1
|
Sigolaeva LV, Shalybkova AA, Sharifullin TZ, Pergushov DV. Adsorption of Preformed Microgel-Enzyme Complexes as a Novel Strategy toward Engineering Microgel-Based Enzymatic Biosensors. MICROMACHINES 2023; 14:1629. [PMID: 37630165 PMCID: PMC10456651 DOI: 10.3390/mi14081629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
A novel approach to surface modification, which consists of the adsorption of microgel-enzyme complexes preformed in solution, is highlighted. Accordingly, the microgel-enzyme complexes were formed due to the electrostatic interaction of the oppositely charged interacting components, that is, a cationic poly(N-isopropylacrylamide)-based microgel and glucose oxidase taken as a model enzyme. The spontaneous adsorption of the prepared microgel-enzyme complexes, examined by means of quartz crystal microbalance with dissipation monitoring and atomic force microscopy, was observed, resulting in the formation of well-adhered microgel-enzyme coatings. Further, the preformed microgel-enzyme complexes were adsorbed onto the modified graphite-based screen-printed electrodes, and their enzymatic responses were determined by means of amperometry, demonstrating a remarkable analytical performance toward the quantification of β-D-glucose in terms of high sensitivity (0.0162 A × M-1 × cm-2), a low limit of detection (1 μM), and an expanded linear range (1-2000 μM). The fabricated microgel-enzyme biosensor constructs were found to be very stable against manifold-repeated measurements. Finally, the pH- or salt-induced release of glucose oxidase from the adsorbed preformed microgel-enzyme complexes was demonstrated. The findings obtained for the microgel-enzyme coatings prepared via adsorption of the preformed microgel-enzyme complexes were compared to those found for the microgel-enzyme coatings fabricated via a previously exploited two-stage sequential adsorption, which includes the adsorption of the microgel first, followed by the electrostatic binding of glucose oxidase by the adsorbed microgel.
Collapse
Affiliation(s)
- Larisa V. Sigolaeva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.A.S.); (T.Z.S.)
| | | | | | - Dmitry V. Pergushov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.A.S.); (T.Z.S.)
| |
Collapse
|
2
|
Ni J, Wan Y, Cai Y, Ding P, Cohen Stuart MA, Wang J. Synthesis of Anionic Nanogels for Selective and Efficient Enzyme Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3234-3243. [PMID: 35212549 DOI: 10.1021/acs.langmuir.1c03325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolyte nanogels containing cross-linked ionic polymer networks feature both soft environment and intrinsic charges which are of great potential for enzyme encapsulation. In this work, well-defined poly(acrylic acid) (PAA) nanogels have been synthesized based on a facile strategy, namely, electrostatic assembly directed polymerization (EADP). Specifically, AA monomers are polymerized together with a cross-linker in the presence of a cationic-neutral diblock copolymer as the template. Effects of control factors including pH, salt concentration, and cross-linking degree have been investigated systematically, based on which the optimal preparation of PAA nanogels has been established. The obtained nanogel features not only compatible pocket for safely loading enzymes without disturbing their structures, but also abundant negative charges which enable selective and efficient encapsulation of cationic enzymes. The loading capacities of PAA nanogels for cytochrome (cyt c) and lysozyme are 100 and 125 μg/mg (enzyme/nanogel), respectively. More notably, the PAA network seems to modulate a favorable microenvironment for cyt c and induces 2-fold enhanced activity for the encapsulated enzymes, as indicated by the steady-state kinetic assay. Our study reveals the control factors of EADP for optimal synthesis of anionic nanogels and validates their distinctive advances with respect to efficient loading and activation of cationic enzymes.
