1
|
Shin S, Jiang D, Yu J, Yang C, Jeong W, Li J, Bae J, Shin J, An K, Kim W, Cho NJ. Interaction Dynamics of Liposomal Fatty Acids with Gram-Positive Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23666-23679. [PMID: 40223206 DOI: 10.1021/acsami.5c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The increasing prevalence of antibiotic-resistant bacteria has driven the need for alternative therapeutic strategies, with liposomal fatty acids (LipoFAs) emerging as promising candidates due to their potent antibacterial properties. Despite growing interest, the detailed biophysical interactions between LipoFAs and bacterial membranes remain underexplored. In this study, we systematically investigate the mechanistic interactions of liposomal linolenic acid (LipoLNA), linoleic acid (LipoLLA), and oleic acid (LipoOA) with model Gram-positive bacterial membranes using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. QCM-D analysis revealed that LipoOA displayed the highest rate of membrane fusion, followed by LipoLLA and LipoLNA. Fluorescence microscopy highlighted distinct morphological changes induced by each LipoFA: LipoLNA generated large membrane buds, LipoLLA formed smaller dense protrusions, and LipoOA caused rapid incorporation with uniform dense spots. Furthermore, fluorescence recovery after photobleaching (FRAP) demonstrated that LipoLNA significantly enhanced lipid mobility and membrane fluidity, as confirmed by Laurdan generalized polarization measurements. The extent of unsaturation in LipoFAs was found to play a critical role in their interaction mechanism, with higher degrees of unsaturation inducing greater local curvature stress, increased membrane permeability, and substantial ATP leakage, ultimately leading to improved bactericidal activity. Notably, liposomal formulations exhibited enhanced biocompatibility compared to free fatty acids. These findings provide valuable mechanistic insights into how LipoFAs perturb bacterial membranes, supporting their potential application as alternative antibacterial agents.
Collapse
Affiliation(s)
- Sungmin Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Dongping Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jingyeong Yu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chungmo Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Woncheol Jeong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jian Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jieun Bae
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Jihoon Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Kyongman An
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| |
Collapse
|
2
|
Shin S, Yu J, Tae H, Zhao Y, Jiang D, Qiao Y, Kim W, Cho NJ. Exploring the Membrane-Active Interactions of Antimicrobial Long-Chain Fatty Acids Using a Supported Lipid Bilayer Model for Gram-Positive Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56705-56717. [PMID: 39388376 DOI: 10.1021/acsami.4c11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The dynamic nature of bacterial lipid membranes significantly impacts the efficacy of antimicrobial therapies. However, traditional assay methods often fall short in replicating the complexity of these membranes, necessitating innovative approaches. Herein, we successfully fabricated model bacterially supported lipid bilayers (SLBs) that closely mimic the characteristics of Gram-positive bacteria using the solvent-assisted lipid bilayer (SALB) technique. By employing a quartz crystal microbalance with dissipation and fluorescence microscopy, we investigated the interactions between these bacterial mimetic membranes and long-chain unsaturated fatty acids. Specifically, linolenic acid (LNA) and linoleic acid (LLA) demonstrated interaction behaviors correlated with the critical micelle concentration (CMC) on Gram-positive membranes, resulting in membrane remodeling and removal at concentrations above their respective CMC values. In contrast, oleic acid (OA), while showing similar membrane remodeling patterns to LNA and LLA, exhibited membrane insertion and CMC-independent activity on the Gram-positive membranes. Particularly, LNA and LLA demonstrated bactericidal effects and promoted membrane permeability and ATP leakage in the bacterial membranes. OA, characterized by a CMC-independent activity profile, exhibited potent bactericidal effects due to its robust penetration into the SLBs, also enhancing membrane permeability and ATP leakage. These findings shed light on the intricate molecular mechanisms governing the interactions between long-chain unsaturated fatty acids and bacterial membranes. Importantly, this study underscores the potential of using biologically relevant model bacterial membrane systems to develop innovative strategies for combating bacterial infections and designing effective therapeutic agents.
