1
|
Saudrais F, Schvartz M, Renault JP, Vieira J, Devineau S, Leroy J, Taché O, Boulard Y, Pin S. The Impact of Virgin and Aged Microstructured Plastics on Proteins: The Case of Hemoglobin Adsorption and Oxygenation. Int J Mol Sci 2024; 25:7047. [PMID: 39000151 PMCID: PMC11241625 DOI: 10.3390/ijms25137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.
Collapse
Affiliation(s)
- Florent Saudrais
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Marion Schvartz
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | | | - Jorge Vieira
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Stéphanie Devineau
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, 75013 Paris, France
| | - Jocelyne Leroy
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Olivier Taché
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Yves Boulard
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Serge Pin
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| |
Collapse
|
2
|
Qiu N, Lv QY, Li CL, Song X, Wang YQ, Chen J, Cui HF. Optimization and mechanisms of proteolytic enzyme immobilization onto large-pore mesoporous silica nanoparticles: Enhanced tumor penetration. Int J Biol Macromol 2024; 271:132626. [PMID: 38795893 DOI: 10.1016/j.ijbiomac.2024.132626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Immobilization of proteolytic enzymes onto nanocarriers is effective to improve drug diffusion in tumors through degrading the dense extracellular matrix (ECM). Herein, immobilization and release behaviors of hyaluronidase, bromelain, and collagenase (Coll) on mesoporous silica nanoparticles (MSNs) were explored. A series of cationic MSNs (CMSNs) with large and adjustable pore sizes were synthesized, and investigated together with two anionic MSNs of different pore sizes. CMSNs4.0 exhibited the highest enzyme loading capacity for hyaluronidase and bromelain, and CMSNs4.5 was the best for Coll. High electrostatic interaction, matched pore size, and large pore volume and surface area favor the immobilization. Changes of the enzyme conformations and surface charges with pH, existence of a space around the immobilized enzymes, and the depth of the pore structures, affect the release ratio and tunability. The optimal CMSNs-enzyme complexes exhibited deep and homogeneous penetration into pancreatic tumors, a tumor model with the densest ECM, with CMSNs4.5-Coll as the best. Upon loading with doxorubicin (DOX), the CMSNs-enzyme complexes induced high anti-tumor efficiencies. Conceivably, the DOX/CMSNs4.5-NH2-Coll nanodrug exhibited the most effective tumor therapy, with a tumor growth inhibition ratio of 86.1 %. The study provides excellent nanocarrier-enzyme complexes, and offers instructive theories for enhanced tumor penetration and therapy.
Collapse
Affiliation(s)
- Nan Qiu
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Qi-Yan Lv
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Chun-Ling Li
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Xiaojie Song
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Yu-Qian Wang
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Junyang Chen
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Hui-Fang Cui
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Marques C, Maroni P, Maurizi L, Jordan O, Borchard G. Understanding protein-nanoparticle interactions leading to protein corona formation: In vitro - in vivo correlation study. Int J Biol Macromol 2024; 256:128339. [PMID: 38000573 DOI: 10.1016/j.ijbiomac.2023.128339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Nanoparticles (NPs) in contact with biological fluids form a biomolecular corona through interactions with proteins, lipids, and sugars, acquiring new physicochemical properties. This work explores the interaction between selected proteins (hemoglobin and fetuin-A) that may alter NP circulation time and NPs of different surface charges (neutral, positive, and negative). The interaction with key proteins albumin and transferrin, the two of the most abundant proteins in plasma was also studied. Binding affinity was investigated using quartz crystal microbalance and fluorescence quenching, while circular dichroism assessed potential conformational changes. The data obtained from in vitro experiments were compared to in vivo protein corona data. The results indicate that electrostatic interactions primarily drive protein-NP interactions, and higher binding affinity does not necessarily translate into more significant structural changes. In vitro and single protein-NP studies provide valuable insights that can be correlated with in vivo observations, opening exciting possibilities for future protein corona studies.
