1
|
Song B, Zhang E, Shi Y, Zhu H, Wang W, Gallagher SJ, Cao Z. A Paintable, Scalable, and Durable Zwitterionic Hydrogel Coating for Enhanced Marine Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3464-3474. [PMID: 39893696 DOI: 10.1021/acs.langmuir.4c04595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Marine biofouling has been a severe challenge since the increase of maritime trade, significantly impacting the efficiency of ships by increasing drag, fuel consumption, hull corrosion, and even problems related to navigational safety and biological invasions. Commercial antifouling coatings have been developed for many years, but a satisfactory solution has yet to be found due to problems, such as high toxicity, environmental pollution, or high costs. Zwitterionic materials, with their superhydrophilic properties, demonstrate excellent resistance to nonspecific adhesion alongside good biocompatibility, making them promising candidates for marine antifouling applications. However, their superhydrophilic nature makes it difficult to anchor onto hydrophobic substrates, limiting their use. In this study, we presented a paintable, scalable, and durable antifouling coating system made by zwitterionic hydrogel (PSDA-Z), which was covalently attached to substrates through an acrylated epoxy resin primer coat and maintained antifouling performance even after 3 months of high-speed water shearing, high-pressure sandpaper abrasion, and sharp scratching. This PSDA-Z could also easily be applied on various substrates without specific treatments, including epoxy resin, poly(vinyl chloride) (PVC), polyurethane (PU), and wood. More importantly, this coating system achieved excellent antifouling performance comparable to self-polishing coatings (SPCs), the current industry standard in marine antifouling coating, in the Atlantic Ocean field tests for 3 months, suggesting its promise as an effective and ecofriendly alternative for marine antifouling applications.
Collapse
Affiliation(s)
- Boyi Song
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Wei Wang
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Sheu-Jane Gallagher
- Repela Tech, LLC, 2222 W Grand River Ave, Ste A, Okemos, Michigan 48864, United States
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Bisht H, Hong Y, Park S, Hwang Y, Hong D. Fabrication of Versatile Antifouling Coatings Inspired by Melanogenesis Using a Tyrosine-Conjugated Carboxybetaine Derivative. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2082-2088. [PMID: 39817801 DOI: 10.1021/acs.langmuir.4c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In this study, we developed zwitterionic surface coatings of carboxybetaine by mimicking natural melanogenesis. We synthesized an unnatural tyrosine-conjugated carboxybetaine (Tyr-CB) that undergoes melanin-like oxidation upon treatment with tyrosinase under various aqueous conditions. The thickness of the resulting poly(Tyr-CB) film was tuned by adjusting the pH during the coating process. The poly(Tyr-CB)-coated surfaces demonstrated excellent antifouling performance against proteins and cells and imparted (super)hydrophilicity to various substrates. Additionally, post-functionalization with external biotin-PEG-thiol was achieved by targeting the oxidized quinone groups within the poly(Tyr-CB) film network. This enabled biospecific binding to streptavidin, while non-specific interactions were suppressed due to the antifouling background. As our one-step antifouling coating method is simple, involves aqueous conditions, and could be generically used to coat various substrates, it can be a versatile and valuable tool for biosensing, high-throughput screening, and cell-surface engineering.
Collapse
Affiliation(s)
- Himani Bisht
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yubin Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Suho Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Alaqabani H, Hammad A, Abosnwber Y, Perrie Y. Novel microfluidic development of pH-responsive hybrid liposomes: In vitro and in vivo assessment for enhanced wound Healing. Int J Pharm 2024; 667:124884. [PMID: 39471888 DOI: 10.1016/j.ijpharm.2024.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Wound healing is a complex biological process crucial for tissue repair, especially in chronic wounds where healing is impaired. Liposomes have emerged as promising vehicles for delivering therapeutics to facilitate wound repair. Liposomes have been explored as effective carriers for therapeutic agents. However, traditional methods of liposome preparation face significant challenges, particularly in achieving consistent stability and precise control over drug encapsulation and release. This study addresses these challenges by pioneering the development of Hybrid Liposomes (HLPs) using microfluidic technology, which provides more controlled characteristics through precisely managed formulation parameters. Notably, the formation of Polydopamine (PDA) polymer within HLPs facilitates pH-responsive drug release, making them well-suited for acidic wound environments. Furthermore, surface modification with Folic Acid (FA) enhances cellular interaction with the HLPs. In vitro and in vivo studies demonstrate the efficacy of HLPs loaded with Hyaluronic Acid (HA) or Phenytoin (PHT) in promoting wound healing. Microfluidics optimizes the stability of HLPs over 90 days, underscoring their potential as a potent, antibiotic-free drug delivery system. In conclusion, this research advances the understanding of microfluidic optimization for HLPs, offering cutting-edge drug delivery systems. The transformative potential of targeted HLPs through microfluidics holds promise for revolutionizing wound healing and inspires optimism for effective therapeutic interventions.