Collapse
Affiliation(s)
- Sungmin Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
| | - Jingyeong Yu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Dongping Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
| |
Collapse
|
3
|
Gahan CG, Van Lehn RC, Blackwell HE, Lynn DM. Interactions of Bacterial Quorum Sensing Signals with Model Lipid Membranes: Influence of Membrane Composition on Membrane Remodeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:295-307. [PMID: 36534123 PMCID: PMC10038191 DOI: 10.1021/acs.langmuir.2c02506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report the influence of membrane composition on the multiscale remodeling of multicomponent lipid bilayers initiated by contact with the amphiphilic bacterial quorum sensing signal N-(3-oxo)-dodecanoyl-l-homoserine lactone (3-oxo-C12-AHL) and its anionic headgroup hydrolysis product, 3-oxo-C12-HS. We used fluorescence microscopy and quartz crystal microbalance with dissipation (QCM-D) to characterize membrane reformation that occurs when these amphiphiles are placed in contact with supported lipid bilayers (SLBs) composed of (i) 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) containing varying amounts of cholesterol or (ii) mixtures of DOPC and either 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE, a conical zwitterionic lipid) or 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS, a model anionic lipid). In general, we observe these mixed-lipid membranes to undergo remodeling events, including the formation and subsequent collapse of long tubules and the formation of hemispherical caps, upon introduction to biologically relevant concentrations of 3-oxo-C12-AHL and 3-oxo-C12-HS in ways that differ substantially from those observed in single-component DOPC membranes. These differences in bilayer reformation and their associated dynamics can be understood in terms of the influence of membrane composition on the time scales of molecular flip-flop, lipid packing defects, and lipid phase segregation in these materials. The lipid components investigated here are representative of classes of lipids that comprise both naturally occurring cell membranes and many useful synthetic soft materials. These studies thus represent a first step toward understanding the ways in which membrane composition can impact interactions with this important class of bacterial signaling molecules.
Collapse
Affiliation(s)
- Curran G. Gahan
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - David M. Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
4
|
Yoon BK, Tan SW, Tan JYB, Jackman JA, Cho NJ. Nanoarchitectonics-based model membrane platforms for probing membrane-disruptive interactions of odd-chain antimicrobial lipids. NANO CONVERGENCE 2022; 9:48. [PMID: 36318349 PMCID: PMC9626702 DOI: 10.1186/s40580-022-00339-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The use of nanoscience tools to investigate how antimicrobial lipids disrupt phospholipid membranes has greatly advanced molecular-level biophysical understanding and opened the door to new application possibilities. Until now, relevant studies have focused on even-chain antimicrobial lipids while there remains an outstanding need to investigate the membrane-disruptive properties of odd-chain antimicrobial lipids that are known to be highly biologically active. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) techniques, we investigated how an 11-carbon, saturated fatty acid and its corresponding monoglyceride-termed undecanoic acid and monoundecanoin, respectively-disrupt membrane-mimicking phospholipid bilayers with different nanoarchitectures. QCM-D tracking revealed that undecanoic acid and monoundecanoin caused membrane tubulation and budding from supported lipid bilayers, respectively, and were only active above their experimentally determined critical micelle concentration (CMC) values. Monoundecanoin was more potent due to a lower CMC and electrochemical impedance spectroscopy (EIS) characterization demonstrated that monoundecanoin caused irreversible membrane disruption of a tethered lipid bilayer platform at sufficiently high compound concentrations, whereas undecanoic acid only induced transient membrane disruption. This integrated biophysical approach also led us to identify that the tested 11-carbon antimicrobial lipids cause more extensive membrane disruption than their respective 12-carbon analogues at 2 × CMC, which suggests that they could be promising molecular components within next-generation antimicrobial nanomedicine strategies.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jia Ying Brenda Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
5
|
Li S, Ren R, Lyu L, Song J, Wang Y, Lin TW, Brun AL, Hsu HY, Shen HH. Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials. MEMBRANES 2022; 12:membranes12100906. [PMID: 36295664 PMCID: PMC9609327 DOI: 10.3390/membranes12100906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/02/2023]
Abstract
Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Letian Lyu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Anton Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Moon S, Yoon BK, Jackman JA. Effect of Membrane Curvature Nanoarchitectonics on Membrane-Disruptive Interactions of Antimicrobial Lipids and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4606-4616. [PMID: 35389653 DOI: 10.1021/acs.langmuir.1c03384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-chain lipid amphiphiles such as fatty acids and monoglycerides along with structurally related surfactants have received significant attention as membrane-disrupting antimicrobials to inhibit bacteria and viruses. Such promise has motivated deeper exploration of how these compounds disrupt phospholipid membranes, and the membrane-mimicking, supported lipid bilayer (SLB) platform has provided a useful model system to evaluate corresponding mechanisms of action and potency levels. Even so, it remains largely unknown how biologically relevant membrane properties, such as sub-100 nm membrane curvature, might affect these membrane-disruptive interactions, especially from a nanoarchitectonics perspective. Herein, using the quartz crystal microbalance-dissipation (QCM-D) technique, we fabricated intact vesicle adlayers composed of different-size vesicles (70 or 120 nm diameter) with varying degrees of membrane curvature on a titanium oxide surface and tracked changes in vesicle adlayer properties upon adding lauric acid (LA), glycerol monolaurate (GML), or sodium dodecyl sulfate (SDS). Above their critical micelle concentration (CMC) values, LA and GML caused QCM-D measurement shifts associated with tubule- and bud-like formation, respectively, and both compounds interacted similarly with small (high curvature) and large (low curvature) vesicles. In marked contrast, SDS exhibited distinct interactions with small and large vesicles. For large vesicles, SDS caused nearly complete membrane solubilization in a CMC-independent manner, whereas SDS was largely ineffective at solubilizing small vesicles at all tested concentrations. We rationalize these experimental observations by taking into account the interplay of the headgroup properties of LA, GML, and SDS and curvature-induced membrane geometry, and our findings demonstrate that membrane curvature nanoarchitectonics can strongly influence the membrane interaction profiles of antimicrobial lipids and surfactants.
Collapse
Affiliation(s)
- Suji Moon
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Explicit-pH Coarse-Grained Molecular Dynamics Simulations Enable Insights into Restructuring of Intestinal Colloidal Aggregates with Permeation Enhancers. Processes (Basel) 2021. [DOI: 10.3390/pr10010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Permeation enhancers (PEs) can increase the bioavailability of drugs. The mechanisms of action of these PEs are complex, but, typically, when used for oral administration, they can transiently induce the alteration of trans- and paracellular pathways, including increased solubilization and membrane fluidity, or the opening of the tight junctions. To elucidate these mechanistic details, it is important to understand the aggregation behavior of not only the PEs themselves but also other molecules already present in the intestine. Aggregation processes depend critically on, among other factors, the charge state of ionizable chemical groups, which is affected by the pH of the system. In this study, we used explicit-pH coarse-grained molecular dynamics simulations to investigate the aggregation behavior and pH dependence of two commonly used PEs—caprate and SNAC—together with other components of fasted- and fed-state simulated intestinal fluids. We also present and validate a coarse-grained molecular topology for the bile salt taurocholate suitable for the Martini3 force-field. Our results indicate an increase in the number of free molecules as a function of the system pH and for each combination of FaSSIF/FeSSIF and PEs. In addition, there are differences between caprate and SNAC, which are rationalized based on their different molecular structures and critical micelle concentrations.
Collapse
|
8
|
Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021; 22:9664. [PMID: 34575831 PMCID: PMC8465605 DOI: 10.3390/ijms22189664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
| |
Collapse
|
9
|
Dhanasekaran M, Komal, K G, Kumar P, Mandal SS. Critical insights into the interactions of heat shock protein 70 with phospholipids. Phys Chem Chem Phys 2020; 22:19238-19248. [PMID: 32812968 DOI: 10.1039/d0cp03505j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heat shock proteins (Hsps) stabilize the newly synthesized polypeptide chains preventing them from aggregation. They contribute to systemic response under stress and thus behave as signaling molecules. Hsp70 has been detected on the surface of stressed cells. It translocates to the extracellular environment through the plasma membrane without causing cell death. But the interaction of the protein with the membrane leading to the export process remains elusive. Hsp70 has a tendency to generate channels within lipid bilayers, and this has been a driving force for studying protein-lipid interactions. Transport of these proteins across the membrane paves their pathways for performing the desired function. We have attempted to characterize how the interaction of Hsp70 with negatively charged phospholipids affects the structure of lipids. This study will help in explaining the transport mechanism of proteins that are devoid of defined signaling pathways. The interaction of amino acids of Hsp70 with the head and tail group leads to the rearrangement of the hydration layer in contact with the bilayers. Critical analysis of the results obtained from small-angle X-ray scattering along with QCM-D provides valuable insights to analyze the effect of Hsp70 adsorption on an anionic POPS lipid bilayer.