Collapse
Affiliation(s)
- Cintia Marques
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Plinio Maroni
- Department of Inorganic and Analytical Chemistry, University of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, Geneva 4 1211, Switzerland
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université Bourgogne Franche-Comté, BP 47870, CEDEX, Dijon, France
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
4
|
Marques C, Hajipour MJ, Marets C, Oudot A, Safavi-Sohi R, Guillemin M, Borchard G, Jordan O, Saviot L, Maurizi L. Identification of the Proteins Determining the Blood Circulation Time of Nanoparticles. ACS NANO 2023. [PMID: 37379064 DOI: 10.1021/acsnano.3c02041] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The therapeutic efficacy and adverse impacts of nanoparticles (NPs) are strongly dependent on their systemic circulation time. The corona proteins adsorbed on the NPs determine their plasma half-lives, and hence, it is crucial to identify the proteins shortening or extending their circulation time. In this work, the in vivo circulation time and corona composition of superparamagnetic iron oxide nanoparticles (SPIONs) with different surface charges/chemistries were analyzed over time. SPIONs with neutral and positive charges showed the longest and shortest circulation times, respectively. The most striking observation was that corona-coated NPs with similar opsonin/dysopsonin content showed different circulation times, implying these biomolecules are not the only contributing factors. Long-circulating NPs adsorb higher concentrations of osteopontin, lipoprotein lipase, coagulation factor VII, matrix Gla protein, secreted phosphoprotein 24, alpha-2-HS-glycoprotein, and apolipoprotein C-I, while short-circulating NPs adsorb higher amounts of hemoglobin. Therefore, these proteins may be considered to be determining factors governing the NP systemic circulation time.
Collapse
Affiliation(s)
- Cintia Marques
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Mohammad Javad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California 94304, United States
| | - Célia Marets
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France
| | - Alexandra Oudot
- Plateforme d'Imagerie Préclinique, Service de Médecine Nucléaire, Centre Georges François Leclerc, 21000 Dijon, France
| | - Reihaneh Safavi-Sohi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mélanie Guillemin
- Plateforme d'Imagerie Préclinique, Service de Médecine Nucléaire, Centre Georges François Leclerc, 21000 Dijon, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France
| |
Collapse
|
5
|
Bashiri G, Padilla MS, Swingle KL, Shepherd SJ, Mitchell MJ, Wang K. Nanoparticle protein corona: from structure and function to therapeutic targeting. LAB ON A CHIP 2023; 23:1432-1466. [PMID: 36655824 PMCID: PMC10013352 DOI: 10.1039/d2lc00799a] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Nanoparticle (NP)-based therapeutics have ushered in a new era in translational medicine. However, despite the clinical success of NP technology, it is not well-understood how NPs fundamentally change in biological environments. When introduced into physiological fluids, NPs are coated by proteins, forming a protein corona (PC). The PC has the potential to endow NPs with a new identity and alter their bioactivity, stability, and destination. Additionally, the conformation of proteins is sensitive to their physical and chemical surroundings. Therefore, biological factors and protein-NP-interactions can induce changes in the conformation and orientation of proteins in vivo. Since the function of a protein is closely connected to its folded structure, slight differences in the surrounding environment as well as the surface characteristics of the NP materials may cause proteins to lose or gain a function. As a result, this can alter the downstream functionality of the NPs. This review introduces the main biological factors affecting the conformation of proteins associated with the PC. Then, four types of NPs with extensive utility in biomedical applications are described in greater detail, focusing on the conformation and orientation of adsorbed proteins. This is followed by a discussion on the instances in which the conformation of adsorbed proteins can be leveraged for therapeutic purposes, such as controlling protein conformation in assembled matrices in tissue, as well as controlling the PC conformation for modulating immune responses. The review concludes with a perspective on the remaining challenges and unexplored areas at the interface of PC and NP research.
Collapse
Affiliation(s)
- Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
6
|
Giraudon--Colas G, Devineau S, Marichal L, Barruet E, Zitolo A, Renault JP, Pin S. How Nanoparticles Modify Adsorbed Proteins: Impact of Silica Nanoparticles on the Hemoglobin Active Site. Int J Mol Sci 2023; 24:3659. [PMID: 36835069 PMCID: PMC9967434 DOI: 10.3390/ijms24043659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The adsorption of proteins on surfaces has been studied for a long time, but the relationship between the structural and functional properties of the adsorbed protein and the adsorption mechanism remains unclear. Using hemoglobin adsorbed on silica nanoparticles, we have previously shown that hemoglobin's affinity towards oxygen increases with adsorption. Nevertheless, it was also shown that there were no significant changes in the quaternary and secondary structures. In order to understand the change in activity, we decided in this work to focus on the active sites of hemoglobin, the heme and its iron. After measuring adsorption isotherms of porcine hemoglobin on Ludox silica nanoparticles, we analyzed the structural modifications of adsorbed hemoglobin by X-ray absorption spectroscopy and circular dichroism spectra in the Soret region. It was found that upon adsorption, there were modifications in the heme pocket environment due to changes in the angles of the heme vinyl functions. These alterations can explain the greater affinity observed.