Collapse
Affiliation(s)
- Hakam Alaqabani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK; Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Alaa Hammad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Yara Abosnwber
- Faculty of Health School of Biomedical Sciences, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK
| |
Collapse
|
4
|
Du Z, Qiao F, Tong L, Zhang W, Mou X, Zhao X, Maitz MF, Wang H, Huang N, Yang Z. Mimicking Mytilus edulis foot protein: A versatile strategy for robust biomedical coatings. Innovation (N Y) 2024; 5:100671. [PMID: 39114479 PMCID: PMC11305295 DOI: 10.1016/j.xinn.2024.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo-Mytilus edulis foot protein 5 (pseudo-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5. CPAs can fabricate highly adhesive, robust, multifunctional polyCPA (PCPA) coatings based on synergetic catechol-polyamine chemistry as universal building blocks. Due to the interpenetrating entangled network architectures, these coatings exhibit high chemical robustness against harsh conditions (HCl, pH 1; NaOH, pH 14; H2O2, 30%), good mechanical robustness, and wear resistance. In addition, PCPA coatings provide abundant grafting sites, enabling the fabrication of various functional surfaces through secondary modification. Furthermore, the versatility, multifaceted robustness, and scalability of PCPA coatings indicate their great potential for surface engineering, especially for withstanding harsh conditions in multipurpose biomedical applications.
Collapse
Affiliation(s)
- Zeyu Du
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| | - Feng Qiao
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| | - Xiaohui Mou
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Manfred F. Maitz
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nan Huang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
- GuangZhou Nanchuang Mount Everest Company for Medical Science and Technology, Guangzhou 510670, China
| | - Zhilu Yang
- School of Materials Science and Engineering, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated with Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
| |
Collapse
|
5
|
Xu X, Kao H, Yu X, Zhou J, Hou P, Xu G, Chen J. Green Fabrication of Superhydrophilic/Underwater Superoleophobic Composite Membrane for High-Efficiency Oil/Water Separation in Harsh Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11661-11669. [PMID: 38781140 DOI: 10.1021/acs.langmuir.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Due to the high oil spill incidence and industrial wastewater discharge including oil and emulsified oil, designing and synthesizing oil-water separation materials which can maintain stability under harsh environmental conditions with high separation efficiencies remains a great challenge. The present work developed an easy, green, cost-effective, and easily scaled-up approach for fabricating cellulose-based membranes. First, we coated polydopamine (PDA) onto fibers of filter membrane (FM). Then, the PDA-FM membrane was immersed into the mixed solution of poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) and further thermally cross-linked at 150 °C to create a superhydrophilic/underwater superoleophobic membrane (PVA/PAA@PDA-FM) to separate oil/water mixtures. The simple thermally cross-linking process promotes multiple covalent chemical bonds generation between cellulose filter membrane, PAA, PDA, and PVA, endowing membranes with excellent stability and resistance to acidity, alkalinity, and salinity. The PVA/PAA@PDA-FM membrane not only demonstrates great separation performance (>99.8%) and great flux (>1000 L m-2 h-1) in oil-water immiscible mixtures but also maintains high separation efficiency under conditions of high acidity, alkalinity, and salinity. Additionally, the PVA/PAA@PDA-FM membrane exhibits excellent separation capacity in oil-water emulsions, which can maintain the >99.6% separation efficiency even after 40 cycles in harsh environments, showing outstanding reusability. Thus, due to the multiple cross-linked networks in the membrane, the excellent performance makes the PVA/PAA@PDA-FM membrane a good application prospect in water purification and oily wastewater treatment.
