1
|
Taylor JM, Gerton KH, Conboy JC. Does vitamin E behave like cholesterol? An examination of vitamin E's effects on phospholipid membrane structure and dynamics through sum-frequency vibrational spectroscopy. Biophys J 2025; 124:1226-1244. [PMID: 40055893 DOI: 10.1016/j.bpj.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025] Open
Abstract
Vitamin E (VE) has historically been described as an antioxidant and its roles in radical species scavenging and nutrition are well studied. VE has been proposed to have secondary roles within the membrane but these roles are not as well characterized, with contradictory results emerging throughout the literature. Due to similar structural motifs, comparisons between VE and cholesterol (CHO), another membrane component, have been commonly made. Despite these comparisons showing that phospholipid-CHO and phospholipid-VE interactions may behave similarly, VE's potential influence on phospholipid flip-flop specifically is not as well studied when compared with CHO's influence. Here, we show through the use of sum-frequency vibrational spectroscopy that VE at both biological (0.5-1.5 mol %) and supraphysiological (2.5-5 mol %) concentrations shows similar characteristics to that of CHO in its ability to induce alkyl chain ordering of phospholipids within planar supported lipid bilayers of the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. In addition to chain ordering, the introduction of VE accelerates phospholipid flip-flop by approximately three times (0.5-2.5 mol %) with rates approaching an order-of-magnitude increase (5 mol %) at high VE content. The increase in phospholipid flip-flop rates is attributed to the decrease in the molar compression modulus of the membrane. These results suggest that VE influences the ordering and compressibility of the membrane similar to CHO.
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Kai H Gerton
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
2
|
Peñalva DA, Munafó JP, Antollini SS. Cholesterol´s role in membrane organization and nicotinic acetylcholine receptor function: Implications for aging and Alzheimer's disease. Chem Phys Lipids 2025; 269:105484. [PMID: 40147619 DOI: 10.1016/j.chemphyslip.2025.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Biological membranes are complex entities composed of various molecules exhibiting lateral and transbilayer lipid asymmetries, along with a selective spatial distribution of different membrane proteins. This dynamic orchestration is crucial for proper physiological functions, undergoes changes with aging, and is disturbed in several neurological disorders. In this review, we analyze the impact of disruption in this equilibrium on physiological aging and the onset of pathological conditions. Alzheimer´s disease (AD) is a multifactorial neurodegenerative disorder in the elderly, characterized by the increased presence of the Aβ peptide, which supports the amyloid hypothesis of the disease. However, AD also involves a progressive loss of cholinergic innervation, leading to the cholinergic hypothesis of the disease. Nicotinic acetylcholine receptors (nAChRs) are transmembrane proteins, and Aβ peptides, their oligomeric and fibrillar species, which increase in hydrophobicity as they develop, interact with membranes. Therefore, a membrane hypothesis of the disease emerges as a bridge between the other two. Here, we discuss the impact of the membrane environment, through direct or indirect mechanisms, on cholinergic signaling and Aβ formation and subsequent incorporation into the membrane, with a special focus on the crucial role of cholesterol in these processes.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Oliveira IS, Pinheiro GX, Sa MLB, Gurgel PHLO, Pizzol SU, Itri R, Henriques VB, Enoki TA. The Importance of Bilayer Asymmetry in Biological Membranes: Insights from Model Membranes. MEMBRANES 2025; 15:79. [PMID: 40137031 PMCID: PMC11943618 DOI: 10.3390/membranes15030079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
This mini-review intends to highlight the importance of bilayer asymmetry. Biological membranes are complex structures that are a physical barrier separating the external environment from the cellular content. This complex bilayer comprises an extensive lipid repertory, suggesting that the different lipid structures might play a role in the membrane. Interestingly, this vast repertory of lipids is asymmetrically distributed between leaflets that form the lipid bilayer. Here, we discuss the properties of the plasma membrane from the perspective of experimental model membranes, consisting of simplified and controlled in vitro systems. We summarize some crucial features of the exoplasmic (outer) and cytoplasmic (inner) leaflets observed through investigations using symmetric and asymmetric membranes. Symmetric model membranes for the exoplasmic leaflet have a unique lipid composition that might form a coexistence of phases, namely the liquid disordered and liquid order phases. These phase domains may appear in different sizes and shapes depending on lipid composition and lipid-lipid interactions. In contrast, symmetric model membranes for the cytoplasmic leaflet form a fluid phase. We discuss the outcomes reported in the literature for asymmetric bilayers, which vary according to lipid compositions and, consequently, reflect different intra- and inter-leaflet interactions. Interestingly, the asymmetric bilayer could show induced domains in the inner leaflet, or it could decrease the tendency of the outer leaflet to phase separation. If cells regulate the lipid composition of the plasma membrane, they can adjust the existence and sizes of the domains by tuning the lipid composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thais A. Enoki
- Institute of Physics, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| |
Collapse
|
4
|
Dziura D, Dib IJ, Gbadamosi O, Castillo SR, Dziura M, Murphy RP, Kelley EG, Marquardt D. Determining the rates of α-tocopherol movement in DPPC vesicles using small-angle neutron scattering. Biophys J 2025; 124:590-596. [PMID: 39827369 PMCID: PMC11900154 DOI: 10.1016/j.bpj.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
α-tocopherol (αtoc; vitamin E) is an essential nutrient sufficiently acquired through a balanced diet. This fat-soluble vitamin is most known for its antioxidative properties; however, its fundamental mechanism of action in cellular membranes remains unknown. To this end, we use time-resolved small-angle neutron scattering and a contrast matching scheme to determine the intervesicular exchange (kex) and intrabilayer flip-flop (kf) rates of αtoc in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine vesicles. Moreover, we investigate the role of vesicle concentration and various types of cyclodextrins in affecting these rates. For a 25 mg/mL sample concentration, it was determined that kex and kf were 1.35 ± 0.03 × 10-3 and 0.54 ± 0.10 × 10-3 min-1, which represent half-lives of 513.4 ± 11.7 and 1285.1 ± 242.7 min, respectively. Differential scanning calorimetry confirmed the observed timescales of αtoc movement.
Collapse
Affiliation(s)
- Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Isabelle J Dib
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Omotayo Gbadamosi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Ryan P Murphy
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
5
|
Dutta A, Kumari M, Kashyap HK. Tracking Cholesterol Flip-Flop in Mammalian Plasma Membrane through Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1651-1663. [PMID: 39807660 DOI: 10.1021/acs.langmuir.4c03717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plasma membrane (PM) simulations at longer length and time scales at nearly atomistic resolution can provide invaluable insights into cell signaling, apoptosis, lipid trafficking, and lipid raft formation. We propose a coarse-grained (CG) model of a mammalian PM considering major lipid head groups distributed asymmetrically across the membrane bilayer and validate the model against bilayer structural properties from atomistic simulation. Using the proposed CG model, we identify a recurring pattern in the passive collective cholesterol transbilayer motion and study the individual cholesterol flip-flop events and associated pathways along with lateral ordering in the bilayer during a flip-flop event. We identify two discrete cholesterol flip-flop pathways: (i) a systematic rototranslational pathway and (ii) intraleaflet inversion followed by interleaflet translation (or reverse). We observe a periodic cholesterol enrichment in the exoplasmic leaflet of the PM bilayer and examine the underlying cholesterol-lipid affinities. We observe closer association between cholesterol and palmitoylsphingomyelin (PSM) lipid, relative to other lipids, and conclude that the cholesterol enrichment in the exoplasmic leaflet can be attributed to higher PSM content in that leaflet, together leading to formation of short-lived PSM-cholesterol-rich domains.
Collapse
Affiliation(s)
- Ayishwarya Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
6
|
Jani P, Colville MJ, Park S, Ha Y, Paszek MJ, Abbott NL. Influence of the glycocalyx on the size and mechanical properties of plasma membrane-derived vesicles. SOFT MATTER 2025; 21:463-475. [PMID: 39717887 PMCID: PMC11667464 DOI: 10.1039/d4sm01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Abstract
Recent studies have reported that the overexpression of MUC1 glycoproteins on cell surfaces changes the morphology of cell plasma membranes and increases the blebbing of vesicles from them, supporting the hypothesis that entropic forces exerted by MUC1 change the spontaneous curvature of cell membranes. However, how MUC1 is incorporated into and influences the size and biophysical properties of plasma-membrane-blebbed vesicles is not understood. Here we report single-vesicle-level characterization of giant plasma membrane vesicles (GPMVs) derived from cells overexpressing MUC1, revealing a 40× variation in MUC1 density between GPMVs from a single preparation and a strong correlation between GPMV size and MUC1 density. By dispersing GPMVs in aqueous liquid crystals (LCs), we show that the elasticity of the LC can be used to strain individual GPMVs into spindle-like shapes, consistent with the straining of fluid-like membranes. To quantify the influence of MUC1 on membrane mechanical properties, we analyze the shapes of strained GPMVs within a theoretical framework that integrates the effects of MUC1 density and GPMV size on strain. We measure the spontaneous curvature of GPMV membranes to be 2-10 μm-1 and weakly influenced by the 40× variation in MUC1 density, a conclusion we validate by performing independent experiments in which MUC1 is enzymatically removed from GPMVs. Overall, our study advances the understanding of heterogeneity in size and MUC1 density in GPMVs, and establishes single-vesicle-level methods for characterization of mechanical properties within a heterogeneous population of GPMVs. Furthermore, our measurements highlight differences between membrane properties of GPMVs and their parent cells.