Collapse
Affiliation(s)
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Laurent Marichal
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Elodie Barruet
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Tian B, Liu Y, Chen D. Adhesion behavior of silica nanoparticles with bacteria: Spectroscopy measurements based on kinetics, and molecular docking. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Bizeau J, Adam A, Bégin‐Colin S, Mertz D. Serum Albumin Antifouling Effects of Hydroxypropyl‐Cellulose and Pluronic F127 Adsorbed on Isobutyramide‐Grafted Stellate Silica Nanoparticles. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joëlle Bizeau
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| | - Alexandre Adam
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| | - Sylvie Bégin‐Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| |
Collapse
|
10
|
Cui G, Su W, Tan M. Formation and biological effects of protein corona for food-related nanoparticles. Compr Rev Food Sci Food Saf 2021; 21:2002-2031. [PMID: 34716644 DOI: 10.1111/1541-4337.12838] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023]
Abstract
The rapid development of nanoscience and nanoengineering provides new perspectives on the composition of food materials, and has great potential for food biology research and applications. The use of nanoparticle additives and the discovery of endogenous nanoparticles in food make it important to elucidate in vivo safety of nanomaterials. Nanoparticles will spontaneously adsorb proteins during transporting in blood and a protein corona can be formed on the nanoparticle surface inside the human body. Protein corona affects the physicochemical properties of nanoparticles and the structure and function of proteins, which in turn affects a series of biological reactions. This article reviewed basic information about protein corona of food-related nanoparticles, elucidated the influence of protein corona on nanoparticles properties and protein structure and function, and discussed the effect of protein corona on nanoparticles in vivo. The effects of protein corona on nanoparticles transport, cellular uptake, cytotoxicity, and immune response were reviewed, and the reasons for these effects were also discussed. Finally, future research perspectives for food protein corona were proposed. Protein corona gives food nanoparticles a new identity, which makes proteins bound to nanoparticles undergo structural transformations that affect their recognition by receptors in vivo. It can have positive or negative impacts on cellular uptake and toxicity of nanoparticles and even trigger immune responses. Understanding the effects of protein corona have potential in evaluating the fate of the food-related nanoparticles, providing physicochemical and biological information about the interaction between proteins and foodborne nanoparticles. The review article will help to evaluate the safety of protein coronas formed on nanoparticles in food, and may provide fundamental information for understanding and controlling nanotoxicity.
Collapse
Affiliation(s)
- Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
11
|
Armstrong MJ, Rodriguez JB, Dahl P, Salamon P, Hess H, Katira P. Power Law Behavior in Protein Desorption Kinetics Originating from Sequential Binding and Unbinding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13527-13534. [PMID: 33152250 DOI: 10.1021/acs.langmuir.0c02260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of protein adsorption at the single molecule level has recently revealed that the adsorption is reversible, but with a long-tailed residence time distribution which can be approximated with a sum of exponential functions putatively related to distinct adsorption sites. Here it is proposed that the shape of the residence time distribution results from an adsorption process with sequential and reversible steps that contribute to overall binding strength resembling "zippering". In this model, the survival function of the residence time distribution of single proteins varies from an exponential distribution for a single adsorption step to a power law distribution with exponent -1/2 for a large number of adsorption steps. The adsorption of fluorescently labeled fibrinogen to glass surfaces is experimentally studied with single molecule imaging. The experimental residence time distribution can be readily fit by the proposed model. This demonstrates that the observed long residence times can arise from stepwise adsorption rather than rare but strong binding sites and provides guidance for the control of protein adsorption to biomaterials.