Collapse
Affiliation(s)
- Xiangpeng Xu
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
| | - Hongming Kao
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Xinran Yu
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Jingmiao Zhou
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Panchao Hou
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Gonghao Xu
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Jing Chen
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| |
Collapse
|
6
|
Weldemhret TG, Park YT, Song JI. Recent progress in surface engineering methods and advanced applications of flexible polymeric foams. Adv Colloid Interface Sci 2024; 326:103132. [PMID: 38537566 DOI: 10.1016/j.cis.2024.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Polymeric foams, also known as three-dimensional (3D) polymeric sponges, are lightweight, flexible, compressible, and possess a high surface area compared with other bulk polymers. These sponges have traditionally been used for mattresses or seat cushions in homes, offices, aircraft, automobiles, and trains, and to insulate against heat, electricity, and noise. Recently, the demand for modern materials has expanded the application of polymeric foams to various high-value technologies, including in areas that need high flame retardancy, flame sensors, oil/water separation, metal adsorption, solar steam generation, piezoresistivity, electromagnetic interference shielding, thermal energy storage, catalysis, supercapacitors, batteries, and triboelectric energy harvesting. Proper modification of foams is a prerequisite for their use in high-value applications. Several new strategies for the surface coating of 3D porous foams and novel emerging applications have been recently developed. Therefore, in this review, current advances in the field of surface coating and the application of 3D polymeric foams are discussed. A brief background on 3D polymeric foams, including the unique properties and benefits of polymeric sponges and their routes of synthesis, is presented. Different coating strategies for polymeric sponges are discussed, and their advantages and drawbacks are highlighted. Different advanced applications of polymeric sponges, in conjunction with specific and detailed examples of the above-mentioned applications, are also described. Finally, challenges and potential applications related to the coating of polymeric foams are discussed. We envisage that this review will be useful to facilitate further research, promote continued efforts on the advanced applications mentioned above, and provide new stimuli for the design of novel polymeric sponges for future modern applications.
Collapse
Affiliation(s)
- Teklebrahan Gebrekrstos Weldemhret
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea; Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
| | - Jung Il Song
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea.
| |
Collapse
|
7
|
Lu Q, Vosberg B, Wang Z, Balasubramanian P, Sow M, Volkert C, Gonzalez Brouwer R, Lieberwirth I, Graf R, Jelezko F, Plenio MB, Wu Y, Weil T. Unraveling Eumelanin Radical Formation by Nanodiamond Optical Relaxometry in a Living Cell. J Am Chem Soc 2024; 146:7222-7232. [PMID: 38469853 PMCID: PMC10958502 DOI: 10.1021/jacs.3c07720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
Defect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center. A thin layer of eumelanin is polymerized on the surface of nanodiamonds (NDs), and depending on the environmental conditions, such as the local pH value, near-infrared, and ultraviolet light irradiation, the radicals form and react in situ. By combining experiments and theoretical simulations, we quantify the local number and kinetics of free radicals in the eumelanin layer. Next, the ND sensor enters the cells via endosomal vesicles. We quantify the number of radicals formed within the eumelanin layer in these acidic compartments by applying optical relaxometry measurements. In the future, we believe that the ND quantum sensor could provide valuable insights into the chemistry of eumelanin, which could contribute to the understanding and treatment of eumelanin- and melanin-related diseases.
