1
|
Aoyama N, Kanematsu H, Barry DM, Miura H, Ogawa A, Kogo T, Kawai R, Hagio T, Hirai N, Kato T, Yoshitake M, Ichino R. AC Electromagnetic Field Controls the Biofilms on the Glass Surface by Escherichia coli & Staphylococcus epidermidis Inhibition Effect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7051. [PMID: 37959648 PMCID: PMC10649311 DOI: 10.3390/ma16217051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
Biofilms, mainly comprised of bacteria, form on materials' surfaces due to bacterial activity. They are generally composed of water, extracellular polymeric substances (polysaccharides, proteins, nucleic acids, and lipids), and bacteria. Some bacteria that form biofilms cause periodontal disease, corrosion of the metal materials that make up drains, and slippage. Inside of a biofilm is an environment conducive to the growth and propagation of bacteria. Problems with biofilms include the inability of disinfectants and antibiotics to act on them. Therefore, we have investigated the potential application of alternating electromagnetic fields for biofilm control. We obtained exciting results using various materials' specimens and frequency conditions. Through these studies, we gradually understood that the combination of the type of bacteria, the kind of material, and the application of an electromagnetic field with various low frequencies (4 kHz-12 kHz) changes the circumstances of the onset of the biofilm suppression effect. In this study, relatively high frequencies (20 and 30 kHz) were applied to biofilms caused by Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis), and quantitative evaluation was performed using staining methods. The sample surfaces were analyzed by Raman spectroscopy using a Laser Raman spectrometer to confirm the presence of biofilms on the surface.
Collapse
Affiliation(s)
- Natsu Aoyama
- Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, (Currently Asahi Kasei Co.), Suzuka 510-0294, Japan; (N.A.); (T.K.); (R.K.)
| | - Hideyuki Kanematsu
- Research Collaboration Promotion Center, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan
| | - Dana M. Barry
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA;
| | - Hidekazu Miura
- Faculty of Medical Engineering, Suzuka University of Medical Science, Suzuka 510-0293, Japan;
| | - Akiko Ogawa
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (A.O.); (N.H.)
| | - Takeshi Kogo
- Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, (Currently Asahi Kasei Co.), Suzuka 510-0294, Japan; (N.A.); (T.K.); (R.K.)
| | - Risa Kawai
- Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, (Currently Asahi Kasei Co.), Suzuka 510-0294, Japan; (N.A.); (T.K.); (R.K.)
| | - Takeshi Hagio
- Institutes of Innovation for Future Society, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan;
| | - Nobumitsu Hirai
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (A.O.); (N.H.)
| | - Takehito Kato
- National Institute of Technology (KOSEN), Oyama College, Oyama 323-0806, Japan;
| | - Michiko Yoshitake
- National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan;
| | - Ryoichi Ichino
- Graduate School of Engineering Chemical Systems Engineering 2, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan;
| |
Collapse
|
2
|
Zhang H, Zhang W, Zong Y, Kong D, Zhao K. Factors Influencing Pseudomonas aeruginosa Initial Adhesion and Evolution at the Dodecane-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11274-11282. [PMID: 37524061 DOI: 10.1021/acs.langmuir.3c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Bacterial adhesion and evolution at the oil-water interface are important for a broad range of applications such as food manufacturing and microbial-enhanced oil recovery, etc. However, our understanding on bacterial interfacial adhesion and evolution, particularly at the single-cell level, is still far from complete. In this work, by employing Pseudomonas aeruginosa PAO1 at the dodecane-water interface as a model system, we have studied the effects of different factors on bacterial interfacial adhesion and the dynamic evolution of bacterial interfacial behavior at the single-cell level. The results show that PAO1 cells displayed a chemotactic behavior toward dodecane. Among the tested factors, bacterial initial interfacial attachment showed a negative correlation with the secreted cell-surface associated lipopolysaccharide and Psl while a positive correlation with type IV pili. Adding nonbiological surfactant Pluronic F-127, as expected, greatly reduced the cell interfacial adhesion. More importantly, the dynamics analysis of cell attachment/detachment at the dodecane-water interface over a long-time scale revealed a reversible to irreversible attachment transition of cells. This transition is accompanied with the interface aging resulting from bacterial activities, which led to an increase of the interfacial viscoelasticity with time and finally the formation of the gel-like interface. Further analysis demonstrated the important role of exopolysaccharides in the latter process. Our findings provide more details of bacterial oil-water interfacial behavior at the single-cell level and may shed light on developing new strategies for controlling bacterial colonization at the oil-water interface.