Collapse
Affiliation(s)
- Jiaying Ni
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yuting Wan
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ying Cai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peng Ding
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
3
|
Cai Y, Ding P, Ni J, Zhou L, Ahmad A, Guo X, Cohen Stuart MA, Wang J. Regulated Polyelectrolyte Nanogels for Enzyme Encapsulation and Activation. Biomacromolecules 2021; 22:4748-4757. [PMID: 34628859 DOI: 10.1021/acs.biomac.1c01030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyelectrolyte (PE) nanogels consisting of cross-linked PE networks integrate the advanced features of both nanogels and PEs. The soft environment and abundant intrinsic charges are of special interest for enzyme immobilization. However, the crucial factors that regulate enzyme encapsulation and activation remain obscure to date. Herein, we synthesized cationic poly (dimethyl aminoethyl methacrylate), PDMAEMA, nanogels with well-defined size and cross-link degrees and fully investigated the effects of different control factors on lipase immobilization. We demonstrate that the cationic PDMAEMA nanogels indeed enable efficient and safe loading of anionic lipase without disturbing their structures. Strong charge interaction achieved by tuning pH and larger particle size are favorable for lipase loading, while the enhanced enzymatic activity demands nanogels with smaller size and a moderate cross-link degree. As such, PDMAEMA nanogels with a hydrodynamic radius of 35 nm and 30% cross-linker fraction display the optimal catalytic efficiency, which is fourfold of that of free lipase. Moreover, the immobilization endows enhanced enzymatic activity in a broad scope of pH, ionic strength, and temperature, demonstrating effective protection and activation of lipase by the designed nanogels. Our study validates the crucial controls of the size and structure of PE nanogels on enzyme encapsulation and activation, and the revealed findings shall be helpful for designing functional PE nanogels and boosting their applications for enzyme immobilization.
Collapse
Affiliation(s)
- Ying Cai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Peng Ding
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jiaying Ni
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Lu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Ayyaz Ahmad
- Department of Chemical Engineering, MNS University of Engineering and Technology, Multan 60000, Pakistan
| | - Xuhong Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
4
|
Loading of doxorubicin into surface-attached stimuli-responsive microgels and its subsequent release under different conditions. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Buratti E, Sanzari I, Dinelli F, Prodromakis T, Bertoldo M. Formation and Stability of Smooth Thin Films with Soft Microgels Made of Poly( N-Isopropylacrylamide) and Poly(Acrylic Acid). Polymers (Basel) 2020; 12:E2638. [PMID: 33182647 PMCID: PMC7697199 DOI: 10.3390/polym12112638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
In this work, soft microgels of Poly(N-Isopropylacrylamide) (PNIPAm) at two different sizes and of interpenetrated polymer network (IPN) composed of PNIPAm and Poly(Acrylic Acid) (PAAc) were synthesized. Then, solutions of these different types of microgels have been spin-coated on glass substrates with different degrees of hydrophobicity. PNIPAm particles with a larger diameter form either patches or a continuous layer, where individual particles are still distinct, depending on the dispersion concentration and spin speed. On the other, PNIPAm particles with a smaller diameter and IPN particles form a continuous and smooth film, with a thickness depending on the dispersion concentration and spin-speed. The difference in morphology observed can be explained if one considers that the microgels may behave as colloidal particles or macromolecules, depending on their size and composition. Additionally, the microgel size and composition can also affect the stability of the depositions when rinsed in water. In particular, we find that the smooth and continuous films show a stimuli-dependent stability on parameters such as temperature and pH, while large particle layers are stable under any condition except on hydrophilic glass by washing at 50 °C.
Collapse
Affiliation(s)
- Elena Buratti
- Istituto per i Processi Chimico Fisici del Consiglio Nazionale delle Ricerche (IPCF-CNR), sede di Pisa, via Moruzzi 1, 56124 Pisa, Italy;
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, 00185 Roma, Italy
| | - Ilaria Sanzari
- Zepler Institute for Photonics and Nanoelectronics, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK; (I.S.); (T.P.)
| | - Franco Dinelli
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), via Moruzzi 1, 56124 Pisa, Italy;
| | - Themistoklis Prodromakis
- Zepler Institute for Photonics and Nanoelectronics, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK; (I.S.); (T.P.)
| | - Monica Bertoldo
- Istituto per la Sintesi Organica e la Fotoreattivitá del Consiglio Nazionale delle Ricerche (ISOF-CNR), via P. Gobetti 101, 40129 Bologna, Italy
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via L. Borsari, 45121 Ferrara, Italy
| |
Collapse
|
6
|
|
7
|
Heida T, Otto O, Biedenweg D, Hauck N, Thiele J. Microfluidic Fabrication of Click Chemistry-Mediated Hyaluronic Acid Microgels: A Bottom-Up Material Guide to Tailor a Microgel's Physicochemical and Mechanical Properties. Polymers (Basel) 2020; 12:E1760. [PMID: 32781609 PMCID: PMC7464250 DOI: 10.3390/polym12081760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
The demand for tailored, micrometer-scaled biomaterials in cell biology and (cell-free) biotechnology has led to the development of tunable microgel systems based on natural polymers, such as hyaluronic acid (HA). To precisely tailor their physicochemical and mechanical properties and thus to address the need for well-defined microgel systems, in this study, a bottom-up material guide is presented that highlights the synergy between highly selective bio-orthogonal click chemistry strategies and the versatility of a droplet microfluidics (MF)-assisted microgel design. By employing MF, microgels based on modified HA-derivates and homobifunctional poly(ethylene glycol) (PEG)-crosslinkers are prepared via three different types of click reaction: Diels-Alder [4 + 2] cycloaddition, strain-promoted azide-alkyne cycloaddition (SPAAC), and UV-initiated thiol-ene reaction. First, chemical modification strategies of HA are screened in-depth. Beyond the microfluidic processing of HA-derivates yielding monodisperse microgels, in an analytical study, we show that their physicochemical and mechanical properties-e.g., permeability, (thermo)stability, and elasticity-can be systematically adapted with respect to the type of click reaction and PEG-crosslinker concentration. In addition, we highlight the versatility of our HA-microgel design by preparing non-spherical microgels and introduce, for the first time, a selective, hetero-trifunctional HA-based microgel system with multiple binding sites. As a result, a holistic material guide is provided to tailor fundamental properties of HA-microgels for their potential application in cell biology and (cell-free) biotechnology.
