1
|
Haque Pial T, Li Y, Olvera de la Cruz M. Microscopically segregated ligand distribution in co-assembled peptide-amphiphile nanofibers. SOFT MATTER 2024; 20:4640-4647. [PMID: 38819791 DOI: 10.1039/d4sm00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Peptide amphiphiles (PAs) self-assemble into cylindrical nanofibers with applications in protein purification, tissue engineering, and regenerative medicine. For these applications, functionalized PAs are often co-assembled with oppositely charged filler PAs. Finding the conditions at which these fibers are homogeneously mixed or segregated is crucial for the required application. We co-assemble negative C12VVEE fillers and positive C12VVKK-OEG4-Z33 ligands, which are important for antibody purifications. Our results show that the ligands tend to cluster and locally segregate in the fiber surfaces. The Z33s are overall neutral and form large aggregates in bulk solution due to short range attractions. However, full segregation of the C12VVKK-OEG4-Z33 is not observed in the cylindrical surface due to the electrostatic penalty of forming large domains of similarly charged molecules. This is commensurate with previous theoretical predictions, showing that the competition between short-range attractive interactions and long-range electrostatic repulsions leads to pattern formation in cylindrical surfaces. This work offers valuable insight into the design of functionalized nanofibers for various biomedical and chemical applications.
Collapse
Affiliation(s)
- Turash Haque Pial
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yang Li
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Komarova GA, Gumerov RA, Rudyak VY, Kozhunova EY, Potemkin II, Nasimova IR. Peculiarities of Emulsions Stabilized by Stimuli-Responsive Interpenetrating Polymeric Network Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9414-9425. [PMID: 38651693 DOI: 10.1021/acs.langmuir.3c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Emulsions have become a crucial product form in various industries in modern times. Expanding the class of substances used to stabilize emulsions can improve their stability or introduce new properties. Particularly, the use of stimuli-responsive microgels makes it possible to create "smart" emulsions whose stability can be controlled by changing any of the specified stimuli. Thus, finding new ways to stabilize emulsions may broaden their application. In this work, for the first time, we applied microgels based on interpenetrating polymeric networks (IPNs) of poly(N-isopropylacrylamide) (PNIPAM) and poly(acrylic acid) (PAA) as stabilizing agents for "oil-in-water" emulsions. We have demonstrated that emulsions stabilized by such soft particles can remain colloidally stable for an extended period, even after being heated up to 40 °C, which is above the lower critical solution temperature (LCST) of PNIPAM. On the contrary, the emulsions stabilized by PNIPAM homopolymer microgels were broken upon heating. To understand the stabilization mechanism of the emulsions, mesoscopic computer simulations were performed to study the IPN microgels at the liquid-liquid interface. The simulations demonstrated that when the first subnetwork (PNIPAM) collapses, the particle adopts a flattened core-shell morphology with a highly swollen PAA-rich shell and a collapsed PNIPAM-rich core. Unlike its PNIPAM homopolymer counterpart, the IPN microgel maintains its three-dimensional shape, which provides stability to the microgel-based emulsions over a wide range of temperatures. Our combined findings could be useful in developing new approaches to emulsions' storage, biphasic catalysis, and lubrication of mechanisms in various operating and climatic conditions.
Collapse
Affiliation(s)
- Galina A Komarova
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| | - Vladimir Yu Rudyak
- Department of Condensed Matter, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elena Yu Kozhunova
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| | - Irina R Nasimova
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| |
Collapse
|
3
|
Prasser Q, Fuhs T, Torger B, Neubert R, Brendler E, Vogt C, Mertens F, Plamper FA. Nonequilibrium Colloids: Temperature-Induced Bouquet Formation of Flower-like Micelles as a Time-Domain-Shifting Macromolecular Heat Alert. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57950-57959. [PMID: 37676903 PMCID: PMC10739602 DOI: 10.1021/acsami.3c09590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Climate change requires enhanced autonomous temperature monitoring during logistics/transport. A cheap approach comprises the use of temperature-sensitive copolymers that undergo temperature-induced irreversible coagulation. The synthesis/characterization of pentablock copolymers (PBCP) starting from poloxamer PEO130-b-PPO44-b-PEO130 (poly(ethylene oxide)130-b-poly(propylene oxide)44-b-poly(ethylene oxide)130) and adding two terminal qPDMAEMA85 (quaternized poly[(2-dimethylamino)ethyl methacrylate]85) blocks is presented. Mixing of PBCP solutions with hexacyanoferrate(III)/ferricyanide solutions leads to a reduction of the decane/water interfacial tension accompanied by a co/self-assembly toward flower-like micelles in cold water because of the formation of an insoluble/hydrophobic qPDMAEMA/ferricyanide complex. In cold water, the PEO/PPO blocks provide colloidal stability over months. In hot water, the temperature-responsive PPO block is dehydrated, leading to a pronounced temperature dependence of the oil-water interfacial tension. In solution, the sticky PPO segments exposed at the micellar corona cause a colloidal clustering above a certain threshold temperature, which follows Smoluchowski-type kinetics. This coagulation remains for months even after cooling, indicating the presence of a kinetically trapped nonequilibrium state for at least one of the observed micellar structures. Therefore, the system memorizes a previous suffering of heat. This phenomenon is linked to an exchange of qPDMAEMA-blocks bridging the micellar cores after PPO-induced clustering. The addition of ferrous ions hampers the exchange, leading to the reversible coagulation of Prussian blue loaded micelles. Hence, the Fe2+ addition causes a shift from history monitoring to the sensing of the present temperature. Presumably, the system can be adapted for different temperatures in order to monitor transport and storage in a simple way. Hence, these polymeric "flowers" could contribute to preventing waste and sustaining the quality of goods (e.g., food) by temperature-induced bouquet formation, where an irreversible exchange of "tentacles" between the flowers stabilizes the bouquet at other temperatures as well.