Collapse
Affiliation(s)
- Madhumitha Dhanasekaran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | | | | | | | | |
Collapse
|
10
|
Bello G, Cavallini F, Dailey LA, Ehmoser EK. Supported polymer/lipid hybrid bilayers formation resembles a lipid-like dynamic by reducing the molecular weight of the polymer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183472. [PMID: 32941874 DOI: 10.1016/j.bbamem.2020.183472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Amphiphilic block copolymers form self-assembled bilayers even in combination with phospholipids. They represent an attractive alternative to native lipid-based membrane systems for supported bilayer formation with applications in biomedical research, sensoring and drug delivery. Their enhanced stability and excellent mechanical properties are linked to their higher molecular weight which generates thicker bilayers. Hypothesis: It is hypothesized that reducing the molecular weight of the polymer facilitates the formation of a thinner, more homogeneous polymer/lipid hybrid bilayer which would benefit the formation of supported bilayers on silicon oxide. Experiment: We investigated hybrid bilayers composed of mixtures of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and increasing amounts of a low molecular weight polybutadiene-b-polyethylene oxide copolymer (1050 g/mol). By assessing the bilayer thickness and the molecular packing behavior we sought to demonstrate how reducing the polymer molecular weight increases the tendency to form supported hybrid bilayers in a lipid-like manner. Findings: The formation of a supported hybrid bilayers occurs at polymer contents <70 mol% in a lipid-like fashion and is proportional to the cohesive forces between the bilayer components and inversely related to the bilayer hydrophobic core thickness and the extended brush regime of the PEGylated polymeric headgroup.
Collapse
Affiliation(s)
- Gianluca Bello
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria.
| | - Francesca Cavallini
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, via Torino 155, 30172 Mestre-Venezia, (Italy)
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Eva-Kathrin Ehmoser
- Department of Nanobiotechnology, Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Science (BOKU), Muthgasse 11/2 OG, 1190 Vienna, (Austria).
| |
Collapse
|
11
|
Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes. Biointerphases 2020; 15:031007. [PMID: 32456440 DOI: 10.1116/1.5130774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are attractive as biomaterial coatings because they have broad spectrum activity against different microbes, with a low likelihood of incurring antimicrobial resistance. Direct action against the bacterial membrane is the most common mechanism of action (MOA) of AMPs, with specific MOAs dependent on membrane composition, peptide concentration, and environmental factors that include temperature. Chrysophsin-1 (CHY1) is a broad spectrum salt-tolerant AMP that is derived from a marine fish. A cysteine modification was made to the peptide to facilitate attachment to a surface, such as a biomedical device. The authors used quartz crystal microbalance with dissipation monitoring to study how temperature (23 and 37 °C) and lipid composition influence the MOA of cysteine-modified peptide (C-CHY1) with model membranes comprised of supported lipid bilayers (SLBs). These two temperatures were used so that the authors could better understand the differences in behavior between typical lab temperatures and physiologic conditions. The authors created model membranes that mimicked properties of Gram-negative and Gram-positive bacteria in order to understand how the mechanisms might differ for different types of bacterial systems. SLB models of Gram-positive bacterial membranes were formed using combinations of phosphatidylcholine, phosphatidylglycerol (PG), and S. aureus-derived lipoteichoic acid (LTA). SLB models of Gram-negative bacterial membranes were formed using combinations of phosphatidylethanolamine (PE), PG, and E. coli-derived lipopolysaccharides (LPS). The molecules that distinguish Gram-positive and Gram-negative membranes (LTA and LPS) have the potential to alter the MOA of C-CHY1 with the SLBs. The authors' results showed that the MOA for the Gram-positive SLBs was not sensitive to temperature, but the LTA addition did have an effect. Specifically, similar trends in frequency and dissipation changes across all overtones were observed, and the same mechanistic trends were observed in the polar plots at 23 and 37 °C. However, when LTA was added, polar plots showed an association between C-CHY1 and LTA, leading to SLB saturation. This was demonstrated by significant changes in dissipation, while the frequency (mass) was not increasing after the saturation point. For the Gram-negative SLBs, the composition did not have a significant effect on MOA, but the authors saw more differences between the two temperatures studied. The authors believe this is due to the fact that the gel-liquid crystal transition temperature of PE is 25 °C, which means that the bilayer is more rigid at 23 °C, compared to temperatures above the transition point. At 23 °C, a significant energetic shift would be required to allow for additional AMP insertion. This could be seen in the polar plots, where there was a steep slope but there was very little mass addition. At 37 °C, the membrane is more fluid and there is less of an energetic requirement for insertion. Therefore, the authors observed greater mass addition and fewer changes in dissipation. A better understanding of C-CHY1 MOA using different SLB models will allow for the more rational design of future therapeutic solutions that make use of antimicrobial peptides, including those involving biomaterial coatings.