Collapse
Affiliation(s)
- Thomas Heida
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| | - Oliver Otto
- Center for Innovation Competence: Humoral Immune Reactions in Cardiovascular Disorders, University of Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany;
- German Center for Cardiovascular Research e. V., University Medicine Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany
| | - Doreen Biedenweg
- Clinic for Internal Medicine B, University Medicine Greifswald, Fleischmannstr. 8, 17475 Greifswald, Germany;
| | - Nicolas Hauck
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| |
Collapse
|
8
|
Purohit A, Centeno SP, Wypysek SK, Richtering W, Wöll D. Microgel PAINT - nanoscopic polarity imaging of adaptive microgels without covalent labelling. Chem Sci 2019; 10:10336-10342. [PMID: 32110321 PMCID: PMC6984396 DOI: 10.1039/c9sc03373d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Polymer nanostructures have enormous potential for various applications in materials and life sciences. In order to exploit and understand their full capabilities, a detailed analysis of their structures and the environmental conditions in them is essential on the nanoscopic scale. With a super-resolution fluorescence microscopy technique known as PAINT (Points Accumulation for Imaging in Nanoscale Topography), we imaged colloidal hydrogel networks, so-called microgels, having a hydrodynamic radius smaller than the diffraction limit, gaining unprecedented insight into their full 3D structure which is not accessible in this much detail with any other experimental method. In addition to imaging of the microgel structure, the use of Nile Red as the solvatochromic fluorophore allowed us to resolve the polarity conditions within the investigated microgels, thus providing nanoscopic information on the x,y,z-position of labels including their polarity without the need of covalent labelling. With this imaging approach, we give a detailed insight into adapting structural and polarity properties of temperature-responsive microgels when changing the temperature beyond the volume phase transition.
Collapse
Affiliation(s)
- Ashvini Purohit
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52074 Aachen , Germany .
| | - Silvia P Centeno
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52074 Aachen , Germany .
| | - Sarah K Wypysek
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52074 Aachen , Germany .
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52074 Aachen , Germany .
| | - Dominik Wöll
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52074 Aachen , Germany .
| |
Collapse
|
9
|
Murray BS. Microgels at fluid-fluid interfaces for food and drinks. Adv Colloid Interface Sci 2019; 271:101990. [PMID: 31330395 DOI: 10.1016/j.cis.2019.101990] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Various aspects of microgel adsorption at fluid-fluid interfaces of relevance to emulsion and foam stabilization have been reviewed. The emphasis is on the wider non-food literature, with a view to highlighting how this understanding can be applied to food-based systems. The various different types of microgel, their methods of formation and their fundamental behavioral traits at interfaces are covered. The latter includes aspects of microgel deformation and packing at interfaces, their deformability, size, swelling and de-swelling and how this affects their surface activity and stabilizing properties. Experimental and theoretical methods for measuring and modelling their behaviour are surveyed, including interactions between microgels themselves at interfaces but also other surface active species. It is concluded that challenges still remain in translating all the possibilities synthetic microgels offer to microgels based on food-grade materials only, but Nature's rich tool box of biopolymers and biosurfactants suggests that this field will still open up important new avenues of food microstructure development and control.