Collapse
Affiliation(s)
- Quirin Prasser
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Thomas Fuhs
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Bernhard Torger
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Richard Neubert
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Erica Brendler
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Carla Vogt
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Florian Mertens
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
- Center
for Efficient High Temperature Processes and Materials Conversion
ZeHS, TU Bergakademie Freiberg, Winklerstraße 5, Freiberg 09599, Germany
| | - Felix A. Plamper
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
- Center
for Efficient High Temperature Processes and Materials Conversion
ZeHS, TU Bergakademie Freiberg, Winklerstraße 5, Freiberg 09599, Germany
- Freiberg
Center for Water Research ZeWaF, TU Bergakademie
Freiberg, Winklerstraße 5, Freiberg 09599, Germany
| |
Collapse
|
4
|
Hechenbichler M, Prause A, Gradzielski M, Laschewsky A. Thermoresponsive Self-Assembly of Twofold Fluorescently Labeled Block Copolymers in Aqueous Solution and Microemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5166-5182. [PMID: 34734729 DOI: 10.1021/acs.langmuir.1c02318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A nonionic double hydrophilic block copolymer with a long permanently hydrophilic and a small thermoresponsive block is synthesized by reversible addition-fragmentation chain-transfer polymerization (RAFT). By employing a specifically designed chain-transfer agent, the polymer is functionalized with complementary end groups which are suited for Förster resonance energy transfer (FRET). The end group attached to the permanently hydrophilic block of poly(N,N-dimethylacrylamide) pDMAm is designed as a permanently hydrophobic segment ("sticker") comprising a long alkyl chain and the 4-aminonaphthalimide fluorophore. The other end attached to the thermoresponsive block of poly(N-isopropylacrylamide) pNiPAm incorporates a coumarin fluorophore. The temperature-dependent self-assembly of the twofold fluorescently labeled copolymer is studied in pure aqueous solution as well as in an o/w microemulsion by several techniques including turbidimetry, dynamic light scattering (DLS), and fluorescence spectroscopy. It is compared to the behaviors of the analogous twofold-labeled pDMAm and pNiPAm homopolymer references. The findings indicate that the block copolymer behaves as a polymeric surfactant at low temperatures, with one relatively small hydrophobic end block and an extended hydrophilic chain forming "hairy micelles". At elevated temperatures above the LCST phase transition of the pNiPAm block, however, the copolymer behaves as an associative telechelic polymer with two nonsymmetrical hydrophobic end blocks, which do not mix. Thus, instead of a network of bridged "flower micelles", large dynamic aggregates are formed. These are connected alternatingly by the original micellar cores as well as by clusters of the collapsed pNiPAm blocks. This type of structure is even more favored in the o/w microemulsion than in pure aqueous solution, as the microemulsion droplets constitute an attractive anchoring point for the hydrophobic dodecyl sticker but not for the collapsed pNiPAm chains.