Collapse
Affiliation(s)
- Purvil Jani
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Marshall J Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Sangwoo Park
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Youlim Ha
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nicholas L Abbott
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Zhu Y, Porcar L, Ravula T, Batchu KC, Lavoie TL, Liu Y, Perez-Salas U. Unexpected asymmetric distribution of cholesterol and phospholipids in equilibrium model membranes. Biophys J 2024; 123:3923-3934. [PMID: 39390746 PMCID: PMC11617633 DOI: 10.1016/j.bpj.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/21/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Lipid compositional asymmetry across the leaflets of the plasma membrane is an ubiquitous feature in eukaryotic cells. How this asymmetry is maintained is thought to be primarily controlled by active transport of lipids between leaflets. This strategy is facilitated by the fact that long-tail phospholipids and sphingolipids diffuse through the lipid bilayer slowly-taking many hours or days. However, a lipid like cholesterol-which is the most abundant lipid in the plasma membrane of animal cells-has been harder to pinpoint in terms of its favored side. In this work we show that, when a saturated lipid is added to a mix of the unsaturated lipid palmitoyl-oleoyl-phosphatidylcholine (POPC) and cholesterol, both cholesterol and the long-tail phospholipids organize asymmetrically across the membrane's leaflets naturally. In these extruded unilamellar vesicles, most cholesterol as well as the saturated lipid-dipalmitoylphosphatidylcholine or sphingomyelin-segregated to the inner leaflet while POPC preferentially localized in the outer leaflet. This asymmetric arrangement generated a slight phospholipid number imbalance favoring the outer leaflet and thus opposite to where cholesterol and the saturated lipids preferentially partitioned. These results were obtained using magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with small-angle neutron scattering (SANS) using isotope labeling to differentiate lipid species. We suggest that sidedness in membranes can be driven by thermodynamic processes. In addition, our MAS NMR results show that the lower bound for cholesterol's flip-flop half-time at 45°C is 10 ms, which is at least two orders of magnitude slower than current MD simulations predict. This result stands in stark contrast to previous work that suggested that cholesterol's flip-flop half-time at 37°C has an upper bound of 10 ms.
Collapse
Affiliation(s)
- Yuli Zhu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Lionel Porcar
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Thirupathi Ravula
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Krishna C Batchu
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Tera L Lavoie
- Advanced Electron Microscopy, University of Chicago, Chicago, Illinois
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Ursula Perez-Salas
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
8
|
Sharma VK, Srinivasan H, Gupta J, Mitra S. Lipid lateral diffusion: mechanisms and modulators. SOFT MATTER 2024; 20:7763-7796. [PMID: 39315599 DOI: 10.1039/d4sm00597j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The lateral diffusion of lipids within a membrane is of paramount importance, serving as a central mechanism in numerous physiological processes including cell signaling, membrane trafficking, protein activity regulation, and energy transduction pathways. This review offers a comprehensive overview of lateral lipid diffusion in model biomembrane systems explored through the lens of neutron scattering techniques. We examine diverse models of lateral diffusion and explore the various factors influencing this fundamental process in membrane dynamics. Additionally, we offer a thorough summary of how different membrane-active compounds, including drugs, antioxidants, stimulants, and membrane proteins, affect lipid lateral diffusion. Our analysis unveils the intricate interplay between these additives and membranes, shedding light on their dynamic interactions. We elucidate that this interaction is governed by a complex combination of multiple factors including the physical state and charge of the membrane, the concentration of additives, the molecular architecture of the compounds, and their spatial distribution within the membrane. In conclusion, we briefly discuss the future directions and areas requiring further investigation in the realm of lateral lipid diffusion, highlighting the need to study more realistic membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
9
|
Taylor JM, Conboy JC. Issues with lipid probes in flip-flop measurements: A comparative study using sum-frequency vibrational spectroscopy and second-harmonic generation. J Chem Phys 2024; 161:085104. [PMID: 39185850 DOI: 10.1063/5.0226075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Fluorescent lipid probes such as 1-palmitoyl-2-(6-[7-nitro-2-1,3-benzoxadiazol-4-yl]amino-hexanoyl)-sn-glycero-3-phosphocholine (C6 NBD-PC) have been used extensively to study the kinetics of lipid flip-flop. However, the efficacy of these probes as reliable reporters of native lipid translocation has never been tested. In this study, sum-frequency vibrational spectroscopy (SFVS) was used to measure the kinetics of C6 NBD-PC lipid flip-flop and the flip-flop of native lipids in planar supported lipid bilayers. C6 NBD-PC was investigated at concentrations of 1 and 3 mol. % in both chain-matched 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and chain-mismatched 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) to assess the ability of C6 NBD-PC to mimic the behavior of the surrounding matrix lipids. It was observed that C6 NBD-PC exhibited faster flip-flop kinetics compared to the native lipids in both DPPC and DSPC matrices, with notably accelerated rates in the chain-mismatched DSPC system. SFVS was also used to measure the acyl chain orientation and gauche content of C6 NBD-PC in both DPPC and DSPC membranes. In the DSPC matrix (chain mismatched), C6 NBD-PC was more disordered in terms of both gauche content and acyl tilt, whereas it maintained an orientation similar to that of the native lipids in the DPPC matrix (chain matched). In addition, the flip-flop kinetics of C6 NBD-PC were also measured using second-harmonic generation (SHG) spectroscopy, by probing the motion of the NBD chromophore directly. The flip-flop kinetics measured by SHG were consistent with those obtained from SFVS. This study also marks the first instance of phospholipid flip-flop kinetics being measured via SHG. The results of this study clearly demonstrate that C6 NBD-PC does not adequately mimic the behavior of native lipids within a membrane. These findings also highlight the significant impact of the lipid matrix on the flip-flop behavior of the fluorescently labeled lipid, C6 NBD-PC.
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
10
|
Reagle T, Xie Y, Li Z, Carnero W, Baumgart T. Methyl-β-cyclodextrin asymmetrically extracts phospholipid from bilayers, granting tunable control over differential stress in lipid vesicles. SOFT MATTER 2024; 20:4291-4307. [PMID: 38758097 PMCID: PMC11135146 DOI: 10.1039/d3sm01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Lipid asymmetry - that is, a nonuniform lipid distribution between the leaflets of a bilayer - is a ubiquitous feature of biomembranes and is implicated in several cellular phenomena. Differential tension - that is, unequal lateral monolayer tensions comparing the leaflets of a bilayer- is closely associated with lipid asymmetry underlying these varied roles. Because differential tension is not directly measurable in combination with the fact that common methods to adjust this quantity grant only semi-quantitative control over it, a detailed understanding of lipid asymmetry and differential tension are impeded. To overcome these challenges, we leveraged reversible complexation of phospholipid by methyl-β-cyclodextrin (mbCD) to tune the direction and magnitude of lipid asymmetry in synthetic vesicles. Lipid asymmetry generated in our study induced (i) vesicle shape changes and (ii) gel-liquid phase coexistence in 1-component vesicles. By applying mass-action considerations to interpret our findings, we discuss how this approach provides access to phospholipid thermodynamic potentials in bilayers containing lipid asymmetry (which are coupled to the differential tension of a bilayer). Because lipid asymmetry yielded by our approach is (i) tunable and (ii) maintained over minute to hour timescales, we anticipate that this approach will be a valuable addition to the experimental toolbox for systematic investigation into the biophysical role(s) of lipid asymmetry (and differential tension).
Collapse
Affiliation(s)
- Tyler Reagle
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Yuxin Xie
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Zheyuan Li
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Warner Carnero
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Tobias Baumgart
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Taylor JM, Conboy JC. Sum-frequency vibrational spectroscopy, a tutorial: Applications for the study of lipid membrane structure and dynamics. Biointerphases 2024; 19:031201. [PMID: 38738942 DOI: 10.1116/6.0003594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| |
Collapse
|
12
|
Pabst G, Keller S. Exploring membrane asymmetry and its effects on membrane proteins. Trends Biochem Sci 2024; 49:333-345. [PMID: 38355393 DOI: 10.1016/j.tibs.2024.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Plasma membranes utilize free energy to maintain highly asymmetric, non-equilibrium distributions of lipids and proteins between their two leaflets. In this review we discuss recent progress in quantitative research enabled by using compositionally controlled asymmetric model membranes. Both experimental and computational studies have shed light on the nuanced mechanisms that govern the structural and dynamic coupling between compositionally distinct bilayer leaflets. This coupling can increase the membrane bending rigidity and induce order - or lipid domains - across the membrane. Furthermore, emerging evidence indicates that integral membrane proteins not only respond to asymmetric lipid distributions but also exhibit intriguing asymmetric properties themselves. We propose strategies to advance experimental research, aiming for a deeper, quantitative understanding of membrane asymmetry, which carries profound implications for cellular physiology.