Collapse
|
10
|
Song X, Qiao C, Tao J, Bao B, Han X, Zhao S. Interfacial Engineering of Thermoresponsive Microgel Capsules: Polymeric Wetting vs Colloidal Adhesion. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Mergel O, Schneider S, Tiwari R, Kühn PT, Keskin D, Stuart MCA, Schöttner S, de Kanter M, Noyong M, Caumanns T, Mayer J, Janzen C, Simon U, Gallei M, Wöll D, van Rijn P, Plamper FA. Cargo shuttling by electrochemical switching of core-shell microgels obtained by a facile one-shot polymerization. Chem Sci 2019; 10:1844-1856. [PMID: 30842853 PMCID: PMC6371888 DOI: 10.1039/c8sc04369h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022] Open
Abstract
Controlling and understanding the electrochemical properties of electroactive polymeric colloids is a highly topical but still a rather unexplored field of research. This is especially true when considering more complex particle architectures like stimuli-responsive microgels, which would entail different kinetic constraints for charge transport within one particle. We synthesize and electrochemically address dual stimuli responsive core-shell microgels, where the temperature-responsiveness modulates not only the internal structure, but also the microgel electroactivity both on an internal and on a global scale. In detail, a facile one-step precipitation polymerization results in architecturally advanced poly(N-isopropylacrylamide-co-vinylferrocene) P(NIPAM-co-VFc) microgels with a ferrocene (Fc)-enriched (collapsed/hard) core and a NIPAM-rich shell. While the remaining Fc units in the shell are electrochemically accessible, the electrochemical activity of Fc in the core is limited due to the restricted mobility of redox active sites and therefore restricted electron transfer in the compact core domain. Still, prolonged electrochemical action and/or chemical oxidation enable a reversible adjustment of the internal microgel structure from core-shell microgels with a dense core to completely oxidized microgels with a highly swollen core and a denser corona. The combination of thermo-sensitive and redox-responsive units being part of the network allows for efficient amplification of the redox response on the overall microgel dimension, which is mainly governed by the shell. Further, it allows for an electrochemical switching of polarity (hydrophilicity/hydrophobicity) of the microgel, enabling an electrochemically triggered uptake and release of active guest molecules. Hence, bactericidal drugs can be released to effectively kill bacteria. In addition, good biocompatibility of the microgels in cell tests suggests suitability of the new microgel system for future biomedical applications.
Collapse
Affiliation(s)
- Olga Mergel
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Sabine Schneider
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Rahul Tiwari
- DWI - Leibniz Institute for Interactive Materials , RWTH Aachen University , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Philipp T Kühn
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Damla Keskin
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Marc C A Stuart
- Groningen Biomolecular Sciences and Biotechnology Institute , Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Sebastian Schöttner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , D-64287 Darmstadt , Germany
| | - Martinus de Kanter
- Chair for Laser Technology LLT , RWTH Aachen University , Steinbachstr. 15 , 52074 Aachen , Germany
| | - Michael Noyong
- Institute of Inorganic Chemistry , JARA-SOFT , RWTH Aachen University , Landoltweg 1 , 52056 Aachen , Germany
| | - Tobias Caumanns
- GFE Central Facility for Electron Microscopy , RWTH Aachen University , Ahornstraße 55 , D-52074 Aachen , Germany
| | - Joachim Mayer
- GFE Central Facility for Electron Microscopy , RWTH Aachen University , Ahornstraße 55 , D-52074 Aachen , Germany
| | - Christoph Janzen
- Fraunhofer Institute for Laser Technology (ILT) , Steinbachstr. 15 , 52074 Aachen , Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry , JARA-SOFT , RWTH Aachen University , Landoltweg 1 , 52056 Aachen , Germany
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , D-64287 Darmstadt , Germany
| | - Dominik Wöll
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Felix A Plamper
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- Institute of Physical Chemistry , TU Bergakademie Freiberg , Leipziger Straße 29 , 09599 Freiberg , Germany . ; ; Tel: +49-3731-39-2139
| |
Collapse
|
12
|