Collapse
Affiliation(s)
- Hong Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenchao Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiwu Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dongyang Kong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kun Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and The Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
3
|
Kokilathasan N, Dittrich M. Nanoplastics: Detection and impacts in aquatic environments - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157852. [PMID: 35944628 DOI: 10.1016/j.scitotenv.2022.157852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The rise in the global production of plastics has led to severe concerns about the impacts of plastics in aquatic environments. Although plastic materials degrade over extreme long periods, they can be broken down through physical, chemical, and/or biological processes to form microplastics (MPs), defined here as particles between 1 μm and 5 mm in size, and later to form nanoplastics (NPls), defined as particles <1 μm in size. We know little about the abundance and effects of NPls, even though a lot of research has been conducted on the ecotoxicological impacts of MPs on both aquatic biota. Nevertheless, there is evidence that NPls can both bypass the cell membranes of microorganisms and bioaccumulate in the tissues and organs of higher organisms. This review analyzes 150 publications collected by searching through the databases Web of Science, SCOPUS, and Google Scholar using keywords such as nanoplastics*, aquatic*, detection*, toxic*, biofilm*, formation*, and extracellular polymeric substance* as singular or plural combinations. We highlight and critically synthesize current studies on the formation and degradation of NPls, NPls' interactions with aquatic biota and biofilm communities, and methods of detection. One reason for the missing data and studies in this area of research is the lack of a protocol for the detection of, and suitable methods for the characterization of, NPls in the field. Our primary aim is to identify gaps in knowledge throughout the review and define future directions of research to address the impacts of NPls in aquatic environments. The development of consistent and standardized sets of procedures would address the gaps in knowledge regarding the formation and degradation of NPls as well as sampling and characterizing natural NPls needed to observe the full extent of NPls on aquatic biota and biofilm communities.
Collapse
Affiliation(s)
- Nigarsan Kokilathasan
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada
| | - Maria Dittrich
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|
4
|
Evaluation of non-traditional visualization methods to detect surface attachment of biofilms. Colloids Surf B Biointerfaces 2020; 196:111320. [PMID: 32956995 DOI: 10.1016/j.colsurfb.2020.111320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022]
Abstract
In food safety and food quality, biofilm research is of great importance for mitigating food-borne pathogens in food processing environments. To supplement the traditional staining techniques for biofilm characterization, we introduce several non-traditional imaging methods for detecting biofilm attachment to the solid-liquid and air-liquid interfaces. For strains of Pseudomonas aeruginosa (the positive control), Acinetobacter baumanii, Listeria monocytogenes and Salmonella enterica, the traditional crystal violet assay showed evidence of biofilm attachment to the well plate base as well as inferred the presence of an air-liquid biofilm attached on the upper well walls where the meniscus was present. However, air-liquid biofilms and solid-surface-attached biofilms were not detected for all of these strains using the non-traditional imaging methods. For L. monocytogenes, we were unable to detect biofilms at a particle-laden, air-liquid interface as evidenced through microscopy, which contradicts the meniscus staining test and suggests that the coffee-ring effect may lead to false positives when using meniscus staining. Furthermore, when L. monocytogenes was cultivated in a pendant droplet in air, only microbial sediment at the droplet apex was observed without any apparent bacterial colonization of the droplet surface. All other strains showed clear evidence of air-liquid biofilms at the air-liquid interface of a pendant droplet. To non-invasively detect if and when air-liquid pellicles form in a well plate, we also present a novel in situ reflection assay that demonstrates the capacity to do this quantitatively.
Collapse
|
5
|
Moon JW, Paradis CJ, Joyner DC, von Netzer F, Majumder EL, Dixon ER, Podar M, Ge X, Walian PJ, Smith HJ, Wu X, Zane GM, Walker KF, Thorgersen MP, Poole Ii FL, Lui LM, Adams BG, De León KB, Brewer SS, Williams DE, Lowe KA, Rodriguez M, Mehlhorn TL, Pfiffner SM, Chakraborty R, Arkin AP, Wall JD, Fields MW, Adams MWW, Stahl DA, Elias DA, Hazen TC. Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. CHEMOSPHERE 2020; 255:126951. [PMID: 32417512 DOI: 10.1016/j.chemosphere.2020.126951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.