Collapse
Affiliation(s)
- Megan J Armstrong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Juan B Rodriguez
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Peter Dahl
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| | - Peter Salamon
- Department of Mathematics and Statistics and Viral Information Institute, San Diego State University, San Diego, California 98182, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| |
Collapse
|
12
|
Nakhjiri MZ, Asadi S, Hasan A, Babadaei MMN, Vahdani Y, Rasti B, Ale-Ebrahim M, Arsalan N, Goorabjavari SVM, Haghighat S, Sharifi M, Shahpasand K, Akhtari K, Falahati M. Exploring the interaction of synthesized nickel oxide nanoparticles through hydrothermal method with hemoglobin and lymphocytes: Bio-thermodynamic and cellular studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Shenderovich IG. For Whom a Puddle Is the Sea? Adsorption of Organic Guests on Hydrated MCM-41 Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11383-11392. [PMID: 32900200 DOI: 10.1021/acs.langmuir.0c02327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermal and hydration effects on the mobility of compact and branched organic molecules and a bulky pharmaceutical substance loaded in submonolayer amounts onto mesoporous silica have been elucidated using 1H and 31P solid-state NMR. In all cases, the ambient hydration has a stronger effect than an increase in temperature to 370 K for water-free silica. The effect of hydration depends on the guest and ranges from complete solvation to a silica-water-guest sandwich structure to a silica-guest/silica-water pattern. The mobility of the guests under different conditions has been described. The specific structure of the MCM-41 surface allows one to study very slow surface diffusion, a diffusivity of about 10-15-10-16 m2/s. The data reported are relevant to any nonfunctionalized silica, while the method used is applicable to any phosphor-containing guest on any host.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Elistratova J, Faizullin B, Strelnik I, Gerasimova T, Khairullin R, Sapunova A, Voloshina A, Mukhametzyanov T, Musina E, Karasik A, Mustafina A. Impact of oppositely charged shell and cores on interaction of core-shell colloids with differently charged proteins as a route for tuning of the colloids cytotoxicity. Colloids Surf B Biointerfaces 2020; 196:111306. [PMID: 32810768 DOI: 10.1016/j.colsurfb.2020.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
The present work represents interactions between the core-shell nanoparticles and different proteins, exemplified by lysozyme (LSZ), pepsin, bovine serum albumin (BSA), thioredoxin (TRX) and yellow fluorescent protein (YFP). The core-shell morphology derives from the non-covalent deposition of polyethyleneimine (PEI) onto nanoprecipitated luminescent complex (AuCl)2L (L is cyclic PNNP ligand). Analysis of the data obtained by DLS, CD spectroscopy, luminescence derived from both (AuCl)2L and YFP reveal the electrostatically driven interaction of negatively charged proteins with the shell of PEI-(AuCl)2L. The fluorescence of YFP enables to reveal the inclusion of the protein molecules into the shell. The lack of any luminescent response of PEI-(AuCl)2L on TRX conforms its electrostatically driven interactions with the shell which, in turn, excludes a binding of the exposed thiol moieties with (AuCl)2L. The negatively charged surface of pepsin provides the greatest recharging of the PEI-based shell versus the other proteins, which is followed by the enhanced luminescence of (AuCl)2L. The significant effect of PEI-(AuCl)2L on the CD spectra of LSZ followed by the decreased intensity of (AuCl)2L-based luminescence points to specific interaction mode of PEI-(AuCl)2L with LSZ. The flow cytometry and fluorescent microscopy measurements revealed efficient internalization of PEI-(AuCl)2L into the Wi-38 cell samples resulting in the efficient staining of all cell organelles. The concentration dependent cytotoxicity of PEI-(AuCl)2L is detectably enhanced by LSZ, which is correlated with its interaction mode with the nanoparticles.
Collapse
Affiliation(s)
- Julia Elistratova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia.