Collapse
Affiliation(s)
- Georg Pabst
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| | - Sandro Keller
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
13
|
Bodosa J, Pane AJ, Klauda JB. Modeling asymmetric cell membranes at all-atom resolution. Methods Enzymol 2024; 701:157-174. [PMID: 39025571 DOI: 10.1016/bs.mie.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Molecular dynamics (MD) simulations are a useful tool when studying the properties of membranes as they allow for a molecular view of lipid interactions with proteins, nucleic acids, or small molecules. While model membranes are usually symmetric in their lipid composition between leaflets and include a small number of lipid components, physiological membranes are highly complex and vary in the level of asymmetry. Simulation studies have shown that changes in leaflet asymmetry can alter the properties of a membrane. It is therefore necessary to carefully build asymmetric membranes to accurately simulate membranes. This chapter carefully describes the different methods for building asymmetric membranes and the advantages/disadvantages of each method. The simplest methods involve building a membrane with either an equal number of lipids per leaflet or an equal initial surface area (SA) estimated by the area per lipid. More detailed methods include combining two symmetric membranes of equal SA or altering an asymmetric membrane and adjusting the number of lipids after equilibration to minimize an observable such as differential stress (0-DS). More complex methods that require specific simulation software are also briefly described. The challenges and assumptions are listed for each method which should help guide the researcher to choose the best method for their unique MD simulation of an asymmetric membrane.
Collapse
Affiliation(s)
- Jessica Bodosa
- Institute for Physical Science and Technology, Biophysics Program, University of Maryland, College Park, MD, United States
| | - Anthony J Pane
- Institute for Physical Science and Technology, Biophysics Program, University of Maryland, College Park, MD, United States
| | - Jeffery B Klauda
- Institute for Physical Science and Technology, Biophysics Program, University of Maryland, College Park, MD, United States; Department of Chemical and Biomolecular Engineering, College Park, MD, United States.
| |
Collapse
|
14
|
Dziura D, Dziura M, Marquardt D. Studying lipid flip-flop in asymmetric liposomes using 1H NMR and TR-SANS. Methods Enzymol 2024; 700:295-328. [PMID: 38971604 DOI: 10.1016/bs.mie.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The specific spatial and temporal distribution of lipids in membranes play a crucial role in determining the biochemical and biophysical properties of the system. In nature, the asymmetric distribution of lipids is a dynamic process with ATP-dependent lipid transporters maintaining asymmetry, and passive transbilayer diffusion, that is, flip-flop, counteracting it. In this chapter, two probe-free techniques, 1H NMR and time-resolved small angle neutron scattering, are described in detail as methods of investigating lipid flip-flop rates in synthetic liposomes that have been generated with an asymmetric bilayer composition.
Collapse
Affiliation(s)
- Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada; Department of Physics, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
15
|
Leomil FC, Stephan M, Pramanik S, Riske KA, Dimova R. Bilayer Charge Asymmetry and Oil Residues Destabilize Membranes upon Poration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4719-4731. [PMID: 38373285 PMCID: PMC10919074 DOI: 10.1021/acs.langmuir.3c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
Transmembrane asymmetry is ubiquitous in cells, particularly with respect to lipids, where charged lipids are mainly restricted to one monolayer. We investigate the influence of anionic lipid asymmetry on the stability of giant unilamellar vesicles (GUVs), minimal plasma membrane models. To quantify asymmetry, we apply the fluorescence quenching assay, which is often difficult to reproduce, and caution in handling the quencher is generally underestimated. We first optimize this assay and then apply it to GUVs prepared with the inverted emulsion transfer protocol by using increasing fractions of anionic lipids restricted to one leaflet. This protocol is found to produce highly asymmetric bilayers but with ∼20% interleaflet mixing. To probe the stability of asymmetric versus symmetric membranes, we expose the GUVs to porating electric pulses and monitor the fraction of destabilized vesicles. The pulses open macropores, and the GUVs either completely recover or exhibit leakage or bursting/collapse. Residual oil destabilizes porated membranes, and destabilization is even more pronounced in asymmetrically charged membranes. This is corroborated by the measured pore edge tension, which is also found to decrease with increasing charge asymmetry. Using GUVs with imposed transmembrane pH asymmetry, we confirm that poration-triggered destabilization does not depend on the approach used to generate membrane asymmetry.
Collapse
Affiliation(s)
- Fernanda
S. C. Leomil
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04039-032, Brazil
| | - Mareike Stephan
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Shreya Pramanik
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Karin A. Riske
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04039-032, Brazil
| | - Rumiana Dimova
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| |
Collapse
|
16
|
Kumar K, Arnold AA, Gauthier R, Mamone M, Paquin JF, Warschawski DE, Marcotte I. 19F solid-state NMR approaches to probe antimicrobial peptide interactions with membranes in whole cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184269. [PMID: 38176532 DOI: 10.1016/j.bbamem.2023.184269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
To address the global problem of bacterial antibiotic resistance, antimicrobial peptides (AMPs) are considered promising therapeutic candidates due to their broad-spectrum and membrane-lytic activity. As preferential interactions with bacteria are crucial, it is equally important to investigate and understand their impact on eukaryotic cells. In this study, we employed 19F solid-state nuclear magnetic resonance (ssNMR) as a novel approach to examine the interaction of AMPs with whole red blood cells (RBCs). We used RBC ghosts (devoid of hemoglobin) and developed a protocol to label their lipid membranes with palmitic acid (PA) monofluorinated at carbon positions 4, 8, or 14 on the acyl chain, allowing us to probe different locations in model and intact RBC ghost membranes. Our work revealed that changes in the 19F chemical shift anisotropy, monitored through a CF bond order parameter (SCF), can provide insights into lipid bilayer dynamics. This information was also obtained using magic-angle spinning 19F ssNMR spectra with and without 1H decoupling, by studying alterations in the second spectral moment (M2) as well as the 19F isotropic chemical shift, linewidth, T1, and T2 relaxation times. The appearance of an additional isotropic peak with a smaller chemical shift anisotropy, a narrower linewidth, and a shorter T1, induced by the AMP caerin 1.1, supports the presence of high-curvature regions in RBCs indicative of pore formation, analogous to its antimicrobial mechanism. In summary, the straightforward incorporation of monofluorinated FAs and rapid signal acquisition offer promising avenues for the study of whole cells using 19F ssNMR.
Collapse
Affiliation(s)
- Kiran Kumar
- Departement of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Alexandre A Arnold
- Departement of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Raphaël Gauthier
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Marius Mamone
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Dror E Warschawski
- Departement of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada; Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École normale supérieure, PSL University, 75005 Paris, France.
| | - Isabelle Marcotte
- Departement of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada.
| |
Collapse
|
17
|
Pašalić L, Maleš P, Čikoš A, Pem B, Bakarić D. The rise of FTIR spectroscopy in the characterization of asymmetric lipid membranes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123488. [PMID: 37813090 DOI: 10.1016/j.saa.2023.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
In contrast to symmetric unilamellar liposomes (sLUVs) prepared from a mixture of different lipids, asymmetric ones (aLUVs) with different lipid composition in the inner and outer membrane leaflets are more suitable model systems of eukaryotic plasma membranes. However, apart from the challenging preparation of asymmetric liposomes and small amounts of obtained asymmetric unilamellar liposomes (aLUVs), a major drawback is the qualitative characterization of asymmetry, as each of the techniques used so far has certain limitations. In this regard, we prepared aLUVs composed dominantly of DPPC(out)/DPPS(in) lipids and, along with 1H NMR and DSC characterization, we showed for the first time how FTIR spectroscopy can be used in the presence of (a)symmetry between DPPC/DPPS lipid bilayers. Using second derivative FTIR spectra we demonstrated not only that the hydration of lipids glycerol backbone and choline moiety of DPPC differs in s/aLUVs, but in addition that the lateral interactions between hydrocarbon chains during the phase change display different trend in s/aLUVs. Molecular dynamics simulations confirmed different chain ordering and packing between s/a bilayers, with a significant influence of temperature, i.e. membrane phase.
