1
|
Hymas PP, Conboy JC. Phosphatidylserine affinity for and flip-flop dependence on Ca 2+ and Mg 2+ ions. Faraday Discuss 2025. [PMID: 40351252 DOI: 10.1039/d4fd00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Ca2+ ions are believed to play a crucial role in regulating lipid membrane asymmetry by modulating the activity of flippases, floppases, and scramblases. Dysregulation of Ca2+ homeostasis, and subsequent loss of phosphatidylserine (PS) lipid asymmetry, is associated with physiological conditions such as blood clotting, neurodegeneration, and apoptosis. Yet, despite the prominence of Ca2+ with regards to PS flip-flop, the specific actions of Ca2+ are not fully understood and detailed mechanisms remain elusive. Much focus has been placed on enzymatic interactions, while the endogenous interactions of Ca2+ ions with PS and the direct role Ca2+ ions play on maintaining PS asymmetry have not been characterized in detail, a potentially crucial gap in understanding. In the current study the binding affinities of Ca2+ ions to planar supported lipid membranes containing PS were measured via sum-frequency vibrational spectroscopy (SFVS). Evaluation of binding affinity obtained from SFVS peak area analysis yielded an affinity of 1.3 × 105 M-1. The rate of PS flip-flop was also measured in the presence and absence of Ca2+via SFVS, with a nearly five-fold decrease in the rate of translocation when Ca2+ ions are present. Controls which tested Mg2+ with PS or phosphatidylcholine (PC) with Ca2+ did not show similar slowing effects, highlighting the specificity of the PS-Ca2+ interaction. For the binary lipid mixture tested, the disparity in the PS flip-flop rate would be sufficient to produce an 82% PS asymmetry if Ca2+ ions are localized to one side of the membrane. These studies have important implications for the non-enzymatic role Ca2+ ions may play in the maintenance of PS asymmetry.
Collapse
Affiliation(s)
- Preston P Hymas
- Department of Chemistry, University of Utah, 315 S. 1400 E. RM 2020, Salt Lake City, UT 84112, USA.
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 S. 1400 E. RM 2020, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Golub M, Pieper J. Recent Progress in Solution Structure Studies of Photosynthetic Proteins Using Small-Angle Scattering Methods. Molecules 2023; 28:7414. [PMID: 37959833 PMCID: PMC10650700 DOI: 10.3390/molecules28217414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Utilized for gaining structural insights, small-angle neutron and X-ray scattering techniques (SANS and SAXS, respectively) enable an examination of biomolecules, including photosynthetic pigment-protein complexes, in solution at physiological temperatures. These methods can be seen as instrumental bridges between the high-resolution structural information achieved by crystallography or cryo-electron microscopy and functional explorations conducted in a solution state. The review starts with a comprehensive overview about the fundamental principles and applications of SANS and SAXS, with a particular focus on the recent advancements permitting to enhance the efficiency of these techniques in photosynthesis research. Among the recent developments discussed are: (i) the advent of novel modeling tools whereby a direct connection between SANS and SAXS data and high-resolution structures is created; (ii) the employment of selective deuteration, which is utilized to enhance spatial selectivity and contrast matching; (iii) the potential symbioses with molecular dynamics simulations; and (iv) the amalgamations with functional studies that are conducted to unearth structure-function relationships. Finally, reference is made to time-resolved SANS/SAXS experiments, which enable the monitoring of large-scale structural transformations of proteins in a real-time framework.
Collapse
Affiliation(s)
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald Str. 1, 50411 Tartu, Estonia;
| |
Collapse
|
3
|
Nguyen MHL, Dziura D, DiPasquale M, Castillo SR, Kelley EG, Marquardt D. Investigating the cut-off effect of n-alcohols on lipid movement: a biophysical study. SOFT MATTER 2023. [PMID: 37357554 DOI: 10.1039/d2sm01583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like n-alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain length. To explain this cut-off effect and complement prior biochemical studies, we investigated a series of n-alcohols (with carbon lengths 2-18) and their impact on several bilayer properties, including lipid flip-flop, intervesicular exchange, diffusion, membrane bending rigidity and more. To this end, we employed an array of biophysical techniques such as time-resolved small angle neutron scattering (TR-SANS), small angle X-ray scattering (SAXS), all atomistic and coarse-grained molecular dynamics (MD) simulations, and calcein leakage assays. At an alcohol concentration of 30 mol% of the overall lipid content, TR-SANS showed 1-hexanol (C6OH) increased transverse lipid diffusion, i.e. flip-flop. As alcohol chain length increased from C6 to C10 and longer, lipid flip-flop slowed by factors of 5.6 to 32.2. Intervesicular lipid exchange contrasted these results with only a slight cut-off at alcohol concentrations of 30 mol% but not 10 mol%. SAXS, MD simulations, and leakage assays revealed changes to key bilayer properties, such as bilayer thickness and fluidity, that correlate well with the effects on lipid flip-flop rates. Finally, we tie our results to a defect-mediated pathway for alcohol-induced lipid flip-flop.