| | - Bulat Faizullin
- Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Igor Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Rafil Khairullin
- Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Timur Mukhametzyanov
- Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Elvira Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Andrey Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| |
Collapse
|
15
|
Sanchez-Guzman D, Giraudon-Colas G, Marichal L, Boulard Y, Wien F, Degrouard J, Baeza-Squiban A, Pin S, Renault JP, Devineau S. In Situ Analysis of Weakly Bound Proteins Reveals Molecular Basis of Soft Corona Formation. ACS NANO 2020; 14:9073-9088. [PMID: 32633939 DOI: 10.1021/acsnano.0c04165] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Few experimental techniques allow the analysis of the protein corona in situ. As a result, little is known on the effects of nanoparticles on weakly bound proteins that form the soft corona. Despite its biological importance, our understanding of the molecular bases driving its formation is limited. Here, we show that hemoglobin can form either a hard or a soft corona on silica nanoparticles depending on the pH conditions. Using cryoTEM and synchrotron-radiation circular dichroism, we show that nanoparticles alter the structure and the stability of weakly bound proteins in situ. Molecular dynamics simulation identified the structural elements driving protein-nanoparticle interaction. Based on thermodynamic analysis, we show that nanoparticles stabilize partially unfolded protein conformations by enthalpy-driven molecular interactions. We suggest that nanoparticles alter weakly bound proteins by shifting the equilibrium toward the unfolded states at physiological temperature. We show that the classical approach based on nanoparticle separation from the biological medium fails to detect destabilization of weakly bound proteins, and therefore cannot be used to fully predict the biological effects of nanomaterials in situ.
Collapse
Affiliation(s)
| | | | - Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay Cedex, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, Gif-sur-Yvette 91190, France
| | - Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay Cedex, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91190, France
| | | | | |
Collapse
|
16
|
Marichal L, Degrouard J, Gatin A, Raffray N, Aude JC, Boulard Y, Combet S, Cousin F, Hourdez S, Mary J, Renault JP, Pin S. From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein-Nanoparticle Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8218-8230. [PMID: 32585107 DOI: 10.1021/acs.langmuir.0c01334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein adsorption on nanoparticles is an important field of study, particularly with regard to nanomedicine and nanotoxicology. Many factors can influence the composition and structure of the layer(s) of adsorbed proteins, the so-called protein corona. However, the role of protein size has not been specifically investigated, although some evidence has indicated its potential important role in corona composition and structure. To assess the role of protein size, we studied the interactions of hemoproteins (spanning a large size range) with monodisperse silica nanoparticles. We combined various techniques-adsorption isotherms, isothermal titration calorimetry, circular dichroism, and transmission electron cryomicroscopy-to address this issue. Overall, the results show that small proteins behaved as typical model proteins, forming homogeneous monolayers on the nanoparticle surface (protein corona). Their adsorption is purely enthalpy-driven, with subtle structural changes. In contrast, large proteins interact with nanoparticles via entropy-driven mechanisms. Their structure is completely preserved during adsorption, and any given protein can directly bind to several nanoparticles, forming bridges in these newly formed protein-nanoparticle assemblies. Protein size is clearly an overlooked factor that should be integrated into proteomics and toxicological studies.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, 91190 Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Anouchka Gatin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| | - Nolwenn Raffray
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| | | | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, 91190 Gif-sur-Yvette, France
| | - Sophie Combet
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Fabrice Cousin
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Stéphane Hourdez
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Team DYDIV, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Jean Mary
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Team DYDIV, Station Biologique de Roscoff, 29680 Roscoff, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| |
Collapse
|
17
|
Marichal L, Klein G, Armengaud J, Boulard Y, Chédin S, Labarre J, Pin S, Renault JP, Aude JC. Protein Corona Composition of Silica Nanoparticles in Complex Media: Nanoparticle Size does not Matter. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E240. [PMID: 32013169 PMCID: PMC7075126 DOI: 10.3390/nano10020240] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/30/2022]
Abstract
Biomolecules, and particularly proteins, bind on nanoparticle (NP) surfaces to form the so-called protein corona. It is accepted that the corona drives the biological distribution and toxicity of NPs. Here, the corona composition and structure were studied using silica nanoparticles (SiNPs) of different sizes interacting with soluble yeast protein extracts. Adsorption isotherms showed that the amount of adsorbed proteins varied greatly upon NP size with large NPs having more adsorbed proteins per surface unit. The protein corona composition was studied using a large-scale label-free proteomic approach, combined with statistical and regression analyses. Most of the proteins adsorbed on the NPs were the same, regardless of the size of the NPs. To go beyond, the protein physicochemical parameters relevant for the adsorption were studied: electrostatic interactions and disordered regions are the main driving forces for the adsorption on SiNPs but polypeptide sequence length seems to be an important factor as well. This article demonstrates that curvature effects exhibited using model proteins are not determining factors for the corona composition on SiNPs, when dealing with complex biological media.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (G.K.); (Y.B.); (S.C.); (J.L.)