Collapse
Affiliation(s)
- Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ana Čikoš
- The Centre for Nuclear Magnetic Resonance (NMR), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
18
|
Gupta J, Sharma VK, Srinivasan H, Bhatt H, Sakai VG, Mukhopadhyay R, Mitra S. Modulation of Phase Behavior and Microscopic Dynamics in Cationic Vesicles by 1-Decyl-3-methylimidazolium Bromide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:504-518. [PMID: 38126298 DOI: 10.1021/acs.langmuir.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Synthetic cationic lipids have garnered significant attention as promising candidates for gene/DNA transfection in therapeutic applications. The phase behavior of the vesicles formed by these lipids is intriguing, revealing intricate connections to the structure and dynamics of the membrane. These phenomena emerge from the complex interplay between hydrophobic and electrostatic interactions of the lipids. In this study, we explore the impact of an ionic liquid-based surfactant, 1-decyl-3-methylimidazolium bromide (DMIM[Br]), on the structural, dynamical, and phase behavior of cationic dihexadecyldimethylammonium bromide (DHDAB) vesicles. Our investigations indicate that the addition of DMIM[Br] increases the vesicle size while thinning the membrane. Further, DMIM[Br] also induces substantial changes in the membrane phase behavior. At 10 and 25 mol %, DMIM[Br] eliminates the pre-transition from coagel to intermediate crystalline (IC) phase and decreases the onset temperature of the main phase transition to the fluid phase. In the cooling cycle, the addition of DMIM[Br] further induces the formation of an intermediate gel phase. This behavior is reminiscent of the non-synchronous ordering observed in the DODAB membrane, a longer-chain counterpart of DHDAB. Interestingly, at 40 mol % of DMIM[Br], the formation of the intermediate gel phase is largely suppressed. Neutron scattering data provide evidence that the addition of DMIM[Br] enhances lipid mobility in coagel and fluid phases, suggesting that DMIM[Br] acts as a plasticizer, enhancing membrane fluidity across all of the phases. Our findings infer that DMIM[Br] modulates the membrane's phase behavior and fluidity, two essential ingredients for the efficient transport of cargo, by controlling the balance of electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Himal Bhatt
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
19
|
Doktorova M, Levental I, Heberle FA. Seeing the Membrane from Both Sides Now: Lipid Asymmetry and Its Strange Consequences. Cold Spring Harb Perspect Biol 2023; 15:a041393. [PMID: 37604588 PMCID: PMC10691478 DOI: 10.1101/cshperspect.a041393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Almost all biomembranes are constructed as lipid bilayers and, in almost all of these, the two opposing monolayers (leaflets) have distinct lipid compositions. This lipid asymmetry arises through the concerted action of a suite of energy-dependent enzymes that maintain living bilayers in a far-from-equilibrium steady-state. Recent discoveries reveal that lipid compositional asymmetry imparts biophysical asymmetries and that this dualistic organization may have major consequences for cellular physiology. Importantly, while transbilayer asymmetry appears to be an essential, near-ubiquitous characteristic of biological membranes, it has been challenging to reproduce in reconstituted or synthetic systems. Although recent methodological developments have overcome some critical challenges, it remains difficult to extrapolate results from available models to biological systems. Concurrently, there are few experimental approaches for targeted, controlled manipulation of lipid asymmetry in living cells. Thus, the biophysical and functional consequences of membrane asymmetry remain almost wholly unexplored. This perspective summarizes the current state of knowledge and highlights emerging themes that are beginning to make inroads into the fundamental question of why life tends toward asymmetry in its bilayers.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Pharmacology, University of Virginia, Center for Membrane and Cell Physiology, Charlottesville, Virginia 22908, USA
| | - Ilya Levental
- Department of Molecular Physiology and Pharmacology, University of Virginia, Center for Membrane and Cell Physiology, Charlottesville, Virginia 22908, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| |
Collapse
|
20
|
Enoki TA, Heberle FA. Experimentally determined leaflet-leaflet phase diagram of an asymmetric lipid bilayer. Proc Natl Acad Sci U S A 2023; 120:e2308723120. [PMID: 37939082 PMCID: PMC10655556 DOI: 10.1073/pnas.2308723120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
We have determined the partial leaflet-leaflet phase diagram of an asymmetric lipid bilayer at ambient temperature using asymmetric giant unilamellar vesicles (aGUVs). Symmetric GUVs with varying amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) were hemifused to a supported lipid bilayer (SLB) composed of DOPC, resulting in lipid exchange between their outer leaflets. The GUVs and SLB contained a red and green lipid fluorophore, respectively, thus enabling the use of confocal fluorescence imaging to determine both the extent of lipid exchange (quantified for individual vesicles by the loss of red intensity and gain of green intensity) and the presence or absence of phase separation in aGUVs. Consistent with previous reports, we found that hemifusion results in large variation in outer leaflet exchange for individual GUVs, which allowed us to interrogate the phase behavior at multiple points within the asymmetric composition space of the binary mixture. When initially symmetric GUVs showed coexisting gel and fluid domains, aGUVs with less than ~50% outer leaflet exchange were also phase-separated. In contrast, aGUVs with greater than 50% outer leaflet exchange were uniform and fluid. In some cases, we also observed three coexisting bilayer-spanning phases: two registered phases and an anti-registered phase. These results suggest that a relatively large unfavorable midplane interaction between ordered and disordered phases in opposing leaflets (i.e., a midplane surface tension) can overwhelm the driving force for lateral phase separation within one of the leaflets, resulting in an asymmetric bilayer with two uniformly mixed leaflets that is poised to phase-separate upon leaflet scrambling.
Collapse
Affiliation(s)
- Thais A. Enoki
- Department of Chemistry, University of Tennessee, Knoxville, TN37996
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | | |
Collapse
|
21
|
Watanabe H, Hanashima S, Yano Y, Yasuda T, Murata M. Passive Translocation of Phospholipids in Asymmetric Model Membranes: Solid-State 1H NMR Characterization of Flip-Flop Kinetics Using Deuterated Sphingomyelin and Phosphatidylcholine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15189-15199. [PMID: 37729012 DOI: 10.1021/acs.langmuir.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Although lateral and inter-leaflet lipid-lipid interactions in cell membranes play roles in maintaining asymmetric lipid bilayers, the molecular basis of these interactions is largely unknown. Here, we established a method to determine the distribution ratio of phospholipids between the outer and inner leaflets of asymmetric large unilamellar vesicles (aLUVs). The trimethylammonium group, (CH3)3N+, in the choline headgroup of N-palmitoyl-sphingomyelin (PSM) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) gave rise to a relatively sharp signal in magic-angle spinning solid-state 1H NMR (MAS-ss-1H NMR). PSM and DOPC have the same headgroup structure, but one phospholipid was selectively observed by deuterating the trimethylammonium group of the other phospholipid. The addition of Pr3+ to the medium surrounding aLUVs selectively shifted the chemical shift of the (CH3)3N+ group in the outer leaflet from that in the inner leaflet, which allowed estimation of the inter-leaflet distribution ratio of the unlabeled lipid in aLUVs. Using this method, we evaluated the translocation of PSM and DOPC between the outer and inner leaflets of the cholesterol-containing aLUVs, with PSM and DOPC mostly distributed in the outer and inner leaflets, respectively, immediately after aLUV preparation; their flip and flop rates were approximately 2.7 and 6.4 × 10-6 s-1, respectively. During the passive symmetrization of aLUVs, the lipid translocation rate was decreased due to changes in the membrane order, probably through the formation of the registered liquid-ordered domains. Comparison of the result with that of symmetric LUVs revealed that lipid asymmetry may not significantly affect the lipid translocation rates, while the lateral lipid-lipid interaction may be a dominant factor in lipid translocation under these conditions. These findings highlight the importance of considering the effects of lateral lipid interactions within the same leaflet on lipid flip-flop rates when evaluating the asymmetry of phospholipids in the cell membrane.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Shinya Hanashima
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan
| | - Yo Yano
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Tomokazu Yasuda
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Michio Murata
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
22
|
Herrera SA, Günther Pomorski T. Reconstitution of ATP-dependent lipid transporters: gaining insight into molecular characteristics, regulation, and mechanisms. Biosci Rep 2023; 43:BSR20221268. [PMID: 37417269 PMCID: PMC10412526 DOI: 10.1042/bsr20221268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid transporters play a crucial role in supporting essential cellular processes such as organelle assembly, vesicular trafficking, and lipid homeostasis by driving lipid transport across membranes. Cryo-electron microscopy has recently resolved the structures of several ATP-dependent lipid transporters, but functional characterization remains a major challenge. Although studies of detergent-purified proteins have advanced our understanding of these transporters, in vitro evidence for lipid transport is still limited to a few ATP-dependent lipid transporters. Reconstitution into model membranes, such as liposomes, is a suitable approach to study lipid transporters in vitro and to investigate their key molecular features. In this review, we discuss the current approaches for reconstituting ATP-driven lipid transporters into large liposomes and common techniques used to study lipid transport in proteoliposomes. We also highlight the existing knowledge on the regulatory mechanisms that modulate the activity of lipid transporters, and finally, we address the limitations of the current approaches and future perspectives in this field.
Collapse
Affiliation(s)
- Sara Abad Herrera
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
23
|
Chaisson EH, Heberle FA, Doktorova M. Building Asymmetric Lipid Bilayers for Molecular Dynamics Simulations: What Methods Exist and How to Choose One? MEMBRANES 2023; 13:629. [PMID: 37504995 PMCID: PMC10384462 DOI: 10.3390/membranes13070629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The compositional asymmetry of biological membranes has attracted significant attention over the last decade. Harboring more differences from symmetric membranes than previously appreciated, asymmetric bilayers have proven quite challenging to study with familiar concepts and techniques, leaving many unanswered questions about the reach of the asymmetry effects. One particular area of active research is the computational investigation of composition- and number-asymmetric lipid bilayers with molecular dynamics (MD) simulations. Offering a high level of detail into the organization and properties of the simulated systems, MD has emerged as an indispensable tool in the study of membrane asymmetry. However, the realization that results depend heavily on the protocol used for constructing the asymmetric bilayer models has sparked an ongoing debate about how to choose the most appropriate approach. Here we discuss the underlying source of the discrepant results and review the existing methods for creating asymmetric bilayers for MD simulations. Considering the available data, we argue that each method is well suited for specific applications and hence there is no single best approach. Instead, the choice of a construction protocol-and consequently, its perceived accuracy-must be based primarily on the scientific question that the simulations are designed to address.