Collapse
Affiliation(s)
- Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
- Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
4
|
Cheng V, Conboy JC. Inhibitory Effect of Lanthanides on Native Lipid Flip-Flop. J Phys Chem B 2022; 126:7651-7663. [PMID: 36129784 DOI: 10.1021/acs.jpcb.2c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of ytterbium ions (Yb3+), a commonly used paramagnetic NMR chemical shift reagent, on the physical properties and flip-flop kinetics of dipalmitoylphosphatidylcholine (DPPC) planar supported lipid bilayers (PSLBs) was investigated. Langmuir isotherm studies revealed that Yb3+ interacts strongly with the phosphate headgroup of DPPC, evidenced by the increases in shear and compression moduli. Using sum-frequency vibrational spectroscopy, changes in the acyl chain ordering and phase transition temperature were also observed, consistent with Yb3+ interacting with the phosphate headgroup of DPPC. The changes in the physical properties of the membrane were also observed to be concentration dependent, with more pronounced modification observed at low (50 μM) Yb3+ concentrations compared to 6.5 mM Tb3+, suggesting a cross-linking mechanism between adjacent DPPC lipids. Additionally, the changes in membrane packing and phase transition temperatures in the presence of Tris buffer suggested that a putative Yb(Tris)3+ complex forms that coordinates to the PC headgroup. The kinetics of DPPC flip-flop in the gel and liquid crystalline (lc) phases were substantially inhibited in the presence of Yb3+, regardless of the Yb3+ concentration. Analysis of the flip-flop kinetics under the framework of transition state theory revealed that the free energy barrier to flip-flop in both the gel and lc phases was substantial increased over a pure DPPC membrane. In the gel phase, the trend in the free energy barrier appeared to follow the trend in the shear moduli, suggesting that the Yb3+-DPPC headgroup interaction was driving the increase in the activation free energy barrier. In the lc phase, activation free energies of DPPC flip-flop in the presence of 50 μM or 6.5 mM Yb3+ were found to mirror the free energies of TEMPO-DPPC flip-flop, leading to the conclusion that the strong interaction between Yb3+ and the PC headgroup was essentially manifested as a headgroup charge modification. These studies illustrate that the presence of the lanthanide Yb3+ results in significant modification to the lipid membrane physical properties and, more importantly, results in a pronounced inhibition of native lipid flip-flop.
Collapse
Affiliation(s)
- Victoria Cheng
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Nakano M, Nakao H, Yoshida S, Fukuda M, Imai M, Ikeda K. Energetic and Structural Insights into Phospholipid Transfer from Membranes with Different Curvatures by Time-Resolved Neutron Scattering. J Phys Chem Lett 2022; 13:6024-6030. [PMID: 35748601 DOI: 10.1021/acs.jpclett.2c01080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding how lipid dynamics change with membrane curvature is important given that biological membranes constantly change their curvature and morphology through membrane fusion and endo-/exocytosis. Here, we used time-resolved small-angle neutron scattering and time-resolved fluorescence to characterize the properties and dynamics of phospholipids in vesicles with different curvatures. Dissociation of phospholipids from vesicles required traversing an energy barrier comprising positive enthalpy and negative entropy. However, lipids in membranes with high positive curvature have dense acyl chain packing and loose headgroup packing, leading to hydrophobic hydration due to water penetration into the membrane. These properties were found to lower the hydrophobic hydration enhancement associated with phospholipid dissociation and mitigate the acyl chain packing of lipids adjacent to the space created by the lipid dissociation, resulting in an increase in activation entropy. The results of this study provide important insights into the functions of biomembranes in relation to their dynamic structural changes.