Collapse
Affiliation(s)
- Michelle Hechenbichler
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Albert Prause
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, FG Physical Chemistry/Molecular Material Science Institute of Chemistry, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, FG Physical Chemistry/Molecular Material Science Institute of Chemistry, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Fraunhofer Institute, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
5
|
Kostyurina E, De Mel JU, Vasilyeva A, Kruteva M, Frielinghaus H, Dulle M, Barnsley L, Förster S, Schneider GJ, Biehl R, Allgaier J. Controlled LCST Behavior and Structure Formation of Alternating Amphiphilic Copolymers in Water. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ekaterina Kostyurina
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Judith U. De Mel
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandra Vasilyeva
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Margarita Kruteva
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Garching 85747, Germany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Lester Barnsley
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Garching 85747, Germany
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Garching 85747, Germany
| | - Gerald J. Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ralf Biehl
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Jürgen Allgaier
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
6
|
Lv C, Gao J, An K, Nie J, Xu J, Du B. Self-assembly of the Thermosensitive and pH-Sensitive Pentablock Copolymer PNIPAM x- b-P( tBA- co-AA) 90- b-PPO 36- b-P( tBA- co-AA) 90- b-PNIPAM x in Dilute Aqueous Solutions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kun An
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Junting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Bačová P, Glynos E, Anastasiadis SH, Harmandaris V. How Does the Number of Arms Affect the Properties of Mikto-Arm Stars in a Selective Oligomeric Matrix? Insights from Atomistic Simulations. ACS OMEGA 2021; 6:1138-1148. [PMID: 33490773 PMCID: PMC7818313 DOI: 10.1021/acsomega.0c04167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 05/14/2023]
Abstract
We present a simulation study of amphiphilic mikto-arm star copolymers in a selective polymer host. By means of atomistic molecular dynamics simulations, we examine the structural and dynamical properties of mikto-arm stars with varying number, n, of poly(ethylene oxide) (PEO) and polystyrene (PS) arms, (PEO) n (PS) n in a 33% wt blend with an oligomeric PEO host (o-PEO). As the number of arms increases, the stars resemble more spherical particles with less separated PEO and PS intramolecular domains. As a result of their internal morphology and associated geometrical constraints, the mikto-arm stars self-assemble either into cylindrical-like objects or a percolated network with increasing n, within the o-PEO matrix. The segmental dynamics is mostly governed by the star architecture and the heterogeneous local environment, formed by the intra- and intermolecular nanosegregation. We discuss the role of each factor and compare the results with previously published studies on mikto-arm stars.
Collapse
Affiliation(s)
- Petra Bačová
- Institute
of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece
| | - Emmanouil Glynos
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece
| | - Spiros H. Anastasiadis
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece
- Department
of Chemistry, University of Crete, GR-70013 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Institute
of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece
- Department
of Mathematics and Applied Mathematics, University of Crete, GR-70013 Heraklion, Crete, Greece
- Computation-Based
Science and Technology Research Center, The Cyprus Institute, 20 Constantinou Kavafi Street, 2121 Nicosia, Cyprus
| |
Collapse
|
8
|
Lin Y, He D, Hu H, Yi P, Liu X, Huang J, Wu S, Li G. Preparation and Properties of Polydimethylsiloxane (PDMS)/Polyethylene Glycol (PEG)-Based Amphiphilic Polyurethane Elastomers. ACS APPLIED BIO MATERIALS 2019; 2:4377-4384. [DOI: 10.1021/acsabm.9b00605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yinlei Lin
- School of Materials Science and Energy Engineering, Foshan University, No. 18 Jiangwan First Road, Changcheng District, Foshan, Guangdong 528000, China
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Deliu He
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Huawen Hu
- School of Materials Science and Energy Engineering, Foshan University, No. 18 Jiangwan First Road, Changcheng District, Foshan, Guangdong 528000, China
| | - Peng Yi
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Xiaoting Liu
- School of Materials Science and Energy Engineering, Foshan University, No. 18 Jiangwan First Road, Changcheng District, Foshan, Guangdong 528000, China
| | - Jianhui Huang
- School of Materials Science and Energy Engineering, Foshan University, No. 18 Jiangwan First Road, Changcheng District, Foshan, Guangdong 528000, China
| | - Shaozhen Wu
- School of Materials Science and Energy Engineering, Foshan University, No. 18 Jiangwan First Road, Changcheng District, Foshan, Guangdong 528000, China
| | - Guangji Li
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| |
Collapse
|
9
|
Hanochi H, Nguyen TL, Yusa SI, Nakamura Y, Fujii S. Colloidal Stabilizer-Assisted Polymerization-Induced Precipitation Method for Colloidally Stable Polyacid Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6993-7002. [PMID: 31050291 DOI: 10.1021/acs.langmuir.9b00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Near-monodispersed, colloidally stable, submicrometer-sized poly(acid phosphoxy ethyl methacrylate) (PAPEMA) latex particles were synthesized by free-radical dispersion polymerization using poly( N-vinylpyrrolidone) (PNVP) as both a steric colloidal stabilizer and a precipitating agent. Polymerization in the absence of PNVP led to a homogeneous transparent solution of PAPEMA, which indicates that the PNVP is essential for latex formation and the complex of PNVP and PAPEMA was formed during the dispersion polymerization. Dispersion copolymerizations with a divinyl cross-linking comonomer (∼20 wt % based on acid phosphoxy ethyl methacrylate) were also successful in synthesizing near-monodispersed, colloidally stable cross-linked PAPEMA latex particles, and the softness and p Ka values of the resulting PAPEMA latex particles can be controlled by varying the divinyl comonomer concentration. These sterically stabilized latex particles were characterized by electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy, elemental microanalysis, and Fourier transform infrared spectroscopy. Characterization results indicated that the PNVP colloidal stabilizer was likely to be located homogeneously on the particle surfaces and within the interior of particles. Finally, it was demonstrated that the PAPEMA latex particles worked as an effective surface modifier for metal surfaces.