- Université Paris-Saclay, CEA, CNRS, NIMBE, Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire, 91191 Gif-sur-Yvette, France; (S.P.); (J.-P.R.)
| | - Géraldine Klein
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (G.K.); (Y.B.); (S.C.); (J.L.)
- Université Paris-Saclay, CEA, CNRS, NIMBE, Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire, 91191 Gif-sur-Yvette, France; (S.P.); (J.-P.R.)
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin, AgroSup Dijon, Université de Bourgogne Franche-Comté, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207 Bagnols-sur-Cèze, France;
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (G.K.); (Y.B.); (S.C.); (J.L.)
| | - Stéphane Chédin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (G.K.); (Y.B.); (S.C.); (J.L.)
| | - Jean Labarre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (G.K.); (Y.B.); (S.C.); (J.L.)
| | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire, 91191 Gif-sur-Yvette, France; (S.P.); (J.-P.R.)
| | - Jean-Philippe Renault
- Université Paris-Saclay, CEA, CNRS, NIMBE, Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire, 91191 Gif-sur-Yvette, France; (S.P.); (J.-P.R.)
| | - Jean-Christophe Aude
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (G.K.); (Y.B.); (S.C.); (J.L.)
| |
Collapse
|
18
|
Gobeaux F, Bizeau J, Samson F, Marichal L, Grillo I, Wien F, Yesylevsky SO, Ramseyer C, Rouquette M, Lepêtre-Mouelhi S, Desmaële D, Couvreur P, Guenoun P, Renault JP, Testard F. Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. NANOSCALE 2020; 12:2793-2809. [PMID: 31961354 DOI: 10.1039/c9nr06485k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the field of nanomedicine, nanostructured nanoparticles (NPs) made of self-assembling prodrugs emerged in the recent years with promising properties. In particular, squalene-based drug nanoparticles have already shown their efficiency through in vivo experiments. However, a complete pattern of their stability and interactions in the blood stream is still lacking. In this work we assess the behavior of squalene-adenosine (SQAd) nanoparticles - whose neuroprotective effect has already been demonstrated in murine models - in the presence of fetal bovine serum (FBS) and of bovine serum albumin (BSA), the main protein of blood plasma. Extensive physicochemical characterizations were performed using Small Angle Neutron Scattering (SANS), cryogenic transmission electron microscopy (Cryo-TEM), circular dichroism (CD), steady-state fluorescence spectroscopy (SSFS) and isothermal titration calorimetry (ITC) as well as in silico by means of ensemble docking simulations with human serum albumin (HSA). Significant changes in the colloidal stability of the nanoparticles in the presence of serum albumin were observed. SANS, CD and SSFS analyses demonstrated an interaction between SQAd and BSA, with a partial disassembly of the nanoparticles in the presence of BSA and the formation of a complex between SQAd and BSA. The interaction free energy of SQAd nanoparticles with BSA derived from ITC experiments, is about -8 kcal mol-1 which is further supported in silico by ensemble docking simulations. Overall, our results show that serum albumin partially disassembles SQAd nanoparticles by extracting individual SQAd monomers from them. As a consequence, the SQAd nanoparticles would act as a circulating reservoir in the blood stream. The approach developed in this study could be extended to other soft organic nanoparticles.
Collapse
Affiliation(s)
- Frédéric Gobeaux
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Joëlle Bizeau
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Firmin Samson
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Laurent Marichal
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France. and I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle Grillo
- Institut Laue Langevin, 71 avenue des martyrs, B.P. 156, 38042 Grenoble Cedex 9, France
| | | | - Semen O Yesylevsky
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Marie Rouquette
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Sinda Lepêtre-Mouelhi
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Didier Desmaële
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Patrick Guenoun
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Jean-Philippe Renault
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Fabienne Testard
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
19
|
Marichal L, Giraudon-Colas G, Cousin F, Thill A, Labarre J, Boulard Y, Aude JC, Pin S, Renault JP. Protein-Nanoparticle Interactions: What Are the Protein-Corona Thickness and Organization? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10831-10837. [PMID: 31333024 DOI: 10.1021/acs.langmuir.9b01373] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein adsorption on a surface is generally evaluated in terms of the evolution of the proteins' structures and functions. However, when the surface is that of a nanoparticle, the protein corona formed around it possesses a particular supramolecular structure that gives a "biological identity" to the new object. Little is known about the actual shape of the protein corona. Here, the protein corona formed by the adsorption of model proteins (myoglobin and hemoglobin) on silica nanoparticles was studied. Small-angle neutron scattering and oxygenation studies were combined to assess both the structural and functional impacts of the adsorption on proteins. Large differences in the oxygenation properties could be found while no significant global shape changes were seen after adsorption. Moreover, the structural study showed that the adsorbed proteins form an organized yet discontinuous monolayer around the nanoparticles.