Collapse
Affiliation(s)
- Ji-Won Moon
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA; current U.S. Geological Survey, National Minerals Information Center, Reston, VA, USA
| | - Charles J Paradis
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Dominique C Joyner
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Frederick von Netzer
- University of Washington, Department of Civil and Environmental Engineering, Seattle, WA, USA
| | - Erica L Majumder
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Emma R Dixon
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Mircea Podar
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Xiaoxuan Ge
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - Peter J Walian
- Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging, Berkeley, CA, USA
| | - Heidi J Smith
- Montana State University, Center for Biofilm Engineering, Department of Microbiology & Immunology, Bozeman, MT, USA
| | - Xiaoqin Wu
- Lawrence Berkeley National Laboratory, Department of Ecology, Earth and Environmental Sciences Area, Berkeley, CA, USA
| | - Grant M Zane
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Kathleen F Walker
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Michael P Thorgersen
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - Farris L Poole Ii
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - Lauren M Lui
- Lawrence Berkeley National Laboratory Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Benjamin G Adams
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Kara B De León
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Sheridan S Brewer
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Daniel E Williams
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Kenneth A Lowe
- Oak Ridge National Laboratory, Environmental Science Division, Oak Ridge, TN, USA
| | - Miguel Rodriguez
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Tonia L Mehlhorn
- Oak Ridge National Laboratory, Environmental Science Division, Oak Ridge, TN, USA
| | - Susan M Pfiffner
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Romy Chakraborty
- Lawrence Berkeley National Laboratory, Department of Ecology, Earth and Environmental Sciences Area, Berkeley, CA, USA
| | - Adam P Arkin
- Lawrence Berkeley National Laboratory Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Judy D Wall
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Matthew W Fields
- Montana State University, Center for Biofilm Engineering, Department of Microbiology & Immunology, Bozeman, MT, USA
| | - Michael W W Adams
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - David A Stahl
- University of Washington, Department of Civil and Environmental Engineering, Seattle, WA, USA
| | - Dwayne A Elias
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Terry C Hazen
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA; University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA.
| |
Collapse
|
6
|
Deschênes L, Ells T. Bacteria-nanoparticle interactions in the context of nanofouling. Adv Colloid Interface Sci 2020; 277:102106. [PMID: 31981890 DOI: 10.1016/j.cis.2020.102106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The attachment of microbial communities to surfaces is a well-known problem recognized to be involved in a variety of critical issues in the sectors of food processing, chronic wounds, infection from implants, clogging of membranes and corrosion of equipment. Considering the importance of the detrimental impact of biofouling, it has received much attention in the scientific community and from concerned stakeholders. With the development of nanotechnology and the nowadays widespread use of engineered nanoparticles (ENPs), concerns have been raised regarding their fate in terrestrial and aquatic environments. Safety aspects and public health issues are critical in the management of handling nanomaterials and their nanowastes. The interactions of various types of nanoparticles (NPs) with planktonic bacteria have also received attention due to their antimicrobial properties. However, their behavior in regard to biofilms is not well understood although, in the environment, most of the bacteria prefer living in sessile communities. The question appears relevant considering the need to build knowledge on the fate of nanoparticles and the fact that no one can exclude the risk of accumulation of nanoparticles in biofilms and on surfaces leading to a form of nanofouling involving both engineered nanoparticles (ENPs) and nanoplastics. The present analysis of recent research accounts allows in identifying that (1) research activities related to water remediation systems have been mostly oriented on the impact of NPs on pre-existing biofilms, (2) experimental designs are restricted to few scenarios of exposure, usually limited to relative short-time periods although nanofouling could favour the development of multi-resistant bacterial species through sub-lethal exposures over prolong periods of time (3) nanofouling in other systems in which biofilms develop remains to be addressed, and (4) new research directions are required for investigating the mechanisms involved and the subsequent impact of nanofouling on bacterial consortium responses encountered in a variety of environments such as those prevailing in food production/processing settings. Finally, this review aims at providing recent information and insights on nanoparticle-bacterial interactions in the context of biofilms in order to supply an updated outlook of research perspectives that could help establish the framework for production, use and fate of nanomaterials as well as future research directions.