Collapse
Affiliation(s)
| | - Thi Lien Nguyen
- Graduate School of Engineering , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| | - Shin-Ichi Yusa
- Graduate School of Engineering , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| | | | | |
Collapse
|
10
|
Pooch F, Sliepen M, Knudsen KD, Nyström B, Tenhu H, Winnik FM. Poly(2-isopropyl-2-oxazoline)- b-poly(lactide) (PiPOx- b-PLA) Nanoparticles in Water: Interblock van der Waals Attraction Opposes Amphiphilic Phase Separation. Macromolecules 2019; 52:1317-1326. [PMID: 31496543 PMCID: PMC6727592 DOI: 10.1021/acs.macromol.8b02558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Indexed: 12/17/2022]
Abstract
Poly(2-isopropyl-2-oxazoline)-b-poly(lactide) (PiPOx-b-PLA) diblock copolymers comprise two miscible blocks: the hydrophilic and thermosensitive PiPOx and the hydrophobic PLA, a biocompatible and biodegradable polyester. They self-assemble in water, forming stable dispersions of nanoparticles with hydrodynamic radii (R h) ranging from ∼18 to 60 nm, depending on their molar mass, the relative size of the two blocks, and the configuration of the lactide unit. Evidence from 1H nuclear magnetic resonance spectroscopy, light scattering, small-angle neutron scattering, and cryo-transmission electron microscopy indicates that the nanoparticles do not adopt the typical core-shell morphology. Aqueous nanoparticle dispersions heated from 20 to 80 °C were monitored by turbidimetry and microcalorimetry. Nanoparticles of copolymers containing a poly(dl-lactide) block coagulated irreversibly upon heating to 50 °C, forming particles of various shapes (R h ∼ 200-500 nm). Dispersions of PiPOx-b-poly(l-lactide) coagulated to a lesser extent or remained stable upon heating. From the entire experimental evidence, we conclude that PiPOx-b-PLA nanoparticles consist of a core of PLA/PiPOx chains associated via dipole-dipole interactions of the PLA and PiPOx carbonyl groups. The core is surrounded by tethered PiPOx loops and tails responsible for the colloidal stability of the nanoparticles in water. While the core of all nanoparticles studied contains associated PiPOx and PLA blocks, fine details of the nanoparticles morphology vary predictably with the size and composition of the copolymers, yielding particles of distinctive thermosensitivity in aqueous dispersions.
Collapse
Affiliation(s)
- Fabian Pooch
- Department
of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Marjolein Sliepen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Kenneth D. Knudsen
- Department
of Physics, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller, Norway
| | - Bo Nyström
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Heikki Tenhu
- Department
of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Françoise M. Winnik
- Department
of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
11
|
Landsgesell J, Nová L, Rud O, Uhlík F, Sean D, Hebbeker P, Holm C, Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. SOFT MATTER 2019; 15:1155-1185. [PMID: 30706070 DOI: 10.1039/c8sm02085j] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article recapitulates the state of the art regarding simulations of ionization equilibria of weak polyelectrolyte solutions and gels. We start out by reviewing the essential thermodynamics of ionization and show how the weak polyelectrolyte ionization differs from the ionization of simple weak acids and bases. Next, we describe simulation methods for ionization reactions, focusing on two methods: the constant-pH ensemble and the reaction ensemble. After discussing the advantages and limitations of both methods, we review the existing simulation literature. We discuss coarse-grained simulations of weak polyelectrolytes with respect to ionization equilibria, conformational properties, and the effects of salt, both in good and poor solvent conditions. This is followed by a discussion of branched star-like weak polyelectrolytes and weak polyelectrolyte gels. At the end we touch upon the interactions of weak polyelectrolytes with other polymers, surfaces, nanoparticles and proteins. Although proteins are an important class of weak polyelectrolytes, we explicitly exclude simulations of protein ionization equilibria, unless they involve protein-polyelectrolyte interactions. Finally, we try to identify gaps and open problems in the existing simulation literature, and propose challenges for future development.