Collapse
Affiliation(s)
| | | | - Fabrice Cousin
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS , Université Paris-Saclay, CEA-Saclay , Gif-sur-Yvette 91191 , France
| | | | | | | | | | | | | |
Collapse
|
20
|
Manipulating hemoglobin oxygenation using silica nanoparticles: a novel prospect for artificial oxygen carriers. Blood Adv 2019; 2:90-94. [PMID: 29365316 DOI: 10.1182/bloodadvances.2017012153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022] Open
Abstract
Recently, nanoparticles have attracted much attention as new scaffolds for hemoglobin-based oxygen carriers (HBOCs). Indeed, the development of bionanotechnology paves the way for the rational design of blood substitutes, providing that the interaction between the nanoparticles and hemoglobin at a molecular scale and its effect on the oxygenation properties of hemoglobin are finely controlled. Here, we show that human hemoglobin has a high affinity for silica nanoparticles, leading to the adsorption of hemoglobin tetramers on the surface. The adsorption process results in a remarkable retaining of the oxygenation properties of human adult hemoglobin and sickle cell hemoglobin, associated with an increase of the oxygen affinity. The cooperative oxygen binding exhibited by adsorbed hemoglobin and the comparison with the oxygenation properties of diaspirin cross-linked hemoglobin confirmed the preservation of the tetrameric structure of hemoglobin loaded on silica nanoparticles. Our results show that silica nanoparticles can act as an effector for human native and mutant hemoglobin. Manipulating hemoglobin oxygenation using nanoparticles opens the way to the design of novel HBOCs.
Collapse
|
21
|
Eguílaz M, Villalonga R, Rivas G. Electrochemical biointerfaces based on carbon nanotubes-mesoporous silica hybrid material: Bioelectrocatalysis of hemoglobin and biosensing applications. Biosens Bioelectron 2018; 111:144-151. [DOI: 10.1016/j.bios.2018.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023]
|
22
|
Kumar S, Yadav I, Aswal VK, Kohlbrecher J. Structure and Interaction of Nanoparticle-Protein Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5679-5695. [PMID: 29672062 DOI: 10.1021/acs.langmuir.8b00110] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The integration of nanoparticles with proteins is of high scientific interest due to the amazing potential displayed by their complexes, combining the nanoscale properties of nanoparticles with the specific architectures and functions of the protein molecules. The nanoparticle-protein complexes, in particular, are useful in the emerging field of nanobiotechnology (nanomedicine, drug delivery, and biosensors) as the nanoparticles having sizes comparable to that of living cells can access and operate within the cell. The understanding of nanoparticle interaction with different protein molecules is a prerequisite for such applications. The interaction of the two components has been shown to result in conformational changes in proteins and to affect the surface properties and colloidal stability of the nanoparticles. In this feature article, our recent studies exploring the driving interactions in nanoparticle-protein systems and resultant structures are presented. The anionic colloidal silica nanoparticles and two globular charged proteins [lysozyme and bovine serum albumin (BSA)] have been investigated as model systems. The adsorption behavior of the two proteins on nanoparticles is found to be completely different, but they both give rise to similar phase transformation from one phase to two phase in respective nanoparticle-protein systems. The presence of protein induces the short-range and long-range attraction between the nanoparticles with lysozyme and BSA, respectively. The observed phase behavior and its dependence on various physiochemical parameters (e.g., nanoparticle size, ionic strength, and solution pH) have been explained in terms of underlying interactions.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 , India
| | - Indresh Yadav
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 , India
- Homi Bhabha National Institute , Mumbai 400 094 , India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 , India
- Homi Bhabha National Institute , Mumbai 400 094 , India
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging , Paul Scherrer Institut , CH-5232 PSI Villigen , Switzerland
| |
Collapse
|
23
|
Zhang H, Wang W, Li M, Lu Z, Liu K, Wang Y, Wang D. Affinity functionalization of PVA-co-PE nanofibrous membrane with Ni(ii)-chelated ligand for bovine hemoglobin adsorption. NEW J CHEM 2018. [DOI: 10.1039/c8nj00064f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni(ii)-Chelated PVA-co-PE nanofibrous membrane can be prepared easily and this study provides an exploratory research for the large-scale purification of BHb.