Collapse
Affiliation(s)
- Qi Lu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Berlind Vosberg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zhenyu Wang
- Institute
of Theoretical Physics and Center for Integrated Quantum Science and
Technology (IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Key
Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry
of Education), and School of Physics, South
China Normal University, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Quantum Engineering and Quantum Materials,
and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Priyadharshini Balasubramanian
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maabur Sow
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carla Volkert
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Raul Gonzalez Brouwer
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ingo Lieberwirth
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Robert Graf
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fedor Jelezko
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martin B. Plenio
- Institute
of Theoretical Physics and Center for Integrated Quantum Science and
Technology (IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yingke Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
8
|
Yang W, Ni L, Zhu M, Zhang X, Feng L. Mg 2+- or Ca 2+-regulated aptamer adsorption on polydopamine-coated magnetic nanoparticles for fluorescence detection of ochratoxin A. Mikrochim Acta 2024; 191:157. [PMID: 38409486 DOI: 10.1007/s00604-024-06252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
It has been observed that polyvalent metal ions can mediate the adsorption of DNA on polydopamine (PDA) surfaces. Exploiting this, we used two divalent metal ions (Mg2+ or Ca2+) to promote the adsorption of fluorescence-labelled ochratoxin A (OTA) aptamers on PDA-coated magnetic nanoparticles (Fe3O4@PDA). Based on the different adsorption affinities of free aptamers and OTA-bound aptamers, a facile assay method was established for OTA detection. The aptamers adsorbed on Fe3O4@PDA were removed via simple magnetic separation, and the remaining aptamers in the supernatant exhibited a positive correlation with the OTA concentration. The concentrations of Mg2+ and Ca2+ were finely tuned to attain the optimal adsorption affinity and sensitivity for OTA detection. In addition, other factors, including the Fe3O4@PDA dosage, pH, mixing order, and incubation time, were studied. Finally, under optimized conditions, a detection limit (3σ/s) of 1.26 ng/mL was achieved for OTA. Real samples of spiked red wine were analysed with this aptamer-based method. This is the first report of regulating aptamer adsorption on the PDA surface with polyvalent metal ions for OTA detection. By changing the aptamers, the method can be easily extended to other target analytes.
Collapse
Affiliation(s)
- Wei Yang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Lanxiu Ni
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Mingzhen Zhu
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
9
|
Li J, Bi L, Musolino SF, Wulff JE, Sask KN. Functionalization of Polydimethylsiloxane with Diazirine-Based Linkers for Covalent Protein Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1-16. [PMID: 38149968 DOI: 10.1021/acsami.3c08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Biomolecule attachment to solid supports is critical for biomedical devices, such as biosensors and implants. Polydimethylsiloxane (PDMS) is commonly used for these applications due to its advantageous properties. To enhance the biomolecule immobilization on PDMS, a novel technique is demonstrated using newly synthesized diazirine molecules for the surface modification of PDMS. This nondestructive process involves a reaction between diazirine molecules and PDMS through C-H insertion with thermal or ultraviolet activation. The success of the PDMS modification is confirmed by various surface characterization techniques. Bovine serum albumin (BSA) and immunoglobulin G (IgG) are strongly attached to the modified PDMS surfaces, and the amount of protein is quantified using iodine-125 radiolabeling. The results demonstrate that PDMS is rapidly functionalized, and the stability of the immobilized proteins is significantly improved with multiple types of diazirine molecules and activation methods. Confocal microscopy provides three-dimensional images of the distribution of immobilized IgG on the surfaces and the penetration of diazirine-based linkers through the PDMS substrate during the coating process. Overall, this study presents a promising new approach for functionalizing PDMS surfaces to enhance biomolecule immobilization, and its potential applications can extend to multimaterial modifications for various diagnostic and medical applications such as microfluidic devices and immunoassays with relevant bioactive proteins.
Collapse
Affiliation(s)
- Jie Li
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L2, Canada
| | - Liting Bi
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Stefania F Musolino
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Kyla N Sask
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L2, Canada
- Department of Materials Science & Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
10
|
Chen BY, Hong SY, Wang HM, Shi Y, Wang P, Wang XJ, Jiang QY, Yang KD, Chen W, Xu XL. The subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles. Part Fibre Toxicol 2023; 20:38. [PMID: 37807046 PMCID: PMC10560437 DOI: 10.1186/s12989-023-00548-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Recently, mesoporous nanomaterials with widespread applications have attracted great interest in the field of drug delivery due to their unique structure and good physiochemical properties. As a biomimetic nanomaterial, mesoporous polydopamine (MPDA) possesses both a superior nature and good compatibility, endowing it with good clinical transformation prospects compared with other inorganic mesoporous nanocarriers. However, the subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles remain uncertain. Herein, we prepared MPDAs by a soft template method and evaluated their primary physiochemical properties and metabolite toxicity, as well as potential mechanisms. The results demonstrated that MPDA injection at low (3.61 mg/kg) and medium doses (10.87 mg/kg) did not significantly change the body weight, organ index or routine blood parameters. In contrast, high-dose MPDA injection (78.57 mg/kg) is associated with disturbances in the gut microbiota, activation of inflammatory pathways through the abnormal metabolism of bile acids and unsaturated fatty acids, and potential oxidative stress injury. In sum, the MPDA dose applied should be controlled during the treatment. This study first provides a systematic evaluation of metabolite toxicity and related mechanisms for MPDA-based nanoparticles, filling the gap between their research and clinical transformation as a drug delivery nanoplatform.