Collapse
Affiliation(s)
- Emily H. Chaisson
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
24
|
Nguyen MHL, Dziura D, DiPasquale M, Castillo SR, Kelley EG, Marquardt D. Investigating the cut-off effect of n-alcohols on lipid movement: a biophysical study. SOFT MATTER 2023. [PMID: 37357554 DOI: 10.1039/d2sm01583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like n-alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain length. To explain this cut-off effect and complement prior biochemical studies, we investigated a series of n-alcohols (with carbon lengths 2-18) and their impact on several bilayer properties, including lipid flip-flop, intervesicular exchange, diffusion, membrane bending rigidity and more. To this end, we employed an array of biophysical techniques such as time-resolved small angle neutron scattering (TR-SANS), small angle X-ray scattering (SAXS), all atomistic and coarse-grained molecular dynamics (MD) simulations, and calcein leakage assays. At an alcohol concentration of 30 mol% of the overall lipid content, TR-SANS showed 1-hexanol (C6OH) increased transverse lipid diffusion, i.e. flip-flop. As alcohol chain length increased from C6 to C10 and longer, lipid flip-flop slowed by factors of 5.6 to 32.2. Intervesicular lipid exchange contrasted these results with only a slight cut-off at alcohol concentrations of 30 mol% but not 10 mol%. SAXS, MD simulations, and leakage assays revealed changes to key bilayer properties, such as bilayer thickness and fluidity, that correlate well with the effects on lipid flip-flop rates. Finally, we tie our results to a defect-mediated pathway for alcohol-induced lipid flip-flop.
Collapse
Affiliation(s)
- Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
- Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
25
|
Frewein MPK, Piller P, Semeraro EF, Czakkel O, Gerelli Y, Porcar L, Pabst G. Distributing aminophospholipids asymmetrically across leaflets causes anomalous membrane stiffening. Biophys J 2023; 122:2445-2455. [PMID: 37120716 PMCID: PMC10322881 DOI: 10.1016/j.bpj.2023.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023] Open
Abstract
We studied the mechanical leaflet coupling of prototypic mammalian plasma membranes using neutron spin-echo spectroscopy. In particular, we examined a series of asymmetric phospholipid vesicles with phosphatidylcholine and sphingomyelin enriched in the outer leaflet and inner leaflets composed of phosphatidylethanolamine/phosphatidylserine mixtures. The bending rigidities of most asymmetric membranes were anomalously high, exceeding even those of symmetric membranes formed from their cognate leaflets. Only asymmetric vesicles with outer leaflets enriched in sphingolipid displayed bending rigidities in conformity with these symmetric controls. We performed complementary small-angle neutron and x-ray experiments on the same vesicles to examine possible links to structural coupling mechanisms, which would show up in corresponding changes in membrane thickness. In addition, we estimated differential stress between leaflets originating either from a mismatch of their lateral areas or spontaneous curvatures. However, no correlation with asymmetry-induced membrane stiffening was observed. To reconcile our findings, we speculate that an asymmetric distribution of charged or H-bond forming lipids may induce an intraleaflet coupling, which increases the weight of hard undulatory modes of membrane fluctuations and hence the overall membrane stiffness.
Collapse
Affiliation(s)
- Moritz P K Frewein
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; Institut Laue-Langevin, Grenoble, France; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria
| | - Paulina Piller
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria
| | - Enrico F Semeraro
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria
| | | | - Yuri Gerelli
- CNR Institute for Complex Systems, Uos Sapienza, Roma, Italy; Department of Physics, Sapienza University of Rome, Roma, Italy
| | | | - Georg Pabst
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria.
| |
Collapse
|
26
|
Lipowsky R, Ghosh R, Satarifard V, Sreekumari A, Zamaletdinov M, Różycki B, Miettinen M, Grafmüller A. Leaflet Tensions Control the Spatio-Temporal Remodeling of Lipid Bilayers and Nanovesicles. Biomolecules 2023; 13:926. [PMID: 37371505 PMCID: PMC10296112 DOI: 10.3390/biom13060926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biological and biomimetic membranes are based on lipid bilayers, which consist of two monolayers or leaflets. To avoid bilayer edges, which form when the hydrophobic core of such a bilayer is exposed to the surrounding aqueous solution, a single bilayer closes up into a unilamellar vesicle, thereby separating an interior from an exterior aqueous compartment. Synthetic nanovesicles with a size below 100 nanometers, traditionally called small unilamellar vesicles, have emerged as potent platforms for the delivery of drugs and vaccines. Cellular nanovesicles of a similar size are released from almost every type of living cell. The nanovesicle morphology has been studied by electron microscopy methods but these methods are limited to a single snapshot of each vesicle. Here, we review recent results of molecular dynamics simulations, by which one can monitor and elucidate the spatio-temporal remodeling of individual bilayers and nanovesicles. We emphasize the new concept of leaflet tensions, which control the bilayers' stability and instability, the transition rates of lipid flip-flops between the two leaflets, the shape transformations of nanovesicles, the engulfment and endocytosis of condensate droplets and rigid nanoparticles, as well as nanovesicle adhesion and fusion. To actually compute the leaflet tensions, one has to determine the bilayer's midsurface, which represents the average position of the interface between the two leaflets. Two particularly useful methods to determine this midsurface are based on the density profile of the hydrophobic lipid chains and on the molecular volumes.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Icahn School of Medicine Mount Sinai, New York, NY 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Yale Institute for Network Science, Yale University, New Haven, CT 06520, USA
| | - Aparna Sreekumari
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678 623, India
| | - Miftakh Zamaletdinov
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Bartosz Różycki
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Markus Miettinen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
27
|
Sapp K, Aleksanyan M, Kerr K, Dimova R, Sodt A. Kinetic relaxation of giant vesicles validates diffusional softening in a binary lipid mixture. Phys Rev E 2023; 107:054403. [PMID: 37329029 PMCID: PMC10548837 DOI: 10.1103/physreve.107.054403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The stiffness of biological membranes determines the work required by cellular machinery to form and dismantle vesicles and other lipidic shapes. Model membrane stiffness can be determined from the equilibrium distribution of giant unilamellar vesicle surface undulations observable by phase contrast microscopy. With two or more components, lateral fluctuations of composition will couple to surface undulations depending on the curvature sensitivity of the constituent lipids. The result is a broader distribution of undulations whose complete relaxation is partially determined by lipid diffusion. In this work, kinetic analysis of the undulations of giant unilamellar vesicles made of phosphatidylcholine-phosphatidylethanolamine mixtures validates the molecular mechanism by which the membrane is made 25% softer than a single-component one. The mechanism is relevant to biological membranes, which have diverse and curvature-sensitive lipids.
Collapse
Affiliation(s)
- Kayla Sapp
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Mina Aleksanyan
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kaitlyn Kerr
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Alexander Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892 Maryland, USA
| |
Collapse
|
28
|
Sharma KD, Heberle FA, Waxham MN. Visualizing lipid membrane structure with cryo-EM: past, present, and future. Emerg Top Life Sci 2023; 7:55-65. [PMID: 36606590 PMCID: PMC10355340 DOI: 10.1042/etls20220090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
The development of electron cryomicroscopy (cryo-EM) has evolved immensely in the last several decades and is now well-established in the analysis of protein structure both in isolation and in their cellular context. This review focuses on the history and application of cryo-EM to the analysis of membrane architecture. Parallels between the levels of organization of protein structure are useful in organizing the discussion of the unique parameters that influence membrane structure and function. Importantly, the timescales of lipid motion in bilayers with respect to the timescales of sample vitrification is discussed and reveals what types of membrane structure can be reliably extracted in cryo-EM images of vitrified samples. Appreciating these limitations, a review of the application of cryo-EM to examine the lateral organization of ordered and disordered domains in reconstituted and biologically derived membranes is provided. Finally, a brief outlook for further development and application of cryo-EM to the analysis of membrane architecture is provided.
Collapse
Affiliation(s)
- Karan D. Sharma
- Department of Chemistry, University of Tennessee, Knoxville, TN
| | | | - M. Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX
| |
Collapse
|
29
|
Kinnun JJ, Scott HL, Bolmatov D, Collier CP, Charlton TR, Katsaras J. Biophysical studies of lipid nanodomains using different physical characterization techniques. Biophys J 2023; 122:931-949. [PMID: 36698312 PMCID: PMC10111277 DOI: 10.1016/j.bpj.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
For the past 50 years, evidence for the existence of functional lipid domains has been steadily accumulating. Although the notion of functional lipid domains, also known as "lipid rafts," is now widely accepted, this was not always the case. This ambiguity surrounding lipid domains could be partly attributed to the fact that they are highly dynamic, nanoscopic structures. Since most commonly used techniques are sensitive to microscale structural features, it is therefore, not surprising that it took some time to reach a consensus regarding their existence. In this review article, we will discuss studies that have used techniques that are inherently sensitive to nanoscopic structural features (i.e., neutron scatting, nuclear magnetic resonance, and Förster resonance energy transfer). We will also mention techniques that may be of use in the future (i.e., cryoelectron microscopy, droplet interface bilayers, inelastic x-ray scattering, and neutron reflectometry), which can further our understanding of the different and unique physicochemical properties of nanoscopic lipid domains.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Dima Bolmatov
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Timothy R Charlton
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - John Katsaras
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee; Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
30
|
Krompers M, Heerklotz H. A Guide to Your Desired Lipid-Asymmetric Vesicles. MEMBRANES 2023; 13:267. [PMID: 36984654 PMCID: PMC10054703 DOI: 10.3390/membranes13030267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Liposomes are prevalent model systems for studies on biological membranes. Recently, increasing attention has been paid to models also representing the lipid asymmetry of biological membranes. Here, we review in-vitro methods that have been established to prepare free-floating vesicles containing different compositions of the classic two-chain glycero- or sphingolipids in their outer and inner leaflet. In total, 72 reports are listed and assigned to four general strategies that are (A) enzymatic conversion of outer leaflet lipids, (B) re-sorting of lipids between leaflets, (C) assembly from different monolayers and (D) exchange of outer leaflet lipids. To guide the reader through this broad field of available techniques, we attempt to draw a road map that leads to the lipid-asymmetric vesicles that suit a given purpose. Of each method, we discuss advantages and limitations. In addition, various verification strategies of asymmetry as well as the role of cholesterol are briefly discussed. The ability to specifically induce lipid asymmetry in model membranes offers insights into the biological functions of asymmetry and may also benefit the technical applications of liposomes.