Collapse
Affiliation(s)
- Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shigeharu Yoshida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masakazu Fukuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Manjiro Imai
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
6
|
Sharma VK, Mamontov E. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Prog Lipid Res 2022; 87:101179. [PMID: 35780913 DOI: 10.1016/j.plipres.2022.101179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
The plasma membrane is one of the principal structural components of the cell and, therefore, one of the key components of the cellular life. Because the membrane's dynamics links the membrane's structure and function, the complexity and the broad range of the membrane's motions are essential for the enormously diverse functionality of the cell membrane. Even for the main membrane component, the lipid bilayer, considered alone, the range and complexity of the lipid motions are remarkable. Spanning the time scale from sub-picosecond to minutes and hours, the lipid motion in a bilayer is challenging to study even when a broad array of dynamic measurement techniques is employed. Neutron scattering plays a special role among such dynamic measurement techniques, particularly, because it involves the energy transfers commensurate with the typical intra- and inter- molecular dynamics and the momentum transfers commensurate with intra- and inter-molecular distances. Thus, using neutron scattering-based techniques, the spatial and temporal information on the lipid motion can be obtained and analysed simultaneously. Protium vs. deuterium sensitivity and non-destructive character of the neutron probe add to the remarkable prowess of neutron scattering for elucidating the lipid dynamics. Herein we present an overview of the neutron scattering-based studies of lipid dynamics in model membranes, with a discussion of the direct relevance and implications to the real-life cell membranes. The latter are much more complex systems than simple model membranes, consisting of heterogeneous non-stationary domains composed of lipids, proteins, and other small molecules, such as carbohydrates. Yet many fundamental aspects of the membrane behavior and membrane interactions with other molecules can be understood from neutron scattering measurements of the model membranes. For example, such studies can provide a great deal of information on the interactions of antimicrobial compounds with the lipid matrix of a pathogen membrane, or the interactions of drug molecules with the plasma membrane. Finally, we briefly discuss the recently emerging field of neutron scattering membrane studies with a reach far beyond the model membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
7
|
Myres GJ, Kitt JP, Harris JM. Inter-Leaflet Phospholipid Exchange Impacts the Ligand Density Available for Protein Binding at Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6967-6976. [PMID: 35617691 DOI: 10.1021/acs.langmuir.2c00526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phospholipid bilayers formed at solid-liquid interfaces have garnered interest as mimics of cell membranes to model association reactions of proteins with lipid bilayer-tethered ligands. Despite the importance of understanding how ligand density in a lipid bilayer impacts the protein-ligand association response, relating the ligand-modified lipid fraction to the absolute density of solution-accessible ligands in a lipid bilayer remains a challenge in interfacial quantitative analysis. In this work, confocal Raman microscopy is employed to quantify the association of anti-biotin IgG with a small fraction of biotinylated lipids dispersed in either gel-phase or liquid-crystalline supported lipid bilayers deposited on the interior surfaces of wide-pore silica surfaces. We examine the question of whether inter-leaflet lipid translocation contributes to the population of solution-accessible biotin ligands on the distal leaflet of a supported lipid bilayer by comparing their protein accumulation response with ligands dispersed in lipid monolayers on nitrile-derivatized silica surfaces. The binding of the antibody to biotin ligands dispersed in gel-phase bilayers exhibited an equivalent biotin coverage response as the accumulation of IgG onto gel-phase monolayers, indicating that gel-phase bilayer symmetry was preserved. This result contrasts with the ∼60% greater anti-biotin capture observed at fluid-phase bilayers compared to fluid-phase monolayers prepared at equivalent biotin fractions. This enhanced protein capture is attributed to biotin-capped lipids being transferred from the surface-associated proximal leaflet of the bilayer to the solution-exposed distal leaflet by the inter-leaflet exchange or lipid flip-flop, a facile process in fluid-phase supported lipid bilayers. The results suggest caution in interpreting the results of quantitative studies of protein binding to lipid-tethered ligands dispersed in fluid-phase phospholipid bilayers.
Collapse
Affiliation(s)
- Grant J Myres
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
8
|
Nielsen J, Lund R. Molecular Transport and Growth of Lipid Vesicles Exposed to Antimicrobial Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:374-384. [PMID: 34902242 PMCID: PMC8757467 DOI: 10.1021/acs.langmuir.1c02736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Indexed: 05/20/2023]
Abstract
It is well-known that lipids constituting the cytoplasmic membrane undergo continuous reorganization to maintain the appropriate composition important for the integrity of the cell. The transport of lipids is controlled by mainly membrane proteins, but also spontaneous lipid transport between leaflets, lipid "flip-flop", occurs. These processes do not only occur spontaneously under equilibrium, but also promote structural rearrangements, morphological transitions, and growth processes. It has previously been shown that intravesicular lipid "flip-flop" and intervesicular lipid exchange under equilibrium can be deduced indirectly from contrast variation time-resolved small-angle neutron scattering (TR-SANS) where the molecules are "tagged" using hydrogen/deuterium (H/D) substitution. In this work, we show that this technique can be extended to simultaneously detect changes in the growth and the lipid "flip-flop" and exchange rates induced by a peptide additive on lipid vesicles consisting of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), d-DMPC (1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine), DMPG (1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol)), and small amounts of DMPE-PEG (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]). Changes in the overall size were independently monitored using dynamic light scattering (DLS). We find that the antimicrobial peptide, indolicidin, accelerates lipid transport and additionally induces limited vesicular growth. Moreover, in TR-SANS experiments using partially labeled lipid mixtures to separately study the kinetics of the lipid components, we show that, whereas peptide addition affects both lipids similarly, DMPG exhibits faster kinetics. We find that vesicular growth is mainly associated with peptide-mediated lipid reorganization that only slightly affects the overall exchange kinetics. This is confirmed by a TR-SANS experiment of vesicles preincubated with peptide showing that after pre-equilibration the kinetics are only slightly slower.