Collapse
Affiliation(s)
- Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China
| | - Si-Ying Hong
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China
| | - Han-Min Wang
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China
| | - Yi Shi
- ICU, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Peng Wang
- ICU, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Xiao-Juan Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, PR China
| | - Qian-Yang Jiang
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China
| | - Ke-Da Yang
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China.
| | - Wei Chen
- ICU, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China.
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China.
| |
Collapse
|
11
|
Lamaoui A, Lahcen AA, Amine A. Unlocking the Potential of Molecularly Imprinted Polydopamine in Sensing Applications. Polymers (Basel) 2023; 15:3712. [PMID: 37765566 PMCID: PMC10536926 DOI: 10.3390/polym15183712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors that mimic the specificity of biological antibody-antigen interactions. By using a "lock and key" process, MIPs selectively bind to target molecules that were used as templates during polymerization. While MIPs are typically prepared using conventional monomers, such as methacrylic acid and acrylamide, contemporary advancements have pivoted towards the functional potential of dopamine as a novel monomer. The overreaching goal of the proposed review is to fully unlock the potential of molecularly imprinted polydopamine (MIPda) within the realm of cutting-edge sensing applications. This review embarks by shedding light on the intricate tapestry of materials harnessed in the meticulous crafting of MIPda, endowing them with tailored properties. Moreover, we will cover the diverse sensing applications of MIPda, including its use in the detection of ions, small molecules, epitopes, proteins, viruses, and bacteria. In addition, the main synthesis methods of MIPda, including self-polymerization and electropolymerization, will be thoroughly examined. Finally, we will examine the challenges and drawbacks associated with this research field, as well as the prospects for future developments. In its entirety, this review stands as a resolute guiding compass, illuminating the path for researchers and connoisseurs alike.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia 28806, Morocco
| | | | - Aziz Amine
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia 28806, Morocco
| |
Collapse
|
12
|
Kowalczyk P, Kopeć K, Wojasiński M, Jaroszewicz J, Ciach T. Composite microgranular scaffolds with surface modifications for improved initial osteoblastic cell proliferation. BIOMATERIALS ADVANCES 2023; 151:213489. [PMID: 37267750 DOI: 10.1016/j.bioadv.2023.213489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Polyester-based granular scaffolds are a potent material for tissue engineering due to their porosity, controllable pore size, and potential to be molded into various shapes. Additionally, they can be produced as composite materials, e.g., mixed with osteoconductive β-tricalcium phosphate or hydroxyapatite. Such polymer-based composite materials often happen to be hydrophobic, which disrupts cell attachment and decreases cell growth on the scaffold, undermining its primary function. In this work, we propose the experimental comparison of three modification techniques for granular scaffolds to increase their hydrophilicity and cell attachment. Those techniques include atmospheric plasma treatment, polydopamine coating, and polynorepinephrine coating. Composite polymer/β-tricalcium phosphate granules have been produced in a solution-induced phase separation (SIPS) process using commercially available biomedical polymers: poly(lactic acid), poly(lactic-co-glycolic acid), and polycaprolactone. We used thermal assembly to prepare cylindrical scaffolds from composite microgranules. Atmospheric plasma treatment, polydopamine coating, and polynorepinephrine coating showed similar effects on polymer composites' hydrophilic and bioactive properties. All modifications significantly increased human osteosarcoma MG-63 cell adhesion and proliferation in vitro compared to cells cultured on unmodified materials. In the case of polycaprolactone/β-tricalcium phosphate scaffolds, modifications were the most necessary, as unmodified polycaprolactone-based material disrupted the cell attachment. Modified polylactide/β-tricalcium phosphate scaffold supported excellent cell growth and showed ultimate compressive strength exceeding this of human trabecular bone. This suggests that all investigated modification techniques can be used interchangeably for increasing wettability and cell attachment properties of various scaffolds for medical applications, especially those with high surface and volumetric porosity, like granular scaffolds.