Collapse
Affiliation(s)
- Mona Krompers
- Department of Pharmaceutical Technology and Biopharmacy, Institute for Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, Institute for Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| |
Collapse
|
31
|
Ghosh R, Satarifard V, Lipowsky R. Different pathways for engulfment and endocytosis of liquid droplets by nanovesicles. Nat Commun 2023; 14:615. [PMID: 36739277 PMCID: PMC9899248 DOI: 10.1038/s41467-023-35847-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/04/2023] [Indexed: 02/06/2023] Open
Abstract
During endocytosis of nanoparticles by cells, the cellular membranes engulf the particles, thereby forming a closed membrane neck that subsequently undergoes fission. For solid nanoparticles, these endocytic processes have been studied in some detail. Recently, such processes have also been found for liquid and condensate droplets, both in vitro and in vivo. These processes start with the spreading of the droplet onto the membrane followed by partial or complete engulfment of the droplet. Here, we use molecular dynamics simulations to study these processes at the nanoscale, for nano-sized droplets and vesicles. For both partial and complete engulfment, we observe two different endocytic pathways. Complete engulfment leads to a closed membrane neck which may be formed in a circular or strongly non-circular manner. A closed circular neck undergoes fission, thereby generating two nested daughter vesicles whereas a non-circular neck hinders the fission process. Likewise, partial engulfment of larger droplets leads to open membrane necks which can again have a circular or non-circular shape. Two key parameters identified here for these endocytic pathways are the transbilayer stress asymmetry of the vesicle membrane and the positive or negative line tension of the membrane-droplet contact line.
Collapse
Affiliation(s)
- Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Icahn School of Medicine Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Yale Institute for Network Science, Yale University, New Haven, CT, 06520, USA
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| |
Collapse
|
32
|
Mapping trasmembrane distribution of sphingomyelin. Emerg Top Life Sci 2023; 7:31-45. [PMID: 36692108 DOI: 10.1042/etls20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Our knowledge on the asymmetric distribution of sphingomyelin (SM) in the plasma membrane is largely based on the biochemical analysis of erythrocytes using sphingomyelinase (SMase). However, recent studies showed that the product of SMase, ceramide, disturbs transmembrane lipid distribution. This led to the development of the complimentary histochemical method, which combines electron microscopy and SM-binding proteins. This review discusses the advantages and caveats of published methods of measuring transbilayer distribution of SM. Recent finding of the proteins involved in the transbilayer movement of SM will also be summarized.
Collapse
|
33
|
Pašalić L, Pem B, Bakarić D. Lamellarity-Driven Differences in Surface Structural Features of DPPS Lipids: Spectroscopic, Calorimetric and Computational Study. MEMBRANES 2023; 13:83. [PMID: 36676890 PMCID: PMC9865892 DOI: 10.3390/membranes13010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Although single-lipid bilayers are usually considered models of eukaryotic plasma membranes, their research drops drastically when it comes to exclusively anionic lipid membranes. Being a major anionic phospholipid in the inner leaflet of eukaryote membranes, phosphatidylserine-constituted lipid membranes were occasionally explored in the form of multilamellar liposomes (MLV), but their inherent instability caused a serious lack of efforts undertaken on large unilamellar liposomes (LUVs) as more realistic model membrane systems. In order to compensate the existing shortcomings, we performed a comprehensive calorimetric, spectroscopic and MD simulation study of time-varying structural features of LUV made from 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), whereas the corresponding MLV were examined as a reference. A substantial uncertainty of UV/Vis data of LUV from which only Tm was unambiguously determined (53.9 ± 0.8 °C), along with rather high uncertainty on the high-temperature range of DPPS melting profile obtained from DSC (≈50-59 °C), presumably reflect distinguished surface structural features in LUV. The FTIR signatures of glycerol moiety and those originated from carboxyl group serve as a strong support that in LUV, unlike in MLV, highly curved surfaces occur continuously, whereas the details on the attenuation of surface features in MLV were unraveled by molecular dynamics.
Collapse
|
34
|
Enoki TA, Feigenson GW. Improving our picture of the plasma membrane: Rafts induce ordered domains in a simplified model cytoplasmic leaflet. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183995. [PMID: 35753393 DOI: 10.1016/j.bbamem.2022.183995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023]
Abstract
By study of asymmetric membranes, models of the cell plasma membrane (PM) have improved, with more realistic properties of the asymmetric lipid composition of the membrane being explored. We used hemifusion of symmetric giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB) to engineer bilayer leaflets of different composition. During hemifusion, only the outer leaflets of GUV and SLB are connected, exchanging lipids by simple diffusion. aGUVs were detached from the SLB for study. In general these aGUVs are formed with one leaflet that phase-separates into Ld (liquid disordered) + Lo (liquid ordered) phases, and another leaflet with lipid composition that would form a single fluid phase in a symmetric bilayer. We observed that ordered phases of either Lo or Lβ (gel phase) induce an ordered domain in the apposed fluid leaflet that lacks high melting lipids. Results suggest both an inter-leaflet and an intra-leaflet redistribution of cholesterol. We used C-Laurdan spectral images to investigate the lipid packing/order of aGUVs, finding that cholesterol partitions into the induced ordered domains. We suggest this behavior to be commonplace, that when Ld + Lo phase separation occurs in a cell PM exoplasmic leaflet, an induced order domain forms in the cytoplasmic leaflet.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Cheng V, Conboy JC. Inhibitory Effect of Lanthanides on Native Lipid Flip-Flop. J Phys Chem B 2022; 126:7651-7663. [PMID: 36129784 DOI: 10.1021/acs.jpcb.2c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of ytterbium ions (Yb3+), a commonly used paramagnetic NMR chemical shift reagent, on the physical properties and flip-flop kinetics of dipalmitoylphosphatidylcholine (DPPC) planar supported lipid bilayers (PSLBs) was investigated. Langmuir isotherm studies revealed that Yb3+ interacts strongly with the phosphate headgroup of DPPC, evidenced by the increases in shear and compression moduli. Using sum-frequency vibrational spectroscopy, changes in the acyl chain ordering and phase transition temperature were also observed, consistent with Yb3+ interacting with the phosphate headgroup of DPPC. The changes in the physical properties of the membrane were also observed to be concentration dependent, with more pronounced modification observed at low (50 μM) Yb3+ concentrations compared to 6.5 mM Tb3+, suggesting a cross-linking mechanism between adjacent DPPC lipids. Additionally, the changes in membrane packing and phase transition temperatures in the presence of Tris buffer suggested that a putative Yb(Tris)3+ complex forms that coordinates to the PC headgroup. The kinetics of DPPC flip-flop in the gel and liquid crystalline (lc) phases were substantially inhibited in the presence of Yb3+, regardless of the Yb3+ concentration. Analysis of the flip-flop kinetics under the framework of transition state theory revealed that the free energy barrier to flip-flop in both the gel and lc phases was substantial increased over a pure DPPC membrane. In the gel phase, the trend in the free energy barrier appeared to follow the trend in the shear moduli, suggesting that the Yb3+-DPPC headgroup interaction was driving the increase in the activation free energy barrier. In the lc phase, activation free energies of DPPC flip-flop in the presence of 50 μM or 6.5 mM Yb3+ were found to mirror the free energies of TEMPO-DPPC flip-flop, leading to the conclusion that the strong interaction between Yb3+ and the PC headgroup was essentially manifested as a headgroup charge modification. These studies illustrate that the presence of the lanthanide Yb3+ results in significant modification to the lipid membrane physical properties and, more importantly, results in a pronounced inhibition of native lipid flip-flop.
Collapse
Affiliation(s)
- Victoria Cheng
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
36
|
Nguyen MT, Biriukov D, Tempra C, Baxova K, Martinez-Seara H, Evci H, Singh V, Šachl R, Hof M, Jungwirth P, Javanainen M, Vazdar M. Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11284-11295. [PMID: 36083171 PMCID: PMC9494944 DOI: 10.1021/acs.langmuir.2c01435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level. The adsorption of arginine-rich peptides onto 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) may qualitatively depend on the actual experimental conditions where binding experiments have been performed. In this work, we systematically studied the adsorption of R9 and K9 peptides onto the POPC bilayer, aided by molecular dynamics (MD) simulations and fluorescence cross-correlation spectroscopy (FCCS) experiments. Using MD simulations, we tested a series of increasing peptide concentrations, in parallel with increasing Na+ and Ca2+ salt concentrations, showing that the apparent strength of adsorption of R9 decreases upon the increase of peptide or salt concentration in the system. The key result from the simulations is that the salt concentrations used experimentally can alter the picture of peptide adsorption qualitatively. Using FCCS experiments with fluorescently labeled R9 and K9, we first demonstrated that the binding of R9 to POPC is tighter by almost 2 orders of magnitude compared to that of K9. Finally, upon the addition of an excess of either Na+ or Ca2+ ions with R9, the total fluorescence correlation signal is lost, which implies the unbinding of R9 from the PC bilayer, in agreement with our predictions from MD simulations.