Collapse
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pinguet CE, Ryll E, Steinschulte AA, Hoffmann JM, Brugnoni M, Sybachin A, Wöll D, Yaroslavov A, Richtering W, Plamper FA. PEO-b-PPO star-shaped polymers enhance the structural stability of electrostatically coupled liposome/polyelectrolyte complexes. PLoS One 2019; 14:e0210898. [PMID: 30653618 PMCID: PMC6336312 DOI: 10.1371/journal.pone.0210898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022] Open
Abstract
We propose a strategy to counteract the salt-driven disassembly of multiliposomal complexes made by electrostatic co-assembly of anionic small unilamellar liposomes and cationic star-shaped polyelectrolytes (made of quaternized poly(dimethylaminoethyl methacrylate) (qPDMAEMA100)3.1). The combined action of (qPDMAEMA100)3.1 and a nonionic star-shaped polymer (PEO12-b-PPO45)4, which comprises diblock copolymer arms uniting a poly(ethylene oxide) PEO inner block and a poly(propylene oxide) PPO terminal block, leads to a stabilization of these complexes against disintegration in saline solutions. Hereby, the anchoring of the PPO terminal blocks to the lipid bilayer and the bridging between several liposomes are at the origin of the promoted structural stability. Two-focus fluorescence correlation spectroscopy verifies the formation of multiliposomal complexes with (PEO12-b-PPO45)4. The polyelectrolyte and the amphiphilic polymer work synergistically, as the joint action still assures some membrane integrity, which is not seen for the mere (PEO12-b-PPO45)4-liposome interaction alone.
Collapse
Affiliation(s)
- Camille E. Pinguet
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Esther Ryll
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | | | - Jón M. Hoffmann
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Monia Brugnoni
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Andrey Sybachin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Alexander Yaroslavov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Felix A. Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
- Institute of Physical Chemistry, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
13
|
Baddam V, Aseyev V, Hietala S, Karjalainen E, Tenhu H. Polycation–PEG Block Copolymer Undergoes Stepwise Phase Separation in Aqueous Triflate Solution. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vikram Baddam
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Vladimir Aseyev
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Sami Hietala
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Erno Karjalainen
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Heikki Tenhu
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
14
|
Murmiliuk A, Matějíček P, Filippov SK, Janata M, Šlouf M, Pispas S, Štěpánek M. Formation of core/corona nanoparticles with interpolyelectrolyte complex cores in aqueous solution: insight into chain dynamics in the complex from fluorescence quenching. SOFT MATTER 2018; 14:7578-7585. [PMID: 30140809 DOI: 10.1039/c8sm01174e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Formation of interpolyelectrolyte complexes (IPECs) of poly(methacrylic acid) (PMAA) bearing a fluorescent label (umbelliferone) at the chain end and poly[3,5-bis(trimethyl ammoniummethyl)-4-hydroxystyrene iodide]-block-poly(ethylene oxide) (QNPHOS-PEO) acting as a fluorescence quencher, was followed using a combination of scattering, calorimetry, microscopy and fluorescence spectroscopy techniques. While scattering and microscopy measurements indicated formation of spherical core/corona nanoparticles with the core of the QNPHOS/PMAA complex and the PEO corona, fluorescence measurements showed that both static and dynamic quenching efficiency were increased in the nanoparticle stability region. As the dynamic quenching rate constant remained unchanged, the quenching enhancement was caused by the increase in the local concentration of QNPHOS segments in the microenvironment of the label. This finding implies that the local dynamics of PMAA end chains affecting the interaction of the label with QNPHOS segments was independent of both PMAA and QNPHOS chain conformations.
Collapse
Affiliation(s)
- Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
15
|
Hebbeker P, Plamper FA, Schneider S. Aggregation of Star Polymers: Complexation versus Segregation. MACROMOL THEOR SIMUL 2018. [DOI: 10.1002/mats.201800033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Pascal Hebbeker
- Institute of Physical Chemistry; RWTH Aachen University; 52074 Aachen Germany
| | - Felix A. Plamper
- Institute of Physical Chemistry; RWTH Aachen University; 52074 Aachen Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry; RWTH Aachen University; 52074 Aachen Germany
| |
Collapse
|
16
|
Oh T, Nagao M, Hoshino Y, Miura Y. Self-Assembly of a Double Hydrophilic Block Glycopolymer and the Investigation of Its Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8591-8598. [PMID: 29957990 DOI: 10.1021/acs.langmuir.8b01527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the self-assembly of a double hydrophilic block glycopolymer (DHBG) via hydrogen bonding and coordinate bonding. This DHBG, composed of poly(ethylene)glycol (PEG) and glycopolymer, self-assembled into a well-defined structure. The DHBG was prepared through the controlled radical polymerization of trimethylsilyl-protected propargyl methacrylate using a PEG-based reversible addition-fragmentation chain transfer reagent, followed by sugar conjugation using click chemistry. The DHBG self-assembly capability was investigated by transmission electron microscopy and dynamic light scattering. Interestingly, the DHBG self-assembled into a spherical structure in aqueous solution. Hydrogen bonding and coordinate bonding with Ca2+ were identified as the driving forces for self-assembly.