Collapse
Affiliation(s)
- Piotr Kowalczyk
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Ludwika Waryńskiego 1, 00-645 Warsaw, Poland; Centre for Advanced Materials and Technology CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland.
| | - Kamil Kopeć
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Ludwika Waryńskiego 1, 00-645 Warsaw, Poland
| | - Michał Wojasiński
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Ludwika Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jakub Jaroszewicz
- Warsaw University of Technology, Faculty of Material Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
| | - Tomasz Ciach
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Ludwika Waryńskiego 1, 00-645 Warsaw, Poland; Centre for Advanced Materials and Technology CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
13
|
Jeong J, Bisht H, Park S, Hong Y, Shin G, Hong D. Formation of Antifouling Brushes on Various Substrates Using a Melanin-Inspired Initiator Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37216408 DOI: 10.1021/acs.langmuir.3c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we developed a substrate-independent initiator film that can undergo surface-initiated polymerization to form an antifouling brush. Inspired by the melanogenesis found in nature, we synthesized a tyrosine-conjugated bromide initiator (Tyr-Br) that contains phenolic amine groups as the dormant coating precursor and α-bromoisobutyryl groups as the initiator. The resultant Tyr-Br was stable under ambient air conditions and underwent melanin-like oxidation only in the presence of tyrosinase to form an initiator film on various substrates. Subsequently, an antifouling polymer brush was formed using air-tolerant activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) of zwitterionic carboxybetaine. The entire surface coating procedure, including the initiator layer formation and ARGET ATRP, occurred under aqueous conditions and did not require organic solvents or chemical oxidants. Therefore, antifouling polymer brushes can be feasibly formed not only on experimentally preferred substrates (e.g., Au, SiO2, and TiO2) but also on polymeric substrates such as poly(ethylene terephthalate) (PET), cyclic olefin copolymer (COC), and nylon.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Himani Bisht
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Suho Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Yubin Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Gijeong Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
14
|
Synthesis of functionalized janus hybrid nanosheets for one-step construction of pickering emulsion and selective photodegradation of water-soluble dyes. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
15
|
Tran HQ, Alam H, Goff A, Daeneke T, Bhave M, Yu A. Multifunctional Fe 3O 4 Nanoparticles Filled Polydopamine Hollow Rods for Antibacterial Biofilm Treatment. Molecules 2023; 28:molecules28052325. [PMID: 36903577 PMCID: PMC10005400 DOI: 10.3390/molecules28052325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
This work reports the use of mesoporous silica rods as templates for the step-wise preparation of multifunctional Fe3O4 NPs filled polydopamine hollow rods (Fe3O4@PDA HR). The capacity of as-synthesized Fe3O4@PDA HR as a new drug carrier platform was assessed by its loading and the triggered release of fosfomycin under various stimulations. It was found that the release of fosfomycin was pH dependent with ~89% of fosfomycin being released in pH 5 after 24 h, which was 2-fold higher than that in pH 7. The magnetic properties of Fe3O4 NPs and the photothermal properties of PDA enabled the triggered release of fosfomycin upon the exposure to rotational magnetic field, or NIR laser irradiation. Additionally, the capability of using multifunctional Fe3O4@PDA HR to eliminate preformed bacterial biofilm was demonstrated. Upon exposure to the rotational magnetic field, the biomass of a preformed biofilm was significantly reduced by 65.3% after a 20 min treatment with Fe3O4@PDA HR. Again, due to the excellent photothermal properties of PDA, a dramatic biomass decline (72.5%) was achieved after 10 min of laser exposure. This study offers an alternative approach of using drug carrier platform as a physical mean to kill pathogenic bacteria along with its traditional use for drug delivery.