Collapse
Affiliation(s)
| | - Reidar Lund
- Department of Chemistry, University of Oslo, Postboks 1033 Blindern, Oslo 0315, Norway
| |
Collapse
|
9
|
Nguyen MHL, DiPasquale M, Castillo SR, Marquardt D. Time-Resolved SANS to Measure Monomer Inter-Bilayer Exchange and Intra-Bilayer Translocation. Methods Mol Biol 2022; 2402:151-161. [PMID: 34854043 DOI: 10.1007/978-1-0716-1843-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The monomeric exchange kinetics of sub-micron particles provide insight into their stability and dynamism. Traditional techniques used to measure the intra- and inter-particle exchange often require monitoring the transfer of bulky and perturbing fluorescent labels. Time-resolved small angle neutron scattering (TR-SANS) overcomes these flaws by isotope labeling, allowing for the monomeric exchange rate determination of unperturbed, stress-free particles. Here, we describe TR-SANS in detail and novel applications of the technique.
Collapse
Affiliation(s)
- Michael H L Nguyen
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Mitchell DiPasquale
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Stuart R Castillo
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Drew Marquardt
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
10
|
Martel A, Gabel F. Time-resolved small-angle neutron scattering (TR-SANS) for structural biology of dynamic systems: Principles, recent developments, and practical guidelines. Methods Enzymol 2022; 677:263-290. [DOI: 10.1016/bs.mie.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
12
|
Abstract
Cell membranes - primarily composed of lipids, sterols, and proteins - form a dynamic interface between living cells and their environment. They act as a mechanical barrier around the cell while selectively facilitating material transport, signal transduction, and various other functions necessary for the cell viability. The complex functionality of cell membranes and the hierarchical motions and responses they exhibit demand a thorough understanding of the origin of different membrane dynamics and how they are influenced by molecular additives and environmental cues. These dynamic modes include single-molecule diffusion, thermal fluctuations, and large-scale membrane deformations, to name a few. This review highlights advances in investigating structure-driven dynamics associated with model cell membranes, with a particular focus on insights gained from neutron scattering and spectroscopy experiments. We discuss the uniqueness of neutron contrast variation and its remarkable potential in probing selective membrane structure and dynamics on spatial and temporal scales over which key biological functions occur. We also present a summary of current and future opportunities in synergistic combinations of neutron scattering with molecular dynamics (MD) simulations to gain further understanding of the molecular mechanisms underlying complex membrane functions.
Collapse
Affiliation(s)
- Sudipta Gupta
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
Nguyen MHL, DiPasquale M, Rickeard BW, Yip CG, Greco KN, Kelley EG, Marquardt D. Time-resolved SANS reveals pore-forming peptides cause rapid lipid reorganization. NEW J CHEM 2021. [DOI: 10.1039/d0nj04717a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Time-resolved SANS showed alamethicin and melittin promote DMPC lipid vesicle mixing and perturb DMPC kinetics in similar ways.