Collapse
Affiliation(s)
- Takahiro Oh
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| | - Masanori Nagao
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| | - Yu Hoshino
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| | - Yoshiko Miura
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| |
Collapse
|
17
|
Gelissen APH, Scotti A, Turnhoff SK, Janssen C, Radulescu A, Pich A, Rudov AA, Potemkin II, Richtering W. An anionic shell shields a cationic core allowing for uptake and release of polyelectrolytes within core-shell responsive microgels. SOFT MATTER 2018; 14:4287-4299. [PMID: 29774926 DOI: 10.1039/c8sm00397a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To realize carriers for drug delivery, cationic containers are required for anionic guests. Nevertheless, the toxicity of cationic carriers limits their practical use. In this study, we investigate a model system of polyampholyte N-isopropylacrylamide (NIPAM)-based microgels with a cationic core and an anionic shell to study whether the presence of a negative shell allows the cationic core to be shielded while still enabling the uptake and release of the anionic guest polyelectrolytes. These microgels are loaded with polystyrene sulfonate of different molecular weights to investigate the influence of their chain length on the uptake and release process. By means of small-angle neutron scattering, we evaluate the spatial distribution of polystyrene sulfonate within the microgels. The guest molecules are located in different parts of the core-shell microgels depending on their size. By combining these scattering results with UV-vis spectroscopy, electrophoretic mobility and potentiometric titrations we gain complementary results to investigate the uptake and release process of polyelectrolytes in polyampholyte core-shell microgels. Moreover, Brownian molecular dynamic simulations are performed to compare the experimental and theoretical results of this model. Our findings demonstrate that the presence of a shell still enables efficient uptake of guest molecules into the cationic core. These anionic guest molecules can be released through an anionic shell. Furthermore, the presence of a shell enhances the stability of the microgel-polyelectrolyte complexes with respect to the cationic precursor microgel alone.
Collapse
Affiliation(s)
- Arjan P H Gelissen
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hebbeker P, Langen TG, Plamper FA, Schneider S. Spacer Chains Prevent the Intramolecular Complexation in Miktoarm Star Polymers. J Phys Chem B 2018; 122:4729-4736. [PMID: 29630376 DOI: 10.1021/acs.jpcb.8b01663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The influence of spacer chains on the intramolecular complexation in star-shaped heteroarm (miktoarm) polymers is investigated. To overcome the mutual attraction of different polymeric components present in a miktoarm star with different homopolymeric arms, spacer chains of different length are attached to the core of the star at three different positions. In most of the investigated cases, this leads to diblock copolymer arms within the miktoarm star. Hereby, the inner spacer separates the outer blocks from their attractively interacting homopolymeric arms. The effect on the intramolecular complexation and the structure of the star polymer is obtained by Monte Carlo simulations of a simple bead-spring model. Then, long spacers can completely prevent the complexation. Both, local shielding by the spacer chains and the increased distance between the complex-forming polymers due to the spacer chains inhibit the complex formation. For a range of spacer positions and lengths, an equilibrium between a system forming a complex and a complex free system is found. The spacer chains can be used as a tool to tune the intramolecular complexation.
Collapse
Affiliation(s)
- Pascal Hebbeker
- Institute of Physical Chemistry , RWTH Aachen University , D-52074 Aachen , Germany
| | - Tabea G Langen
- Institute of Physical Chemistry , RWTH Aachen University , D-52074 Aachen , Germany
| | - Felix A Plamper
- Institute of Physical Chemistry , RWTH Aachen University , D-52074 Aachen , Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , D-52074 Aachen , Germany
| |
Collapse
|
19
|
Dähling C, Houston JE, Radulescu A, Drechsler M, Brugnoni M, Mori H, Pergushov DV, Plamper FA. Self-Templated Generation of Triggerable and Restorable Nonequilibrium Micelles. ACS Macro Lett 2018; 7:341-346. [PMID: 35632909 DOI: 10.1021/acsmacrolett.8b00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conditional variations can lead to micellar transformations resulting in various (equilibrium) morphologies. However, creating differently shaped assemblies under the same final conditions (same ingredients, composition, temperature, etc.) is challenging. We present a thermoresponsive polyelectrolyte system allowing a pathway-dependent preparation of kinetically stable spherical star-like or cylindrical micelles. In more detail, a temperature-induced structure switch is used to generate equilibrated interpolyelectrolyte complex (IPEC) micelles of different morphologies (templates) below and above the lower critical solution temperature in the presence of plasticizer (salt). Then, lowering the salt concentration at a specific temperature kinetically freezes the formed IPECs, keeping the respective microstructural information encoded in the frozen IPEC also at other temperatures. Hence, different nonequilibrium morphologies at the same final conditions are provided. The salt-triggered transition from nonequilibrium to equilibrium micelles can be repeated for the same sample, highlighting a system with an on-demand changeable and restorable structure.