Collapse
Affiliation(s)
- Huy Quang Tran
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Husna Alam
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Abigail Goff
- Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Torben Daeneke
- Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Correspondence:
| |
Collapse
|
16
|
Zhao M, Liu Y, Zhang J, Jiang H, Chen R. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Martinez de Lizarrondo S, Jacqmarcq C, Naveau M, Navarro-Oviedo M, Pedron S, Adam A, Freis B, Allouche S, Goux D, Razafindrakoto S, Gazeau F, Mertz D, Vivien D, Bonnard T, Gauberti M. Tracking the immune response by MRI using biodegradable and ultrasensitive microprobes. SCIENCE ADVANCES 2022; 8:eabm3596. [PMID: 35857494 PMCID: PMC9278862 DOI: 10.1126/sciadv.abm3596] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 05/26/2022] [Indexed: 06/03/2023]
Abstract
Molecular magnetic resonance imaging (MRI) holds great promise for diagnosis and therapeutic monitoring in a wide range of diseases. However, the low intrinsic sensitivity of MRI to detect exogenous contrast agents and the lack of biodegradable microprobes have prevented its clinical development. Here, we synthetized a contrast agent for molecular MRI based on a previously unknown mechanism of self-assembly of catechol-coated magnetite nanocrystals into microsized matrix-based particles. The resulting biodegradable microprobes (M3P for microsized matrix-based magnetic particles) carry up to 40,000 times higher amounts of superparamagnetic material than classically used nanoparticles while preserving favorable biocompatibility and excellent water dispersibility. After conjugation to monoclonal antibodies, targeted M3P display high sensitivity and specificity to detect inflammation in vivo in the brain, kidneys, and intestinal mucosa. The high payload of superparamagnetic material, excellent toxicity profile, short circulation half-life, and widespread reactivity of the M3P particles provides a promising platform for clinical translation of immuno-MRI.
Collapse
Affiliation(s)
- Sara Martinez de Lizarrondo
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Charlene Jacqmarcq
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Mikael Naveau
- Normandie Université, UMS 3408 Cyceron, CNRS, University of Caen Normandy, GIP CYCERON, Caen, France
| | - Manuel Navarro-Oviedo
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Swannie Pedron
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Alexandre Adam
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS—Université de Strasbourg, 23 rue du Lœss, 67034 Strasbourg, France
| | - Barbara Freis
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS—Université de Strasbourg, 23 rue du Lœss, 67034 Strasbourg, France
| | - Stephane Allouche
- CHU Caen, Department of Biochemistry, CHU de Caen Côte de Nacre, Caen, France
| | - Didier Goux
- Centre de Microscopie Appliquée à la Biologie (CMAbio), UniCaen, Normandie University, SF4206 Icore, 14000 Caen, France
| | - Sarah Razafindrakoto
- MSC, Université de Paris CNRS, UMR7057, 45 rue des Saints Pères 75006, Paris, France
| | - Florence Gazeau
- MSC, Université de Paris CNRS, UMR7057, 45 rue des Saints Pères 75006, Paris, France
| | - Damien Mertz
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS—Université de Strasbourg, 23 rue du Lœss, 67034 Strasbourg, France
| | - Denis Vivien
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, Caen, France
| | - Thomas Bonnard
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Maxime Gauberti
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, Caen, France
| |
Collapse
|
18
|
He X, Obeng E, Sun X, Kwon N, Shen J, Yoon J. Polydopamine, harness of the antibacterial potentials-A review. Mater Today Bio 2022; 15:100329. [PMID: 35757029 PMCID: PMC9218838 DOI: 10.1016/j.mtbio.2022.100329] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is one of the major causes of morbidity and mortality, triggered by the adhesion of microbes and to some extent the formation of biofilms. This condition has been quite challenging in the health and industrial sector. Conditions and processes required to foil these infectious and resistance are of much concern. The synthesis of PDA material, inspired by the Mytilus edulis foot protein (MEFP)5 possesses unique characteristics that allow for, adhesion, photothermal therapy, synergistic effects with other materials, biocompatibility process, etc. Therefore, their usage holds great potential for dealing with both the infectious nature and the antibiotic resistance processes. Hence, this review provides an overview of the mechanism involved in accomplishing and eradicating bacteria, the recently harnessed antibacterial effect of the PDA through other properties they possess, a way forward in tapping the benefit embedded in the PDA, and the future perspective.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoshuai Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Nahyun Kwon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
19
|