Collapse
Affiliation(s)
| | | | - Brett W. Rickeard
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Caesar G. Yip
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Kaity N. Greco
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Elizabeth G. Kelley
- NIST Center for Neutron Research
- National Institute of Standards and Technology
- Gaithersburg
- USA
| | - Drew Marquardt
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
- Department of Physics
| |
Collapse
|
14
|
Lipid flip-flop and desorption from supported lipid bilayers is independent of curvature. PLoS One 2020; 15:e0244460. [PMID: 33378379 PMCID: PMC7773258 DOI: 10.1371/journal.pone.0244460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/09/2020] [Indexed: 01/10/2023] Open
Abstract
Flip-flop of lipids of the lipid bilayer (LBL) constituting the plasma membrane (PM) plays a crucial role in a myriad of events ranging from cellular signaling and regulation of cell shapes to cell homeostasis, membrane asymmetry, phagocytosis, and cell apoptosis. While extensive research has been conducted to probe the lipid flip flop of planar lipid bilayers (LBLs), less is known regarding lipid flip-flop for highly curved, nanoscopic LBL systems despite the vast importance of membrane curvature in defining the morphology of cells and organelles and in maintaining a variety of cellular functions, enabling trafficking, and recruiting and localizing shape-responsive proteins. In this paper, we conduct molecular dynamics (MD) simulations to study the energetics, structure, and configuration of a lipid molecule undergoing flip-flop and desorption in a highly curved LBL, represented as a nanoparticle-supported lipid bilayer (NPSLBL) system. We compare our findings against those of a planar substrate supported lipid bilayer (PSSLBL). Our MD simulation results reveal that despite the vast differences in the curvature and other curvature-dictated properties (e.g., lipid packing fraction, difference in the number of lipids between inner and outer leaflets, etc.) between the NPSLBL and the PSSLBL, the energetics of lipid flip-flop and lipid desorption as well as the configuration of the lipid molecule undergoing lipid flip-flop are very similar for the NPSLBL and the PSSLBL. In other words, our results establish that the curvature of the LBL plays an insignificant role in lipid flip-flop and desorption.
Collapse
|
15
|
Clarke R, Hossain K, Cao K. Physiological roles of transverse lipid asymmetry of animal membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183382. [DOI: 10.1016/j.bbamem.2020.183382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
16
|
Porcar L, Gerelli Y. On the lipid flip-flop and phase transition coupling. SOFT MATTER 2020; 16:7696-7703. [PMID: 32789357 DOI: 10.1039/d0sm01161d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We measured the passive lipid flip-flop of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in solid supported lipid bilayers across their main gel to fluid (Lβ → Lα) phase transition. By performing time and temperature resolved neutron reflectometry experiments, we demonstrated that asymmetric systems prepared in the gel phase are stable for at least 24 hours. Lipid flip-flop was found to be intrinsically linked to the amount of lipid molecules in the fluid phase. Moreover, the increase of this amount during the broad phase transition was found to be the main key factor for the timing of the flip-flop process. By measuring different temperature scan rate, we could demonstrate that, in the case of supported bilayers and for the temperature investigated, the lipid flip flop is characterised by an activation energy of 50 kJ mol-1 and a timescale on the order of few hours. Our results demonstrate the origin on the discrepancies between passive flip-flop in bulk systems and at interfaces.
Collapse
Affiliation(s)
- Lionel Porcar
- Institut Laue-Langevin, avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
17
|
Liu Y, Kelley EG, Batchu KC, Porcar L, Perez-Salas U. Creating Asymmetric Phospholipid Vesicles via Exchange With Lipid-Coated Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8865-8873. [PMID: 32623897 PMCID: PMC7899156 DOI: 10.1021/acs.langmuir.0c01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, effort has been placed into fabricating model free-floating asymmetric lipid membranes, such as asymmetric vesicles. Here, we report on the use of lipid-coated silica nanoparticles to exchange lipids with initially symmetric vesicles to generate composition-controlled asymmetric vesicles. Our method relies on the simple and natural exchange of lipids between membranes through an aqueous medium. Using a selected temperature, time, and ratio of lipid-coated silica nanoparticles to vesicles, we produced a desired highly asymmetric leaflet composition. At this point, the silica nanoparticles were removed by centrifugation, leaving the asymmetric vesicles in solution. In the present work, the asymmetric vesicles were composed of isotopically distinct dipalmitoylphosphatidylcholine lipids. Lipid asymmetry was detected by both small-angle neutron scattering (SANS) and proton nuclear magnetic resonance (1H NMR). The rate at which the membrane homogenizes at 75 °C was also assessed.