Collapse
Affiliation(s)
- Claudia Dähling
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Judith E. Houston
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Markus Drechsler
- Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Monia Brugnoni
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Hideharu Mori
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Dmitry V. Pergushov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Felix A. Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
20
|
Shibaev AV, Makarov AV, Kuklin AI, Iliopoulos I, Philippova OE. Role of Charge of Micellar Worms in Modulating Structure and Rheological Properties of Their Mixtures with Nonionic Polymer. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Anton V. Makarov
- Physics
Department, Moscow State University, 119991 Moscow, Russia
| | | | - Ilias Iliopoulos
- PIMM, ENSAM, CNRS,
CNAM, 151 boulevard de l’Hôpital, 75013 Paris, France
| | | |
Collapse
|
21
|
Steinschulte AA, Scotti A, Rahimi K, Nevskyi O, Oppermann A, Schneider S, Bochenek S, Schulte MF, Geisel K, Jansen F, Jung A, Mallmann S, Winter R, Richtering W, Wöll D, Schweins R, Warren NJ, Plamper FA. Stimulated Transitions of Directed Nonequilibrium Self-Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703495. [PMID: 29024083 DOI: 10.1002/adma.201703495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Near-equilibrium stimulus-responsive polymers have been used extensively to introduce morphological variations in dependence of adaptable conditions. Far-less-well studied are triggered transformations at constant conditions. These require the involvement of metastable states, which are either able to approach the equilibrium state after deviation from metastability or can be frozen on returning from nonequilibrium to equilibrium. Such functional nonequilibrium macromolecular systems hold great promise for on-demand transformations, which result in substantial changes in their material properties, as seen for triggered gelations. Herein, a diblock copolymer system consisting of a hydrophilic block and a block that is responsive to both pressure and temperature, is introduced. This species demonstrates various micellar transformations upon leaving equilibrium/nonequilibrium states, which are triggered by a temperature deflection or a temporary application of hydrostatic pressure.
Collapse
Affiliation(s)
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Khosrow Rahimi
- DWI Leibniz Institute for Interactive Materials and Center for Chemical Polymer Technology (CPT), Forckenbeckstr. 50, D-52074, Aachen, Germany
| | - Oleksii Nevskyi
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Alex Oppermann
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Sabine Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Marie F Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Karen Geisel
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Felicitas Jansen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Andre Jung
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Sabrina Mallmann
- DWI Leibniz Institute for Interactive Materials and Center for Chemical Polymer Technology (CPT), Forckenbeckstr. 50, D-52074, Aachen, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry I, TU Dortmund University, Otto-Hahn Str. 6, D-44227, Dortmund, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Ralf Schweins
- Institut Laue-Langevin ILL, DS/LSS, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | - Nicholas J Warren
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Felix A Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| |
Collapse
|
22
|
Dai Y, Wu P. Toward the two-step microdynamic phase transition mechanism of an oligo(ethylene glycol)methacrylate-based copolymer with a LCST-type poly(ionic liquid) block. Phys Chem Chem Phys 2017; 19:18556-18564. [PMID: 28686277 DOI: 10.1039/c7cp02942j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new LCST-type thermoresponsive polyelectrolyte P[P4,4,4,4][SS], poly(tetrabutyl phosphonium styrene sulfonate), was introduced to PMEO2MA (poly(2-(2-methoxyethoxy)ethyl methacrylate)) via RAFT polymerization, in order to explore the transition behavior of the block copolymer PMEO2MA-b-P[P4,4,4,4][SS] with two distinct LCST-type segments. A relatively sharp LCST-type phase transition with only one transition point is observed in the turbidity curves, while the whole phase transition is completely different from the micro perspective. The phase transition temperature range is relatively broad, according to the unsynchronized changes of different protons of the two blocks in the temperature-variable 1H NMR analysis. From PCMW analysis, it is found that there exists an obvious two-step phase transition behavior, especially in the region of the C-H groups. Accordingly, we divided the whole transition process into two subregions: 20-40 °C and 40-55 °C in 2Dcos analysis. At the first stage of 20-40 °C, the CH3 groups mainly belonging to the backbones of PMEO2MA blocks have the earliest response to the heating and drive the first step of the dehydration process of PMEO2MA-b-P[P4,4,4,4][SS], resulting in the formation of an intermediate micelle state composed of the collapsed PMEO2MA core and hydrophilic P[P4,4,4,4][SS] corona. In particular, the conformational changes and the more compact structures due to the interaction between the C[double bond, length as m-dash]O groups and P[P4,4,4,4][SS] segments (ν(C[double bond, length as m-dash]OD2O-PILs)) were observed using IR analysis. With the continual increase of the temperature, when the second temperature range of 40-55 °C is reached, the P[P4,4,4,4][SS] segments start to collapse and expel the water molecules, driven by the anions of the poly(ionic liquid)s, with the phosphonium cations being distributed over the relatively hydrophilic outside.