Song X, Bao B, Tao J, Zhao S, Han X, Liu H. Deswelling Dynamics of Thermoresponsive Microgel Capsules and Their Ultrasensitive Sensing Applications: A Mesoscopic Simulation Study. THE JOURNAL OF PHYSICAL CHEMISTRY C 2019; 123:1828-1838. [DOI: 10.1021/acs.jpcc.8b09998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Marcisz K, Kaniewska K, Mackiewicz M, Nowinska A, Romanski J, Stojek Z, Karbarz M. Electroactive, Mediating and Thermosensitive Microgel Useful for Covalent Entrapment of Enzymes and Formation of Sensing Layer in Biosensors. ELECTROANAL 2018. [DOI: 10.1002/elan.201800459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kamil Marcisz
- Faculty of ChemistryBiological and Chemical Research CenterUniversity of Warsaw 101 Żwirki i Wigury Av., PL 02-089 Warsaw Poland
| | - Klaudia Kaniewska
- Faculty of ChemistryBiological and Chemical Research CenterUniversity of Warsaw 101 Żwirki i Wigury Av., PL 02-089 Warsaw Poland
| | - Marcin Mackiewicz
- Faculty of ChemistryBiological and Chemical Research CenterUniversity of Warsaw 101 Żwirki i Wigury Av., PL 02-089 Warsaw Poland
| | - Anna Nowinska
- Faculty of ChemistryBiological and Chemical Research CenterUniversity of Warsaw 101 Żwirki i Wigury Av., PL 02-089 Warsaw Poland
| | - Jan Romanski
- Faculty of ChemistryBiological and Chemical Research CenterUniversity of Warsaw 101 Żwirki i Wigury Av., PL 02-089 Warsaw Poland
| | - Zbigniew Stojek
- Faculty of ChemistryBiological and Chemical Research CenterUniversity of Warsaw 101 Żwirki i Wigury Av., PL 02-089 Warsaw Poland
| | - Marcin Karbarz
- Faculty of ChemistryBiological and Chemical Research CenterUniversity of Warsaw 101 Żwirki i Wigury Av., PL 02-089 Warsaw Poland
| |
Collapse
|
14
|
Sigolaeva LV, Pergushov DV, Oelmann M, Schwarz S, Brugnoni M, Kurochkin IN, Plamper FA, Fery A, Richtering W. Surface Functionalization by Stimuli-Sensitive Microgels for Effective Enzyme Uptake and Rational Design of Biosensor Setups. Polymers (Basel) 2018; 10:E791. [PMID: 30960716 PMCID: PMC6403641 DOI: 10.3390/polym10070791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 11/16/2022] Open
Abstract
We highlight microgel/enzyme thin films that were deposited onto solid interfaces via two sequential steps, the adsorption of temperature- and pH-sensitive microgels, followed by their complexation with the enzyme choline oxidase, ChO. Two kinds of functional (ionic) microgels were compared in this work in regard to their adsorptive behavior and interaction with ChO, that is, poly(N-isopropylacrylamide-co-N-(3-aminopropyl)methacrylamide), P(NIPAM-co-APMA), bearing primary amino groups, and poly(N-isopropylacrylamide-co-N-[3-(dimethylamino) propyl]methacrylamide), P(NIPAM-co-DMAPMA), bearing tertiary amino groups. The stimuli-sensitive properties of the microgels in the solution were characterized by potentiometric titration, dynamic light scattering (DLS), and laser microelectrophoresis. The peculiarities of the adsorptive behavior of both the microgels and the specific character of their interaction with ChO were revealed by a combination of surface characterization techniques. The surface charge was characterized by electrokinetic analysis (EKA) for the initial graphite surface and the same one after the subsequent deposition of the microgels and the enzyme under different adsorption regimes. The masses of wet microgel and microgel/enzyme films were determined by quartz crystal microbalance with dissipation monitoring (QCM-D) upon the subsequent deposition of the components under the same adsorption conditions, on a surface of gold-coated quartz crystals. Finally, the enzymatic responses of the microgel/enzyme films deposited on graphite electrodes to choline were tested amperometrically. The presence of functional primary amino groups in the P(NIPAM-co-APMA) microgel enables a covalent enzyme-to-microgel coupling via glutar aldehyde cross-linking, thereby resulting in a considerable improvement of the biosensor operational stability.
Collapse
Affiliation(s)
- Larisa V Sigolaeva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
| | - Dmitry V Pergushov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
| | - Marina Oelmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Monia Brugnoni
- Institute of Physical Chemistry II, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Ilya N Kurochkin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Str. 4, 119334 Moscow, Russia.
| | - Felix A Plamper
- Institute of Physical Chemistry II, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
- Physical Chemistry of Polymeric Materials, Technical University of Dresden, Hohe Str. 6, 01069 Dresden, Germany.