Collapse
Affiliation(s)
- Hao Zhang
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
| | - Wenwen Wang
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Mufang Li
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Zhentan Lu
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Ke Liu
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Yuedan Wang
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Dong Wang
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| |
Collapse
|
24
|
Jia Y, Xu X, Ou J, Liu X. Solid-Phase Extraction of Hemoglobin from Human Whole Blood with a Coordination-Polymer-Derived Composite Material Based on ZnO and Mesoporous Carbon. Chemistry 2017; 23:16026-16033. [DOI: 10.1002/chem.201703232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Jia
- Department of Chemistry; College of Science; Northeast University; Shenyang 110819 P.R. China
| | - Xinxin Xu
- Department of Chemistry; College of Science; Northeast University; Shenyang 110819 P.R. China
| | - Jinzhao Ou
- Department of Chemistry; College of Science; Northeast University; Shenyang 110819 P.R. China
| | - Xiaoxia Liu
- Department of Chemistry; College of Science; Northeast University; Shenyang 110819 P.R. China
| |
Collapse
|
25
|
Srinivasu BY, Bose B, Mitra G, Kurpad AV, Mandal AK. Adsorption Induced Changes of Human Hemoglobin on Ferric Pyrophosphate Nanoparticle Surface Probed by Isotope Exchange Mass Spectrometry: An Implication on Structure-Function Correlation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8032-8042. [PMID: 28727441 DOI: 10.1021/acs.langmuir.7b01905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In general, proteins in the biological system interact with nanoparticles (NPs) via adsorption on the particle surface. Understanding the adsorption at the molecular level is crucial to explore NP-protein interactions. The increasing concerns about the risk to human health on NP exposure have been explored through the discovery of a handful protein biomarkers and biochemical analysis. However, detailed information on structural perturbation and associated functional changes of proteins on interaction with NPs is limited. Erythrocytes (red blood cells) are devoid of defense mechanism of protecting NP penetration through endocytosis. Therefore, it is important to investigate the interaction of erythrocyte proteins with NPs. Hemoglobin, the most abundant protein of human erythrocyte, is a tetrameric molecule consisting of α- and β-globin chains in duplicate. In the present study, we have used hemoglobin as a model system to investigate NP-protein interaction with ferric pyrophosphate NPs [NP-Fe4(P2O7)3]. We report the formation of a bioconjugate of hemoglobin upon adsorption to NP-Fe4(P2O7)3 surface. Analysis of the bioconjugate indicated that Fe3+ ion of NP-Fe4(P2O7)3 contributed in the bioconjugate formation. Using hydrogen/deuterium exchange based mass spectrometry, it was observed that the amino termini of α- and β-globin chains of hemoglobin were involved in the adsorption on NP surface whereas the carboxy termini of both chains became more flexible in its conformation compared to the respective regions of the normal hemoglobin. Circular dichroism spectra of desorbed hemoglobin indicated an adsorption induced localized structural change in the protein molecule. The formation of bioconjugate led to functional alteration of hemoglobin, as probed by oxygen binding assay. Thus, we hypothesize that the large amount of energy released upon adsorption of hemoglobin to NP surface might be the fundamental cause of structural perturbation of human hemoglobin and subsequent formation of the bioconjugate with an altered function.
Collapse
Affiliation(s)
- Bindu Y Srinivasu
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences , 100 ft road, Koramangala, Bangalore 560034, India
| | - Beena Bose
- Department of Physiology, St John's Medical College, and Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences , 100 ft road, Koramangala, Bangalore 560034, India
| | - Gopa Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences , 100 ft road, Koramangala, Bangalore 560034, India
| | - Anura V Kurpad
- Department of Physiology, St John's Medical College, and Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences , 100 ft road, Koramangala, Bangalore 560034, India
| | - Amit K Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences , 100 ft road, Koramangala, Bangalore 560034, India
| |
Collapse
|