Collapse
Affiliation(s)
- Yangmingyue Liu
- Physics Department, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Elizabeth G Kelley
- NIST Center For Neutron Research, Gaithersburg, Maryland 20889, United States
| | - Krishna C Batchu
- Large Scale Structure Group, Institut Laue-Langevin, Grenoble F-38042, France
| | - Lionel Porcar
- Large Scale Structure Group, Institut Laue-Langevin, Grenoble F-38042, France
| | - Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
18
|
Rickeard BW, Nguyen MHL, DiPasquale M, Yip CG, Baker H, Heberle FA, Zuo X, Kelley EG, Nagao M, Marquardt D. Transverse lipid organization dictates bending fluctuations in model plasma membranes. NANOSCALE 2020; 12:1438-1447. [PMID: 31746906 PMCID: PMC11577542 DOI: 10.1039/c9nr07977g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane undulations play a vital role in many biological processes, including the regulation of membrane protein activity. The asymmetric lipid composition of most biological membranes complicates theoretical description of these bending fluctuations, yet experimental data that would inform any such a theory is scarce. Here, we used neutron spin-echo (NSE) spectroscopy to measure the bending fluctuations of large unilamellar vesicles (LUV) having an asymmetric transbilayer distribution of high- and low-melting lipids. The asymmetric vesicles were prepared using cyclodextrin-mediated lipid exchange, and were composed of an outer leaflet enriched in egg sphingomyelin (ESM) and an inner leaflet enriched in 1-palmitoyl-2-oleoyl-phosphoethanolamine (POPE), which have main transition temperatures of 37 °C and 25 °C, respectively. The overall membrane bending rigidity was measured at three temperatures: 15 °C, where both lipids are in a gel state; 45 °C, where both lipids are in a fluid state; and 30 °C, where there is gel-fluid co-existence. Remarkably, the dynamics for the fluid asymmetric LUVs (aLUVs) at 30 °C and 45 °C do not follow trends predicted by their symmetric counterparts. At 30 °C, compositional asymmetry suppressed the bending fluctuations, with the asymmetric bilayer exhibiting a larger bending modulus than that of symmetric bilayers corresponding to either the outer or inner leaflet. We conclude that the compositional asymmetry and leaflet coupling influence the internal dissipation within the bilayer and result in membrane properties that cannot be directly predicted from corresponding symmetric bilayers.
Collapse
Affiliation(s)
- Brett W Rickeard
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee YT, Pozzo LD. Contrast-Variation Time-Resolved Small-Angle Neutron Scattering Analysis of Oil-Exchange Kinetics Between Oil-in-Water Emulsions Stabilized by Anionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15192-15203. [PMID: 31689363 DOI: 10.1021/acs.langmuir.9b02423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contrast-variation time-resolved small-angle neutron scattering (CV-SANS) was used to examine oil-exchange kinetics between identical mixtures of hydrogenated/deuterated hexadecane emulsion systems. Oil-exchange rates were estimated by transforming recorded scattering profiles to a relaxation function and by fitting to exponential decay models. We find that the oil-exchange process was accelerated when the droplets were stabilized by anionic surfactants even at concentrations well below the surfactant critical micelle concentration. Moreover, the exchange rate was not significantly accelerated when surfactant micelles were present. This suggests that micellar-mediated transport mechanisms do not play the dominant role in these systems. Screening electrostatic repulsion by increasing the ionic strength of the medium also had a negligible effect on oil-exchange kinetics. In contrast, the use of oils with shorter alkane chain lengths (e.g., dodecane), having a higher solubility in water, significantly accelerated rates of oil transport between droplets. Oil-transport rates for hexadecane were also found to increase with temperature and to follow Arrhenius behavior. These results were rationalized as an increase in the droplet-collision frequency due to Brownian motion that results in direct oil transport without irreversible coalescence. Thus, primary mechanisms for oil exchange in insoluble anionic surfactant-stabilized emulsion systems are hypothesized to be through direct emulsion contact, reversible coalescence, and/or direct oil permeation through thin liquid films. CV-SANS is also demonstrated as a powerful technique for the study of transport kinetics in all kinds of emulsion systems.
Collapse
Affiliation(s)
- Yi-Ting Lee
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Lilo D Pozzo
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
20
|
Nguyen MHL, DiPasquale M, Rickeard BW, Doktorova M, Heberle FA, Scott HL, Barrera FN, Taylor G, Collier CP, Stanley CB, Katsaras J, Marquardt D. Peptide-Induced Lipid Flip-Flop in Asymmetric Liposomes Measured by Small Angle Neutron Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11735-11744. [PMID: 31408345 PMCID: PMC7393738 DOI: 10.1021/acs.langmuir.9b01625] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite the prevalence of lipid transbilayer asymmetry in natural plasma membranes, most biomimetic model membranes studied are symmetric. Recent advances have helped to overcome the difficulties in preparing asymmetric liposomes in vitro, allowing for the examination of a larger set of relevant biophysical questions. Here, we investigate the stability of asymmetric bilayers by measuring lipid flip-flop with time-resolved small-angle neutron scattering (SANS). Asymmetric large unilamellar vesicles with inner bilayer leaflets containing predominantly 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and outer leaflets composed mainly of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) displayed slow spontaneous flip-flop at 37 ◦C (half-time, t1/2 = 140 h). However, inclusion of peptides, namely, gramicidin, alamethicin, melittin, or pHLIP (i.e., pH-low insertion peptide), accelerated lipid flip-flop. For three of these peptides (i.e., pHLIP, alamethicin, and melittin), each of which was added externally to preformed asymmetric vesicles, we observed a completely scrambled bilayer in less than 2 h. Gramicidin, on the other hand, was preincorporated during the formation of the asymmetric liposomes and showed a time resolvable 8-fold increase in the rate of lipid asymmetry loss. These results point to a membrane surface-related (e.g., adsorption/insertion) event as the primary driver of lipid scrambling in the asymmetric model membranes of this study. We discuss the implications of membrane peptide binding, conformation, and insertion on lipid asymmetry.