Collapse
Affiliation(s)
- Man Thi
Hong Nguyen
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Denys Biriukov
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Carmelo Tempra
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Katarina Baxova
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Hüseyin Evci
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Dolejškova
2155/3, CZ-18223 Prague 8, Czech Republic
- Department
of Chemistry, Faculty of Science, University
of South Bohemia in Ceske Budejovice, 370 05 Ceske Budejovice, Czech
Republic
| | - Vandana Singh
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Dolejškova
2155/3, CZ-18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics at Charles University, 110 00 Prague, Czech Republic
| | - Radek Šachl
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Dolejškova
2155/3, CZ-18223 Prague 8, Czech Republic
| | - Martin Hof
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Dolejškova
2155/3, CZ-18223 Prague 8, Czech Republic
| | - Pavel Jungwirth
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Matti Javanainen
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
- Institute
of Biotechnology, University of Helsinki, FI-00014 University
of Helsinki, Finland
| | - Mario Vazdar
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
- Department
of Mathematics, University of Chemistry
and Technology, 166 28 Prague, Czech Republic
| |
Collapse
|
37
|
Maleš P, Pem B, Petrov D, Jurašin DD, Bakarić D. Deciphering the origin of the melting profile of unilamellar phosphatidylcholine liposomes by measuring the turbidity of its suspensions. SOFT MATTER 2022; 18:6703-6715. [PMID: 36017811 DOI: 10.1039/d2sm00878e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The elucidation of the thermal properties of phosphatidylcholine liposomes is often based on the analysis of the thermal capacity profiles of multilamellar liposomes (MLV), which may qualitatively disagree with those of unilamellar liposomes (LUV). Experiments and interpretation of LUV liposomes is further complicated by aggregation and lamellarization of lipid bilayers in a short time period, which makes it almost impossible to distinguish the signatures of the two types of bilayers. To characterize independently MLV and LUV of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the latter were prepared with the addition of small amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) which, due to the sterical hindrance and negative charge at a given pH value, cause LUV repellence and contribute to their stability. Differential scanning calorimetry curves and temperature-dependent UV/Vis spectra of the prepared MLV and LUV were measured. Multivariate analysis of spectrophotometric data determined the phase transition temperatures (pretransition at Tp and the main phase transition at Tm), and based on the changes in turbidities, the thickness of the lipid bilayer in LUV was determined. The obtained data suggested that the curvature change is a key distinguishing factor in MLV and LUV heat capacity profiles. By combining the experimental results and those obtained by MD simulations, the interfacial water layer was characterized and its contribution to the thermal properties of LUV was discussed.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Dražen Petrov
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Darija Domazet Jurašin
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
38
|
London E. Ordered Domain (Raft) Formation in Asymmetric Vesicles and Its Induction upon Loss of Lipid Asymmetry in Artificial and Natural Membranes. MEMBRANES 2022; 12:870. [PMID: 36135889 PMCID: PMC9503047 DOI: 10.3390/membranes12090870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Lipid asymmetry, the difference in the lipid composition in the inner and outer lipid monolayers (leaflets) of a membrane, is an important feature of eukaryotic plasma membranes. Investigation of the biophysical consequences of lipid asymmetry has been aided by advances in the ability to prepare artificial asymmetric membranes, especially by use of cyclodextrin-catalyzed lipid exchange. This review summarizes recent studies with artificial asymmetric membranes which have identified conditions in which asymmetry can induce or suppress the ability of membranes to form ordered domains (rafts). A consequence of the latter effect is that, under some conditions, a loss of asymmetry can induce ordered domain formation. An analogous study in plasma membrane vesicles has demonstrated that asymmetry can also suppress domain formation in natural membranes. Thus, it is possible that a loss of asymmetry can induce domain formation in vivo.
Collapse
Affiliation(s)
- Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
39
|
DiPasquale M, Nguyen MHL, Pabst G, Marquardt D. Partial Volumes of Phosphatidylcholines and Vitamin E: α-Tocopherol Prefers Disordered Membranes. J Phys Chem B 2022; 126:6691-6699. [PMID: 36027485 DOI: 10.1021/acs.jpcb.2c04209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its discovery over 95 years ago, the biological and nutritional roles of vitamin E remain subjects of much controversy. Though it is known to possess antioxidant properties, recent assertions have implied that vitamin E may not be limited to this function in living systems. Through densitometry measurements and small-angle X-ray scattering we observe favorable interactions between α-tocopherol and unsaturated phospholipids, with more favorable interactions correlating to an increase in lipid chain unsaturation. Our data provide evidence that vitamin E may preferentially associate with oxygen sensitive lipids─an association that is considered innate for a viable membrane antioxidant.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Graz 8010, Austria
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
40
|
Sreekumari A, Lipowsky R. Large stress asymmetries of lipid bilayers and nanovesicles generate lipid flip-flops and bilayer instabilities. SOFT MATTER 2022; 18:6066-6078. [PMID: 35929498 DOI: 10.1039/d2sm00618a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Much effort has been devoted to lipid bilayers and nanovesicles with a compositional asymmetry between the two leaflets of the bilayer membranes. Here, we address another fundamental asymmetry related to lipid densities and membrane tensions. To avoid membrane rupture, the osmotic conditions must be adjusted in such a way that the bilayer membranes are subject to a relatively low bilayer tension. However, even for vanishing bilayer tension, the individual leaflets can still experience significant leaflet tensions if one leaflet is stretched whereas the other leaflet is compressed. Such a stress asymmetry between the two leaflets can be directly controlled in molecular dynamics simulations by the initial assembly of the lipid bilayers. This stress asymmetry is varied here over a wide range to determine the stability and instability regimes of the asymmetric bilayers. The stability regime shrinks with decreasing size and increasing membrane curvature of the nanovesicle. In the instability regimes, the lipids undergo stress-induced flip-flops with a flip-flop rate that increases with increasing stress asymmetry. The onset of flip-flops can be characterized by a cumulative distribution function that is well-fitted by an exponential function for planar bilayers but has a sigmoidal shape for nanovesicles. In addition, the bilayer membranes form transient non-bilayer structures that relax back towards ordered bilayers with a reduced stress asymmetry. Our study reveals intrinsic limits for the possible magnitude of the transbilayer stress asymmetry and shows that the leaflet tensions represent key parameters for the flip-flop rates.
Collapse
Affiliation(s)
- Aparna Sreekumari
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Reinhard Lipowsky
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| |
Collapse
|
41
|
Nakao H, Nakano M. Flip-Flop Promotion Mechanisms by Model Transmembrane Peptides. Chem Pharm Bull (Tokyo) 2022; 70:519-523. [DOI: 10.1248/cpb.c22-00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
42
|
Sharma VK, Mamontov E. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Prog Lipid Res 2022; 87:101179. [PMID: 35780913 DOI: 10.1016/j.plipres.2022.101179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
The plasma membrane is one of the principal structural components of the cell and, therefore, one of the key components of the cellular life. Because the membrane's dynamics links the membrane's structure and function, the complexity and the broad range of the membrane's motions are essential for the enormously diverse functionality of the cell membrane. Even for the main membrane component, the lipid bilayer, considered alone, the range and complexity of the lipid motions are remarkable. Spanning the time scale from sub-picosecond to minutes and hours, the lipid motion in a bilayer is challenging to study even when a broad array of dynamic measurement techniques is employed. Neutron scattering plays a special role among such dynamic measurement techniques, particularly, because it involves the energy transfers commensurate with the typical intra- and inter- molecular dynamics and the momentum transfers commensurate with intra- and inter-molecular distances. Thus, using neutron scattering-based techniques, the spatial and temporal information on the lipid motion can be obtained and analysed simultaneously. Protium vs. deuterium sensitivity and non-destructive character of the neutron probe add to the remarkable prowess of neutron scattering for elucidating the lipid dynamics. Herein we present an overview of the neutron scattering-based studies of lipid dynamics in model membranes, with a discussion of the direct relevance and implications to the real-life cell membranes. The latter are much more complex systems than simple model membranes, consisting of heterogeneous non-stationary domains composed of lipids, proteins, and other small molecules, such as carbohydrates. Yet many fundamental aspects of the membrane behavior and membrane interactions with other molecules can be understood from neutron scattering measurements of the model membranes. For example, such studies can provide a great deal of information on the interactions of antimicrobial compounds with the lipid matrix of a pathogen membrane, or the interactions of drug molecules with the plasma membrane. Finally, we briefly discuss the recently emerging field of neutron scattering membrane studies with a reach far beyond the model membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
43
|
Marx L, Frewein MPK, Semeraro EF, Rechberger GN, Lohner K, Porcar L, Pabst G. Antimicrobial peptide activity in asymmetric bacterial membrane mimics. Faraday Discuss 2021; 232:435-447. [PMID: 34532723 PMCID: PMC8704130 DOI: 10.1039/d1fd00039j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022]
Abstract
We report on the response of asymmetric lipid membranes composed of palmitoyl oleoyl phosphatidylethanolamine and palmitoyl oleoyl phosphatidylglycerol, to interactions with the frog peptides L18W-PGLa and magainin 2 (MG2a), as well as the lactoferricin derivative LF11-215. In particular we determined the peptide-induced lipid flip-flop, as well as membrane partitioning of L18W-PGLa and LF11-215, and vesicle dye-leakage induced by L18W-PGLa. The ability of L18W-PGLa and MG2a to translocate through the membrane appears to correlate with the observed lipid flip-flop, which occurred at the fastest rate for L18W-PGLa. The higher structural flexibility of LF11-215 in turn allows this peptide to insert into the bilayers without detectable changes of membrane asymmetry. The increased vulnerability of asymmetric membranes to L18W-PGLa in terms of permeability, appears to be a consequence of tension differences between the compositionally distinct leaflets, but not due to increased peptide partitioning.