| | - Walter Richtering
- Institute of Physical Chemistry II, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| |
Collapse
|
15
|
Hofzumahaus C, Hebbeker P, Schneider S. Monte Carlo simulations of weak polyelectrolyte microgels: pH-dependence of conformation and ionization. SOFT MATTER 2018; 14:4087-4100. [PMID: 29569677 DOI: 10.1039/c7sm02528a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the effect of pH on single weak acidic polyelectrolyte microgels under salt-free conditions with (i) varying microgel concentration, (ii) varying content of acidic groups and (iii) different crosslinking densities using Monte Carlo simulations under explicit consideration of the protonation/deprotonation reaction. We assessed both global properties, such as the degree of ionization, the degree of swelling and the counterion distribution, and local properties such as the radial network ionization profile and the ionization along the polymer chains as a function of pH. We found a pronounced suppression of the pH-dependent ionization of the microgels, as compared to the ideal titration behavior and a shift of the titration curve to a higher pH originating in the proximity of acidic groups in the microgel. In contrast to macroscopic gels, counterions can leave the microgel, resulting in an effective charge of the network, which hinders the ionization. A decreasing microgel concentration leads to an increased effective charge of the microgel and a more pronounced shift of the titration curve. The number of acidic groups showed only a weak effect on the ionization behavior of the microgels. For two different microgels with different crosslinking densities, similar scaling of the gel size was observed. A distinct transition from an uncharged and unswollen to a highly charged and expanded polymer network was observed for all investigated microgels. The degree of swelling mainly depends on the degree of ionization. An inhomogeneous distribution of the degree of ionization along the radial profile of the microgel was found.
Collapse
Affiliation(s)
- C Hofzumahaus
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - P Hebbeker
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - S Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
16
|
Schulte MF, Scotti A, Gelissen APH, Richtering W, Mourran A. Probing the Internal Heterogeneity of Responsive Microgels Adsorbed to an Interface by a Sharp SFM Tip: Comparing Core-Shell and Hollow Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4150-4158. [PMID: 29509428 DOI: 10.1021/acs.langmuir.7b03811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microgels composed of thermoresponsive polymer poly( N-isopropylacrylamide) (PNIPAM) are interfacial active. Their adsorption leads to deformation, causing conformational changes that have profound effects on the macroscopic properties of these films. Yet, methods to quantitatively probe the local density are lacking. We introduced scanning force microscopy (SFM) to quantitatively probe the internal structure of microgels physically adsorbed on a solid (SiO2)/water interface. Using a sharp SFM tip, we investigated the two types of microgels: (i) core-shell microgels featuring a hard silica core and a PNIPAM shell and (ii) hollow microgels obtained by dissolution of the silica core. Thus, both systems have the same polymer network as the peripheral structure but a distinctly different internal structure, that is, a rigid core versus a void. By evaluating the force-distance curves, the force profile during insertion of the tip into the polymer network enables to determine a depth-dependent contact resistance, which closely correlates with the density profiles determined in solution by small-angle neutron scattering. We found that the cavity of the swollen hollow microgels is still present when adsorbed to the solid substrate. Remarkably, while currently used techniques such as colloidal probe or reflectometry only provide an average of the z-profile, the methodology introduced herein actually probes the real three-dimensional density profile, which is ultimately important to understand the macroscopic behavior of microgel films. This will bridge the gap between the colloidal probe experiments that deform the microgel globally and the insertion in which the disturbance is located near the tip.
Collapse
Affiliation(s)
- M Friederike Schulte
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52056 Aachen , Germany
| | - Andrea Scotti
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Arjan P H Gelissen
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52056 Aachen , Germany
| | - Ahmed Mourran
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52056 Aachen , Germany
| |
Collapse
|
17
|
Karbarz M, Mackiewicz M, Kaniewska K, Marcisz K, Stojek Z. Recent developments in design and functionalization of micro- and nanostructural environmentally-sensitive hydrogels based on N-isopropylacrylamide. APPLIED MATERIALS TODAY 2017; 9:516-532. [DOI: 10.1016/j.apmt.2017.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Walta S, Pergushov DV, Oppermann A, Steinschulte AA, Geisel K, Sigolaeva LV, Plamper FA, Wöll D, Richtering W. Microgels enable capacious uptake and controlled release of architecturally complex macromolecular species. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Rudov AA, Gelissen APH, Lotze G, Schmid A, Eckert T, Pich A, Richtering W, Potemkin II. Intramicrogel Complexation of Oppositely Charged Compartments As a Route to Quasi-Hollow Structures. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrey A. Rudov
- Physics
Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- DWI—Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52056, Germany
| | | | - Gudrun Lotze
- High
Brilliance Beamline ID02, ESRF—The European Synchrotron, 71, Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Andreas Schmid
- Institute of Physical Chemistry, RWTH Aachen University, Aachen 52056, Germany
| | - Thomas Eckert
- Institute of Physical Chemistry, RWTH Aachen University, Aachen 52056, Germany
| | - Andrij Pich
- DWI—Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52056, Germany
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52056, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Aachen 52056, Germany
| | - Igor I. Potemkin
- Physics
Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- DWI—Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52056, Germany
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
20
|
Sigolaeva LV, Gladyr SY, Mergel O, Gelissen APH, Noyong M, Simon U, Pergushov DV, Kurochkin IN, Plamper FA, Richtering W. Easy-Preparable Butyrylcholinesterase/Microgel Construct for Facilitated Organophosphate Biosensing. Anal Chem 2017; 89:6091-6098. [DOI: 10.1021/acs.analchem.7b00732] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Larisa V. Sigolaeva