Collapse
Affiliation(s)
- Michael H. L. Nguyen
- Department of Chemistry and Biochemistry, University
of Windsor, Windsor, N9B 3P4 ON Canada
| | - Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University
of Windsor, Windsor, N9B 3P4 ON Canada
| | - Brett W. Rickeard
- Department of Chemistry and Biochemistry, University
of Windsor, Windsor, N9B 3P4 ON Canada
| | - Milka Doktorova
- Department of Integrative Biology and Pharmacology,
University of Texas Health Science Center at Houston, Houston, Texas 77225, United
States
| | - Frederick A. Heberle
- Department of Integrative Biology and Pharmacology,
University of Texas Health Science Center at Houston, Houston, Texas 77225, United
States
- Center for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - Haden L. Scott
- Center for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biochemistry & Cellular and
Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United
States
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and
Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United
States
| | - Graham Taylor
- The Bredesen Center, University of Tennessee,
Knoxville, Tennessee 37996, United States
| | - Charles P. Collier
- The Bredesen Center, University of Tennessee,
Knoxville, Tennessee 37996, United States
- Center for Nanophase Materials Sciences, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Christopher B. Stanley
- Neutron Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Large Scale Structures Group, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
- Shull Wollan Center, a Joint Institute for Neutron
Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United
States
- Department of Physics and Astronomy, University of
Tennessee, Knoxville, Tennessee 37996, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University
of Windsor, Windsor, N9B 3P4 ON Canada
- Department of Physics, University of Windsor, Windsor, N9B
3P4 ON Canada
- Corresponding Author:
| |
Collapse
|
21
|
Nguyen MHL, DiPasquale M, Rickeard BW, Stanley CB, Kelley EG, Marquardt D. Methanol Accelerates DMPC Flip-Flop and Transfer: A SANS Study on Lipid Dynamics. Biophys J 2019; 116:755-759. [PMID: 30777306 DOI: 10.1016/j.bpj.2019.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022] Open
Abstract
Methanol is a common solubilizing agent used to study transmembrane proteins/peptides in biological and synthetic membranes. Using small angle neutron scattering and a strategic contrast-matching scheme, we show that methanol has a major impact on lipid dynamics. Under increasing methanol concentrations, isotopically distinct 1,2-dimyristoyl-sn-glycero-3-phosphocholine large unilamellar vesicle populations exhibit increased mixing. Specifically, 1,2-dimyristoyl-sn-glycero-3-phosphocholine transfer and flip-flop kinetics display linear and exponential rate enhancements, respectively. Ultimately, methanol is capable of influencing the structure-function relationship associated with bilayer composition (e.g., lipid asymmetry). The use of methanol as a carrier solvent, despite better simulating some biological conditions (e.g., antimicrobial attack), can help misconstrue lipid scrambling as the action of proteins or peptides, when in actuality it is a combination of solvent and biological agent. As bilayer compositional stability is crucial to cell survival and protein reconstitution, these results highlight the importance of methanol, and solvents in general, in biomembrane and proteolipid studies.
Collapse
Affiliation(s)
- Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Brett W Rickeard
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | | | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
22
|
Ashkar R, Bilheux HZ, Bordallo H, Briber R, Callaway DJE, Cheng X, Chu XQ, Curtis JE, Dadmun M, Fenimore P, Fushman D, Gabel F, Gupta K, Herberle F, Heinrich F, Hong L, Katsaras J, Kelman Z, Kharlampieva E, Kneller GR, Kovalevsky A, Krueger S, Langan P, Lieberman R, Liu Y, Losche M, Lyman E, Mao Y, Marino J, Mattos C, Meilleur F, Moody P, Nickels JD, O'Dell WB, O'Neill H, Perez-Salas U, Peters J, Petridis L, Sokolov AP, Stanley C, Wagner N, Weinrich M, Weiss K, Wymore T, Zhang Y, Smith JC. Neutron scattering in the biological sciences: progress and prospects. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1129-1168. [PMID: 30605130 DOI: 10.1107/s2059798318017503] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022]
Abstract
The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined. For the extraction of maximum information, the incorporation of judicious specific deuterium labeling, the integration of several types of experiment, and interpretation using high-performance computer simulation models are often found to be particularly powerful.