Collapse
|
12
|
Zhang C, Xiao Z, Qin T, Yang Z. Modification of nanocrystalline TiO 2 coatings with molecularly imprinted TiO 2 for uric acid recognition. J Mol Recognit 2018; 32:e2775. [PMID: 30592338 DOI: 10.1002/jmr.2775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022]
Abstract
Combining the surface modification and molecular imprinting technique, a novel piezoelectric sensing platform with excellent molecular recognition capability was established for the detection of uric acid (UA) based on the immobilization of TiO2 nanoparticles onto quartz crystal microbalance (QCM) electrode and modification of molecularly imprinted TiO2 (MIT) layer on TiO2 nanoparticles. The performance of the fabricated biosensor was evaluated, and the results indicated that the biosensor exhibited high sensitivity in UA detection, with a linear range from 0.04 to 45 μM and a limit of detection of 0.01 μM. Moreover, the biosensor presented high selectivity towards UA in comparison with other interferents. The analytical application of the UA biosensor confirmed the feasibility of UA detection in urine sample.
Collapse
Affiliation(s)
- Chunlei Zhang
- Bone Tumour and Bone Disease Department II, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Zhiguo Xiao
- College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Tongtong Qin
- Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Zhengpeng Yang
- Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
13
|
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int J Mol Sci 2018. [PMID: 29642500 DOI: 10.3390/ijms19041114.pmid:29642500;pmcid:pmc5979495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Elba R Valle-González
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
14
|
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int J Mol Sci 2018; 19:E1114. [PMID: 29642500 PMCID: PMC5979495 DOI: 10.3390/ijms19041114] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Elba R Valle-González
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
15
|
Flynn KR, Sutti A, Martin LL, Leigh Ackland M, Torriero AAJ. Critical effects of polar fluorescent probes on the interaction of DHA with POPC supported lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1135-1142. [PMID: 29338975 DOI: 10.1016/j.bbamem.2018.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 01/16/2023]
Abstract
The understanding of lipid bilayer structure and function has been advanced by the application of molecular fluorophores. However, the effects of these probe molecules on the physicochemical properties of membranes being studied are poorly understood. A quartz crystal microbalance with dissipation monitoring instrument was used in this work to investigate the impact of two commonly used fluorescent probes, 1‑palmitoyl‑2‑{12‑[(7‑nitro‑2‑1,3‑benzoxadiazol‑4‑yl)amino]dodecanoyl}‑sn‑glycero‑3‑phosphocholine (NBD-PC) and 1,2‑dipalmitoyl‑sn‑glycero‑3‑phosphoethanolamine‑n‑(lissamine rhodamine‑B‑sulfonyl) (Lis-Rhod PE), on the formation and physicochemical properties of a 1‑palmitoyl‑2‑oleoyl‑sn‑glycero‑3‑phosphocholine supported lipid bilayer (POPC-SLB). The interaction of the POPC-SLB and fluorophore-modified POPC-SLB with docosahexaenoic acid, DHA, was evaluated. The incorporation of DHA into the POPC-SLB was observed to significantly decrease in the presence of the Lis-Rhod PE probe compared with the POPC-SLB. In addition, it was observed that the small concentration of DHA incorporated into the POPC:NBD-PC SLB can produce rearrangement processes followed by the lost not only of DHA but also of POPC or NBD-PC molecules or both during the washing step. This work has significant implications for the interpretation of data employing fluorescent reporter molecules within SLBs.