Collapse
Affiliation(s)
- Louise Deschênes
- Saint-Hyacinthe Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Timothy Ells
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| |
Collapse
|
7
|
Qi L, Christopher GF. Role of Flagella, Type IV Pili, Biosurfactants, and Extracellular Polymeric Substance Polysaccharides on the Formation of Pellicles by Pseudomonas aeruginosa. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5294-5304. [PMID: 30883129 DOI: 10.1021/acs.langmuir.9b00271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbial biofilms are viscoelastic materials formed by bacteria, which occur on solid surfaces, at liquid interfaces, or in free solution. Although solid surface biofilms have been widely studied, pellicles, biofilms at liquid interfaces, have had significantly less focus. In this work, interfacial shear rheology and scanning electron microscopy imaging are used to characterize how flagella, type IV pili, biosurfactants, and extracellular polymeric substance polysaccharides affect the formation of pellicles by Pseudomonas aeruginosa at an air/water interface. Pellicles still form with the loss of a single biological attachment mechanism, which is hypothesized to be due to surface tension-aided attachment. Changes in the surface structure of the pellicles are observed when changing both the function/structure of type IV pili, removing the flagella, or stopping the expression of biosurfactants. However, these changes do not appear to affect pellicle elasticity in a consistent way. Traits that affect adsorption and growth/spreading appear to affect pellicles in a manner consistent with literature results for solid surface biofilms; small differences are seen in attachment-related mechanisms, which may occur due to surface tension.
Collapse
Affiliation(s)
- Lingjuan Qi
- Department of Mechanical Engineering , Texas Tech University , Lubbock 79409 , United States
| | - Gordon F Christopher
- Department of Mechanical Engineering , Texas Tech University , Lubbock 79409 , United States
| |
Collapse
|
8
|
McLay RB, Nguyen HN, Jaimes-Lizcano YA, Dewangan NK, Alexandrova S, Rodrigues DF, Cirino PC, Conrad JC. Level of Fimbriation Alters the Adhesion of Escherichia coli Bacteria to Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1133-1142. [PMID: 28976770 DOI: 10.1021/acs.langmuir.7b02447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adhesion of bacteria to interfaces is the first step in pathogenic infection, in biofilm formation, and in bioremediation of oil spills and other pollutants. Bacteria use a variety of surface structures to promote interfacial adhesion, with the level of expression of these structures varying in response to local conditions and environmental signals. Here, we investigated how overexpression of type 1 fimbriae, one such appendage, modifies the ability of Escherichia coli to adhere to solid substrates, via biofilm formation and yeast agglomeration, and to oil/water interfaces, via a microbial adhesion to hydrocarbon assay. A plasmid that enables inducible expression of E. coli MG1655 type 1 fimbriae was transformed into fimbriae-deficient mutant strain MG1655ΔfimA. The level of fimH gene expression in the engineered strain, measured using quantitative real-time PCR, could be tuned by changing the concentration of inducer isopropyl β-d-1-thiogalactopyranoside (IPTG), and was higher than that in strain MG1655. Increasing the degree of fimbriation only slightly modified the surface energy and zeta potential of the bacteria, but enhanced their ability to agglomerate yeast cells and to adhere to solid substrates (as measured by biofilm formation) and to oil/water interfaces. We anticipate that the tunable extent of fimbriation accessible with this engineered strain can be used to investigate how adhesin expression modifies the ability of bacteria to adhere to interfaces and to actively self-assemble there.
Collapse
Affiliation(s)
- Ryan B McLay
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Hang N Nguyen
- Department of Civil and Environmental Engineering, University of Houston , Houston, Texas 77204-4003, United States
| | - Yuly Andrea Jaimes-Lizcano
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Simone Alexandrova
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston , Houston, Texas 77204-4003, United States
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
- Department of Biology and Biochemistry, University of Houston , Houston, Texas 77204-5008, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| |
Collapse
|
9
|
Asayesh F, Zarabadi MP, Greener J. A new look at bubbles during biofilm inoculation reveals pronounced effects on growth and patterning. BIOMICROFLUIDICS 2017; 11:064109. [PMID: 29282421 PMCID: PMC5729033 DOI: 10.1063/1.5005932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/24/2017] [Indexed: 05/08/2023]
Abstract
Specially designed microfluidic bioflow cells were used to temporarily trap microbubbles during different inoculation stages of Pseudomonas sp. biofilms. Despite being eliminated many hours before biofilm appearance, templated growth could occur at former bubble positions. Bubble-templated growth was either continuous or in ring patterns, depending on the stage of inoculation when the bubbles were introduced. Templated biofilms were strongly enhanced in terms of their growth kinetics and structural homogeneity. High resolution confocal imaging showed two separate bubble-induced bacterial trapping modes, which were responsible for the altered biofilm development. It is concluded that static bubbles can be exploited for fundamental improvements to bioreactor performance, as well as open new avenues to study isolated bacteria and small colonies.
Collapse
Affiliation(s)
- Farnaz Asayesh
- Département de Chimie, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Mir Pouyan Zarabadi
- Département de Chimie, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | | |
Collapse
|