- Department
of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Snezhana Yu. Gladyr
- Department
of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Mergel
- Institute
of Physical Chemistry II, RWTH Aachen University, 52056 Aachen, Germany
| | - Arjan P. H. Gelissen
- Institute
of Physical Chemistry II, RWTH Aachen University, 52056 Aachen, Germany
| | - Michael Noyong
- Institute
of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Ulrich Simon
- Institute
of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Dmitry V. Pergushov
- Department
of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya N. Kurochkin
- Department
of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Felix A. Plamper
- Institute
of Physical Chemistry II, RWTH Aachen University, 52056 Aachen, Germany
| | - Walter Richtering
- Institute
of Physical Chemistry II, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
21
|
Hebbeker P, Steinschulte AA, Schneider S, Plamper FA. Balancing Segregation and Complexation in Amphiphilic Copolymers by Architecture and Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4091-4106. [PMID: 28221801 DOI: 10.1021/acs.langmuir.6b04602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Segregation is a well-known principle for micellization, as solvophobic components try to minimize interactions with other entities (such as solvent) by self-assembly. An opposite principle is based on complexation (or coacervation), leading to the coassembly/association of different components. Most cases in the literature rely on only one of these modes, though the classical micellization scheme (such as spherical micelles, wormlike micelles, and vesicles) can be enriched by a subtle balance of segregation and complexation. Because of their counteraction, micellar constructs with unprecedented structure and behavior could be obtained. In this feature, systems are highlighted, which are between both mechanisms, and we study concentration, architecture, and confinement effects. Systems with inter- and intramolecular interactions are presented, and the effects of polymer topology and monomer sequence on the resulting structures are discussed. It is shown that complexation can lead to altered micellization behavior as the complex of one hydrophobic and one hydrophilic component can have a very low surface tension toward the solvent. Then, the more soluble component is enriched at the surface of the complex and acts as a microsurfactant. Although segregation dominates for amphiphilic copolymers in solution, the effect of the complexation can be enhanced by branching (change of architecture). Another possibility to enhance the complexation is by confining copolymers in a (pseudo-) 2D environment (like the one available at liquid-liquid interfaces). These observations show how new structural features can be achieved by tuning the subtle balance between segregation and complexation/solubilization.
Collapse
Affiliation(s)
- Pascal Hebbeker
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Alexander A Steinschulte
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Felix A Plamper
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
22
|
|
23
|
Abstract
Microgels are macromolecular networks swollen by the solvent in which they are dissolved. They are unique systems that are distinctly different from common colloids, such as, e.g., rigid nanoparticles, flexible macromolecules, micelles, or vesicles. The size of the microgel networks is in the range of several micrometers down to nanometers (then sometimes called "nanogels"). In a collapsed state, they might resemble hard colloids but they can still contain significant amounts of solvent. When swollen, they are soft and have a fuzzy surface with dangling chains. The presence of cross-links provides structural integrity, in contrast to linear and (hyper)branched polymers. Obviously, the cross-linker content will allow control of whether microgels behave more "colloidal" or "macromolecular". The combination of being soft and porous while still having a stable structure through the cross-linked network allows for designing microgels that have the same total chemical composition, but different properties due to a different architecture. Microgels based, e.g., on two monomers but have either statistical spatial distribution, or a core-shell or hollow-two-shell morphology will display very different properties. Microgels provide the possibility to introduce chemical functionality at different positions. Combining architectural diversity and compartmentalization of reactive groups enables thus short-range coexistence of otherwise instable combinations of chemical reactivity. The open microgel structure is beneficial for uptake-release purposes of active substances. In addition, the openness allows site-selective integration of active functionalities like reactive groups, charges, or markers by postmodification processes. The unique ability of microgels to retain their colloidal stability and swelling degree both in water and in many organic solvents allows use of different chemistries for the modification of microgel structure. The capability of microgels to adjust both their shape and volume in response to external stimuli (e.g., temperature, ionic strength and composition, pH, electrochemical stimulus, pressure, light) provides the opportunity to reversibly tune their physicochemical properties. From a physics point of view, microgels are particularly intriguing and challenging, since their intraparticle properties are intimately linked to their interparticle behavior. Microgels, which reveal interface activity without necessarily being amphiphilic, develop even more complex behavior when located at fluid or solid interfaces: the sensitivity of microgels to various stimuli allows, e.g., the modulation of emulsion stability, adhesion, sensing, and filtration. Hence, we envision an ever-increasing relevance of microgels in these fields including biomedicine and process technology. In sum, microgels unite properties of very different classes of materials. Microgels can be based on very different (bio)macromolecules such as, e.g., polysaccharides, peptides, or DNA, as well as on synthetic polymers. This Account focuses on synthetic microgels (mainly based on acrylamides); however, the general, fundamental features of microgels are independent of the chemical nature of the building moieties. Microgels allow combining features of chemical functionality, structural integrity, macromolecular architecture, adaptivity, permeability, and deformability in a unique way to include the "best" of the colloidal, polymeric, and surfactant worlds. This will open the door for novel applications in very different fields such as, e.g., in sensors, catalysis, and separation technology.