Collapse
Affiliation(s)
- Kiera R Flynn
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Alessandra Sutti
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | | | - M Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Angel A J Torriero
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| |
Collapse
|
16
|
Kawakami LM, Yoon BK, Jackman JA, Knoll W, Weiss PS, Cho NJ. Understanding How Sterols Regulate Membrane Remodeling in Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14756-14765. [PMID: 29182278 DOI: 10.1021/acs.langmuir.7b03236] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The addition of single-chain lipid amphiphiles such as antimicrobial fatty acids and monoglycerides to confined, two-dimensional phospholipid bilayers can trigger the formation of three-dimensional membrane morphologies as a passive means to regulate stress. To date, relevant experimental studies have been conducted using pure phospholipid compositions, and extending such insights to more complex, biologically relevant lipid compositions that include phospholipids and sterols is warranted because sterols are important biological mediators of membrane stress relaxation. Herein, using the quartz crystal microbalance-dissipation (QCM-D) technique, we investigated membrane remodeling behaviors triggered by the addition of sodium dodecyl sulfate (SDS), lauric acid (LA), and glycerol monolaurate (GML) to supported lipid bilayers (SLBs) composed of phospholipid and cholesterol mixtures. The SLB platforms were prepared by the solvent-assisted lipid bilayer method in order to form cholesterol-rich SLBs with tunable cholesterol fractions (0-52 mol %). The addition of SDS or LA to fabricated SLBs induced tubule formation, and the extent of membrane remodeling was greater in SLBs with higher cholesterol fractions. In marked contrast, GML addition led to bud formation, and the extent of membrane remodeling was lower in SLBs with higher cholesterol fractions. To explain these empirical observations, we discuss how cholesterol influences the elastic (stiffness) and viscous (stress relaxation) properties of phospholipid/cholesterol lipid bilayers as well as how the membrane translocation properties of single-chain lipid amphiphiles affect the corresponding membrane morphological responses. Collectively, our findings demonstrate that single-chain lipid amphiphiles induce highly specific membrane morphological responses across both simplified and complex model membranes, and cholesterol can promote or inhibit membrane remodeling by a variety of molecular mechanisms.
Collapse
Affiliation(s)
- Lisa M Kawakami
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- BioSensor Technologies, AIT-Austrian Institute of Technology , Muthgasse 11, 1190 Vienna, Austria
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Wolfgang Knoll
- BioSensor Technologies, AIT-Austrian Institute of Technology , Muthgasse 11, 1190 Vienna, Austria
| | | | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
17
|
Yoon BK, Jackman JA, Kim MC, Sut TN, Cho NJ. Correlating Membrane Morphological Responses with Micellar Aggregation Behavior of Capric Acid and Monocaprin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2750-2759. [PMID: 28263610 DOI: 10.1021/acs.langmuir.6b03944] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The interaction of single-chain lipid amphiphiles with phospholipid membranes is relevant to many scientific fields, including molecular evolution, medicine, and biofuels. Two widely studied compounds within this class are the medium-chain saturated fatty acid, capric acid, and its monoglyceride derivative, monocaprin. To date, most studies about these compounds have involved in vitro evaluation of their biological activities, while mechanistic details of how capric acid and monocaprin interact with phospholipid bilayers remain elusive. Herein, we investigated the effect of these two compounds on the morphological and fluidic properties of prefabricated, supported lipid bilayers (SLBs). The critical micelle concentration (CMC) of each compound was determined by fluorescence spectroscopy measurements. At or above its CMC, capric acid induced the formation of elongated tubules protruding from the SLB, as determined by quartz crystal microbalance-dissipation and fluorescence microscopy experiments. By contrast, monocaprin induced the formation of elongated tubules or membrane buds below and above its CMC, respectively. Fluorescence recovery after photobleaching (FRAP) experiments indicated that capric acid increased bilayer fluidity only above its CMC, whereas monocaprin increased bilayer fluidity both above and below its CMC. We discuss these findings in the context of the two compounds' structural properties, including net charge, molecular length and hydrogen-bonding capacity. Collectively, the findings demonstrate that capric acid and monocaprin differentially affect the morphological and fluidic properties of SLBs, and that the aggregation state of the compounds plays a critical role in modulating their interactions with phospholipid membranes.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Min Chul Kim
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Tun Naw Sut
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|