Collapse
Affiliation(s)
- Yalan Dai
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | | |
Collapse
|
23
|
Steinschulte AA, Gelissen AP, Jung A, Brugnoni M, Caumanns T, Lotze G, Mayer J, Pergushov DV, Plamper FA. Facile Screening of Various Micellar Morphologies by Blending Miktoarm Stars and Diblock Copolymers. ACS Macro Lett 2017; 6:711-715. [PMID: 35650875 DOI: 10.1021/acsmacrolett.7b00328] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A time-saving phase-diagram screening is introduced for the self-assembly of miktoarm star polymers with different arm numbers for the insoluble part. Agreeing with theory, all conventional micellar morphologies (spherical star-like micelles, cylindrical micelles and vesicles) can be accessed by adjusting the average arm number when blending miktoarm stars with diblock copolymers (at constant arm/block lengths). Additionally, a rare clustered vesicle phase is detected. Hence, this approach permits an easy tuning of the equilibrium morphology and the size of the solvophobic domain. Such screening by scattering, ultracentrifugation, and electron microscopy techniques assists the targeted synthesis of miktoarm stars with a well-defined arm number, aimed at the morphology control of the nanostructures without blending. Specifically, we demonstrate a systematic variation of all classical micellar morphologies based on interpolyelectrolyte complexes (IPECs), consisting of a water-insoluble part formed by electrostatically coupled poly(styrenesulfonate) chains/quaternized poly(2-(dimethylamino)ethyl methacrylate) blocks, being stabilized by hydrophilic poly(ethylene oxide) blocks.
Collapse
Affiliation(s)
| | - Arjan P.H. Gelissen
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany
| | - Andre Jung
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany
| | - Monia Brugnoni
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany
| | - Tobias Caumanns
- GFE
Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraße 55, D-52074 Aachen, Germany
| | - Gudrun Lotze
- ESRF −
The European Synchrotron Radiation Facility, ID02 - Time-Resolved
Ultra Small-Angle X-Ray Scattering, 71, Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Joachim Mayer
- GFE
Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraße 55, D-52074 Aachen, Germany
| | - Dmitry V. Pergushov
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, 119991 Moscow, Russian Federation
| | - Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany
| |
Collapse
|
24
|
Adjusting the size of multicompartmental containers made of anionic liposomes and polycations by introducing branching and PEO moieties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Dähling C, Lotze G, Mori H, Pergushov DV, Plamper FA. Thermoresponsive Segments Retard the Formation of Equilibrium Micellar Interpolyelectrolyte Complexes by Detouring to Various Intermediate Structures. J Phys Chem B 2017; 121:6739-6748. [PMID: 28661146 DOI: 10.1021/acs.jpcb.7b04238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The kinetics of interpolyelectrolyte complexation involving architecturally complex (star-like) polymeric components is addressed. Specifically, the spontaneous coupling of branched cationic star-shaped miktoarm polymers, i.e., quaternized poly(ethylene oxide)114-(poly(2-(dimethylamino)ethyl methacrylate)17)4 (PEO114-(qPDMAEMA17)4), and temperature-sensitive linear anionic diblock copolymers poly(vinyl sulfonate)31-b-poly(N-isopropylacrylamide)27 (PVS31-b-PNIPAM27) and further rearrangements of the formed complexes were investigated by means of stopped-flow small-angle X-ray scattering (SAXS). Colloidally stable micelles were obtained upon mixing both polymers at a 1:1 charge molar ratio in saline solutions. The description of the time-resolved SAXS data with appropriate form factor models yielded dimensions for each micellar domain and detailed the picture of the time-dependent size changes and restructuring processes. A fast interpolyelectrolyte coupling and structural equilibration were observed when mixing occurs below the lower critical solution temperature (LCST) of PNIPAM, resulting in small spherical-like assemblies with hydrated PNIPAM coronal blocks. Above the LCST, the collapsed PNIPAM decelerates equilibration, though temperature as such is expected to boost the kinetics of complex formation: after a fast initial interpolyelectrolyte coupling, different nonequilibrium structures of spherical and worm-like shape are observed on different time scales. This study illustrates how a thermoresponsive component can modulate the influence of temperature on kinetics, particularly for rearrangement processes toward equilibrium structures during interpolyelectrolyte complexation.
Collapse
Affiliation(s)
- Claudia Dähling
- Institute of Physical Chemistry, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Gudrun Lotze
- ID02, Time-Resolved Ultra Small-Angle X-Ray Scattering Beamline, ESRF-European Synchrotron Radiation Facility , 71, Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Hideharu Mori
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University , 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Dmitry V Pergushov
- Department of Chemistry, M. V. Lomonosov Moscow State University , Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Felix A Plamper
- Institute of Physical Chemistry, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
26
|
|
27
|
Liu H, Zhang J, Dai W, Zhao Y. Synthesis and self-assembly of a dual-responsive monocleavable ABCD star quaterpolymer. Polym Chem 2017. [DOI: 10.1039/c7py01638g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A modularly synthesized core-functionalized PEG-PSt-PCL-PAA miktoarm star can self-assemble into hollow nanocapsules that are sensitive to pH/redox stimuli and H-bond/polyion complexation.
Collapse
Affiliation(s)
- Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wenxue Dai
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|