Collapse
Affiliation(s)
- Rana Ashkar
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - Hassina Z Bilheux
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Robert Briber
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - David J E Callaway
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Xiaolin Cheng
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| | - Xiang Qiang Chu
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Paul Fenimore
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Frank Gabel
- Institut Laue-Langevin, Université Grenoble Alpes, CEA, CNRS, IBS, 38042 Grenoble, France
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederick Herberle
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Frank Heinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Liang Hong
- Department of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - John Katsaras
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, AL 35294, USA
| | - Gerald R Kneller
- Centre de Biophysique Moléculaire, CNRS, Université d'Orléans, Chateau de la Source, Avenue du Parc Floral, Orléans, France
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Susan Krueger
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Paul Langan
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Raquel Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yun Liu
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mathias Losche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Edward Lyman
- Department of Physics and Astrophysics, University of Delaware, Newark, DE 19716, USA
| | - Yimin Mao
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - John Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Flora Meilleur
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Peter Moody
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, England
| | - Jonathan D Nickels
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - William B O'Dell
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Hugh O'Neill
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Ursula Perez-Salas
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Loukas Petridis
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Christopher Stanley
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Norman Wagner
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Michael Weinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Kevin Weiss
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Troy Wymore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Yang Zhang
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Jeremy C Smith
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Schoch RL, Barel I, Brown FLH, Haran G. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking. J Chem Phys 2018; 148:123333. [DOI: 10.1063/1.5010341] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rafael L. Schoch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 7610001, Israel
| | - Itay Barel
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Frank L. H. Brown
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 7610001, Israel
| |
Collapse
|
24
|
Breidigan JM, Krzyzanowski N, Liu Y, Porcar L, Perez-Salas U. Influence of the membrane environment on cholesterol transfer. J Lipid Res 2017; 58:2255-2263. [PMID: 29046341 PMCID: PMC5711489 DOI: 10.1194/jlr.m077909] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/09/2017] [Indexed: 01/28/2023] Open
Abstract
Cholesterol, an essential component in biological membranes, is highly unevenly distributed within the cell, with most localized in the plasma membrane while only a small fraction is found in the endoplasmic reticulum, where it is synthesized. Cellular membranes differ in lipid composition and protein content, and these differences can exist across their leaflets too. This thermodynamic landscape that cellular membranes impose on cholesterol is expected to modulate its transport. To uncover the role the membrane environment has on cholesterol inter- and intra-membrane movement, we used time-resolved small angle neutron scattering to study the passive movement of cholesterol between and within membranes with varying degrees of saturation content. We found that cholesterol moves systematically slower as the degree of saturation in the membranes increases, from a palmitoyl oleyl phosphotidylcholine membrane, which is unsaturated, to a dipalmitoylphosphatidylcholine (DPPC) membrane, which is fully saturated. Additionally, we found that the energetic barrier to move cholesterol in these phosphatidylcholine membranes is independent of their relative lipid composition and remains constant for both flip-flop and exchange at ∼100 kJ/mol. Further, by replacing DPPC with the saturated lipid palmitoylsphingomyelin, an abundant saturated lipid of the outer leaflet of the plasma membrane, we found the rates decreased by a factor of two. This finding is in stark contrast with recent molecular dynamic simulations that predict a dramatic slow-down of seven orders of magnitude for cholesterol flipping in membranes with a similar phosphocholine and SM lipid composition.
Collapse
Affiliation(s)
| | | | - Yangmingyue Liu
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607
| | - Lionel Porcar
- Large Scale Structures Group, Institut Laue-Langevin, F-38042 Grenoble CEDEX 9, France
| | - Ursula Perez-Salas
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
25
|
Khaliqi K, Ghazal A, Azmi IDM, Amenitsch H, Mortensen K, Salentinig S, Yaghmur A. Direct monitoring of lipid transfer on exposure of citrem nanoparticles to an ethanol solution containing soybean phospholipids by combining synchrotron SAXS with microfluidics. Analyst 2017; 142:3118-3126. [PMID: 28744529 DOI: 10.1039/c7an00860k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Lipid exchange among citrem nanoparticles and an ethanol micellar solution containing soy phosphatidylcholine was investigated in situ by coupling small angle X-ray scattering with a microfluidic device. The produced soy phosphatidylcholine/citrem nanoparticles have great potential in the development of hemocompatible nanocarriers for drug delivery.
Collapse
Affiliation(s)
- K Khaliqi
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | | | |
Collapse
|