Collapse
Affiliation(s)
- Lisa Marx
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Moritz P K Frewein
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- Institut Laue-Langevin, 38043 Grenoble, France
| | - Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Gerald N Rechberger
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Karl Lohner
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | | | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
44
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
45
|
Lewis-Laurent A, Doktorova M, Heberle FA, Marquardt D. Vesicle Viewer: Online visualization and analysis of small-angle scattering from lipid vesicles. Biophys J 2021; 120:4639-4648. [PMID: 34571013 DOI: 10.1016/j.bpj.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022] Open
Abstract
Small-angle X-ray and neutron scattering are among the most powerful experimental techniques for investigating the structure of biological membranes. Much of the critical information contained in small-angle scattering (SAS) data is not easily accessible to researchers who have limited time to analyze results by hand or to nonexperts who may lack the necessary scientific background to process such data. Easy-to-use data visualization software can allow them to take full advantage of their SAS data and maximize the use of limited resources. To this end, we developed an internet-based application called Vesicle Viewer to visualize and analyze SAS data from unilamellar lipid bilayer vesicles. Vesicle Viewer utilizes a modified scattering density profile (SDP) analysis called EZ-SDP in which key bilayer structural parameters, such as area per lipid and bilayer thickness, are easily and robustly determined. Notably, we introduce a bilayer model that is able to describe an asymmetric bilayer, whether it be chemically or isotopically asymmetric. The application primarily uses Django, a Python package specialized for the development of robust web applications. In addition, several other libraries are used to support the more technical aspects of the project; notable examples are Matplotlib (for graphs) and NumPy (for calculations). By eliminating the barrier of downloading and installing software, this web-based application will allow scientists to analyze their own vesicle scattering data using their preferred operating system. The web-based application can be found at https://vesicleviewer.dmarquardt.ca/.
Collapse
Affiliation(s)
- Aislyn Lewis-Laurent
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | - Drew Marquardt
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
46
|
Frampton MB, Yakoub D, Katsaras J, Zelisko PM, Marquardt D. A calorimetric, volumetric and combined SANS and SAXS study of hybrid siloxane phosphocholine bilayers. Chem Phys Lipids 2021; 241:105149. [PMID: 34627769 DOI: 10.1016/j.chemphyslip.2021.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Siloxanes are molecules used extensively in commercial, industrial, and biomedical applications. The inclusion of short siloxane chains into phospholipids results in interesting physical properties, including the ability to form low polydispersity unilamellar vesicles. As such, hybrid siloxane phosphocholines (SiPCs) have been examined as a potential platform for the delivery of therapeutic agents. Using small angle X-ray and neutron scattering, vibrating tube densitometry, and differential scanning calorimetry, we studied four hybrid SiPCs bilayers. Lipid volume measurements for the different SiPCs compared well with those previously determined for polyunsaturated PCs. Furthermore, the different SiPC's membrane thicknesses increased monotonically with temperature and, for the most part, consistent with the behavior observed in unsaturated lipids such as, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, and the branched lipid 1,2-diphytanoyl-sn-glyerco-3-phosphocholine (DPhyPC).
Collapse
Affiliation(s)
- Mark B Frampton
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada; Advanced Biomanufacturing Centre, Brock University, St. Catharines, ON, Canada; School of Biosciences, Loyalist College, Belleville, ON, Canada
| | - Doruntina Yakoub
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - John Katsaras
- Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; The Bredesen Center, University of Tennessee, Knoxville, TN, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Physics, Brock University, St. Catharines, ON, Canada; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - Paul M Zelisko
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada; Advanced Biomanufacturing Centre, Brock University, St. Catharines, ON, Canada
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada; Department of Physics, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
47
|
Li MH, Raleigh DP, London E. Preparation of Asymmetric Vesicles with Trapped CsCl Avoids Osmotic Imbalance, Non-Physiological External Solutions, and Minimizes Leakage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11611-11617. [PMID: 34550698 PMCID: PMC9128599 DOI: 10.1021/acs.langmuir.1c01971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The natural asymmetry of cellular membranes influences their properties. In recent years, methodologies for preparing asymmetric vesicles have been developed that rely on cyclodextrin-catalyzed exchange of lipids between donor lipid multilamellar vesicles and acceptor lipid unilamellar vesicles, and the subsequent separation of the, now asymmetric, acceptor vesicles from the donors. Isolation is often accomplished by preloading acceptor vesicles with a high concentration of sucrose, typically 25% (w/w), and separating from donor and cyclodextrin by sucrose gradient centrifugation. We found that when the asymmetric vesicles prepared using methyl-α-cyclodextrin exchange were dispersed under hypotonic conditions using physiological salt solutions, there was enhanced leakage of an entrapped probe, 6-carboxyfluorescein. Studies with symmetric vesicles showed this was due to osmotic pressure and was specific to hypotonic solutions. Inclusion of cholesterol partly reduced leakage but did not completely eliminate it. To avoid having to use hypotonic conditions or to suspend vesicles at nonphysiological solute concentrations to minimize leakage, a method for preparing asymmetric vesicles using acceptor vesicle-entrapped CsCl at a physiological ion concentration (100 mM) was developed. Asymmetric vesicles prepared with the entrapped CsCl protocol were highly resistant to 6-carboxyfluorescein leakage out of the vesicles.
Collapse
Affiliation(s)
- Ming-Hao Li
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Daniel P. Raleigh
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Erwin London
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Biochemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
48
|
Observing the structural variations on binary complex vesicle surfaces and the influence on molecular transportation. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Scott HL, Kennison KB, Enoki TA, Doktorova M, Kinnun JJ, Heberle FA, Katsaras J. Model Membrane Systems Used to Study Plasma Membrane Lipid Asymmetry. Symmetry (Basel) 2021; 13. [PMID: 35498375 PMCID: PMC9053528 DOI: 10.3390/sym13081356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is well known that the lipid distribution in the bilayer leaflets of mammalian plasma membranes (PMs) is not symmetric. Despite this, model membrane studies have largely relied on chemically symmetric model membranes for the study of lipid–lipid and lipid–protein interactions. This is primarily due to the difficulty in preparing stable, asymmetric model membranes that are amenable to biophysical studies. However, in the last 20 years, efforts have been made in producing more biologically faithful model membranes. Here, we review several recently developed experimental and computational techniques for the robust generation of asymmetric model membranes and highlight a new and particularly promising technique to study membrane asymmetry.
Collapse
Affiliation(s)
- Haden L. Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Kristen B. Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Thais A. Enoki
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Jacob J. Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| |
Collapse
|
50
|
Evaluation of release and pharmacokinetics of hexadecylphosphocholine (miltefosine) in phosphatidyldiglycerol-based thermosensitive liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183698. [PMID: 34283999 DOI: 10.1016/j.bbamem.2021.183698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Hexadecylphosphocholine (HePC, Miltefosine) is a drug from the class of alkylphosphocholines with an antineoplastic and antiprotozoal activity. We previously reported that HePC uptake from thermosensitive liposomes (TSL) containing 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) into cancer cells is accelerated at mild hyperthermia (HT) resulting in increased cytotoxicity. In this study, we compared HePC release of different TSL formulations in serum. HePC showed rapid but incomplete release below the transition temperature (Tm) of investigated TSL formulations in serum. Short heating (5 min) to 42 °C increased HePC release from DPPG2-TSL (Tm = 41 °C) by a factor of two in comparison to body temperature (37 °C). Bovine serum albumin (BSA) induced HePC release from DPPG2-TSL comparable to serum. Furthermore, multilamellar vesicles (MLV) were capable to extract HePC from DPPG2-TSL in a concentration- and temperature-dependent manner. Repetitive exposure of DPPG2-TSL to MLV at 37 °C led to a fast initial release of HePC which slowed down after subsequent extraction cycles finally reaching approx. 50% HePC release. A pharmacokinetic study in rats revealed a biphasic pattern with an immediate clearance of approx. 50% HePC whereas the remaining 50% HePC showed a prolonged circulation time. We speculate that HePC located in the external leaflet of DPPG2-TSL is rapidly released upon contact with suitable biological acceptors. As demonstrated by MLV transfer experiments, asymmetric incorporation of HePC into the internal leaflet of DPPG2-TSL might improve HePC retention in presence of complex biological media and still give rise to HT-induced HePC release.
Collapse
|