesis and characterization of multifunctional core@shell, Au@TiOx nanoparticles have been reported. The nanoparticles were produced via a one-step process using a multiple-ion cluster source under a controlled environment that guaranteed the purity of the nanoparticles. The growth of the Au cores (6 nm diameter) is stopped when they pass through the Ti plasma where they are covered by an ultra-thin (1 nm thick) and homogeneous titanium shell that is oxidized in-flight before the soft-landing of the nanoparticles. The Au cores were found to be highly crystalline with icosahedral (44%) and decahedral (66%) structures, whereas the shell, mainly composed of TiO2 (79%), was not ordered. The highly electrical insulating behaviour of the titanium oxide shell was confirmed by the charging effect produced during X-ray photoemission spectroscopy.
Collapse
Affiliation(s)
- L Martínez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
5
|
Balcells L, Martínez-Boubeta C, Cisneros-Fernández J, Simeonidis K, Bozzo B, Oró-Sole J, Bagués N, Arbiol J, Mestres N, Martínez B. One-Step Route to Iron Oxide Hollow Nanocuboids by Cluster Condensation: Implementation in Water Remediation Technology. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28599-28606. [PMID: 27700020 DOI: 10.1021/acsami.6b08709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fabrication procedure of hollow iron oxide nanoparticles with a large surface to volume ratio by a single-step gas condensation process at ambient temperature is presented. Fe clusters formed during the sputtering process are progressively transformed into hollow cuboids with oxide shells by the Kirkendall mechanism at the expense of oxygen captured inside the deposition chamber. TEM and Raman spectroscopy techniques point to magnetite as the main component of the nanocuboids; however, the magnetic behavior exhibited by the samples suggests the presence of FeO as well. In addition, these particles showed strong stability after several months of exposure to ambient conditions, making them of potential interest in diverse technological applications. In particular, these hierarchical hollow particles turned out to be very efficient for both As(III) and As(V) absorption (326 and 190 mg/g, respectively), thus making them of strong interest for drinking water remediation.
Collapse
Affiliation(s)
- Lluís Balcells
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) , 08193 Bellaterra, Spain
| | | | | | | | - Bernat Bozzo
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) , 08193 Bellaterra, Spain
| | - Judith Oró-Sole
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) , 08193 Bellaterra, Spain
| | - Núria Bagués
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) , 08193 Bellaterra, Spain
| | - Jordi Arbiol
- Institució Catalana de Recerca i Estudia Avançats (ICREA) , 08093 Barcelona, Spain
| | - Narcís Mestres
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) , 08193 Bellaterra, Spain
| | - Benjamín Martínez
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) , 08193 Bellaterra, Spain
| |
Collapse
|