Collapse
Affiliation(s)
- Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Walter Richtering
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
- DWI-Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
| |
Collapse
|
24
|
Han K, Tiwari R, Heuser T, Walther A. Simple Platform Method for the Synthesis of Densely Functionalized Microgels by Modification of Active Ester Latex Particles. Macromol Rapid Commun 2016; 37:1323-30. [DOI: 10.1002/marc.201600213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/23/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Kang Han
- DWI-Leibniz Institute for Interactive Materials; Forckenbeckstr. 50 52074 Aachen Germany
| | - Rahul Tiwari
- DWI-Leibniz Institute for Interactive Materials; Forckenbeckstr. 50 52074 Aachen Germany
| | - Thomas Heuser
- DWI-Leibniz Institute for Interactive Materials; Forckenbeckstr. 50 52074 Aachen Germany
| | - Andreas Walther
- DWI-Leibniz Institute for Interactive Materials; Forckenbeckstr. 50 52074 Aachen Germany
| |
Collapse
|
25
|
Virtanen OLJ, Mourran A, Pinard PT, Richtering W. Persulfate initiated ultra-low cross-linked poly(N-isopropylacrylamide) microgels possess an unusual inverted cross-linking structure. SOFT MATTER 2016; 12:3919-28. [PMID: 27033731 DOI: 10.1039/c6sm00140h] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cross-linking density and distribution are decisive for the mechanical and other properties of stimuli-sensitive poly(N-isopropylacrylamide) microgels. Here we investigate the structure of ultra-low cross-linked microgels by static light scattering and scanning force microscopy, and show that they have an inverted cross-linking structure with respect to conventional microgels, contrary to what has been assumed previously. The conventional microgels have the largest polymer volume fraction in the core from where the particle density decays radially outwards, whereas ultra-low cross-linked particles have the highest polymer volume fraction close to the surface. On a solid substrate these particles form buckled shapes at high surface coverage, as shown by scanning force micrographs. The special structure of ultra-low cross-linked microgels is attributed to cross-linking of the particle surface, which is exposed to hydrogen abstraction by radicals generated from persulfate initiators during and after polymerization. The particle core, which is less accessible to the diffusion of radicals, has consequently a lower polymer volume fraction in the swollen state. By systematic variation of the cross-linker concentration it is shown that the cross-linking contribution from peroxide under typical synthesis conditions is weaker than that from the use of 1 mol% N,N'-methylenebisacrylamide. Soft deformable hydrogel particles are of interest because they emulate biological tissues, and understanding the underlying synthesis principle enables tailoring the microgel structure for biomimetic applications. Deformability of microgels is usually controlled by the amount of added cross-linker; here we however highlight an alternative approach through structural softness.
Collapse
Affiliation(s)
- O L J Virtanen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52064 Aachen, Germany.
| | | | | | | |
Collapse
|
26
|
Maccarrone S, Mergel O, Plamper FA, Holderer O, Richter D. Electrostatic Effects on the Internal Dynamics of Redox-Sensitive Microgel Systems. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Simona Maccarrone
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747, Garching, Germany
| | - Olga Mergel
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Olaf Holderer
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747, Garching, Germany
| | - Dieter Richter
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747, Garching, Germany
| |
Collapse
|