Arabi M, Chen L. Technical Challenges of Molecular-Imprinting-Based Optical Sensors for Environmental Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5963-5967. [PMID: 35511581 DOI: 10.1021/acs.langmuir.2c00935] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Combating environmental pollution constantly requires new affinity tools to selectively recognize and sensitively detect them. Molecularly imprinted polymers (MIPs) are plastic antibodies that have exhibited great potential as recognition units in optical sensing platforms to monitor wide varieties of environmental pollutants, including ionic species, organic compounds, gases, and even manufactured nanoparticles. The construction, sensing strategies, and applications of molecular-imprinting-based optical sensors (MI-OSs) have been discussed in recent reviews, thus we deliberately set them aside. This Perspective elaborates on unanswered questions and main approaches being taken to address the challenges of MI-OS technologies, which have been less considered until now. Specifically, we highlight obscure technical aspects of MI-OS fabrication and validation that impact their practical applications and importantly offer conceivable solutions to related problems to bridge the research gap.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
20
|
Jeong J, Bisht H, Ryu S, Hong D. Development of a versatile, uniform, and stable initiator layer by the functionalization of a polydopamine/polyethyleneimine film. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jaehoon Jeong
- Department of Chemistry Pusan National University Busan Korea
| | - Himani Bisht
- Department of Chemistry Pusan National University Busan Korea
| | - Sanghyun Ryu
- Department of Chemistry Pusan National University Busan Korea
| | - Daewha Hong
- Department of Chemistry Pusan National University Busan Korea
| |
Collapse
|
21
|
Bisht H, Jeong J, Hong Y, Park S, Hong D. Development of Universal and Clickable Film by Mimicking Melanogenesis: On-Demand Oxidation of Tyrosine-Based Azido Derivative by Tyrosinase. Macromol Rapid Commun 2022; 43:e2200089. [PMID: 35332614 DOI: 10.1002/marc.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Indexed: 11/10/2022]
Abstract
In this study, we synthesized a tyrosine-based azido derivative (TBAD) that permits both substrate-independent surface coating and clickable film functionalization by mimicking natural melanogenesis. In contrast to catechol derivatives, which are generally susceptible to oxidation by air under ambient conditions, the monophenol-based TBAD remains stable under alkaline and neutral conditions, and is activated to oxidized quinone in situ by tyrosinase to initiate melanin-like polymerization. The resulting poly(TBAD) film can be formed on various substrates including noble metals, metal oxides, and synthetic polymers, which can undergo click reaction with terminal alkyne moieties on the entire surface or a specific region through Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The enzyme-mediated coating can rapidly form thin films (∼10 nm) and produce a uniform film morphology, which are important aspects in surface chemistry. This on-demand, clickable coating may become a significant tool for bioconjugation, soft lithography, and labeling techniques. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Himani Bisht
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Jaehoon Jeong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Yubin Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Suho Park
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Daewha Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| |
Collapse
|
22
|
Optimization and Antibacterial Response of N-Halamine Coatings Based on Polydopamine. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Due to the ability of microorganisms to first adhere to a material surface and then to lead to the formation of a biofilm, it is essential to develop surfaces that have antimicrobial properties. It is well known that N-halamine coatings allow us to prevent or minimize such phenomena. In the present work, various polydopamine (PDA) coatings containing chloramine functions were studied. In fact, three PDA-based films were formed by the simple immersion of a gold substrate in a dopamine solution, either at pH 8 in the presence or not of polyethyleneimine (PEI), or at pH 5 in the presence of periodate as an oxidant. These films were characterized by polarization modulation reflection absorption infrared spectroscopy and X-ray photoelectron spectroscopy analyses, and by scanning electron microscopy observations. The chlorination of these PDA films was performed by their immersion in a sodium hypochlorite aqueous solution, in order to immobilize Cl(+I) into the (co)polymers (PDA or PDA–PEI). Finally, antibacterial assays towards the Gram-negative bacteria Escherichia coli (E. coli) and the Gram-positive bacteria Staphylococcus epidermidis (S. epidermidis) were conducted to compare the bactericidal properties of these three N-halamine coatings. Regardless of the bacteria tested, the PDA coating with the best antibacterial properties is the coating obtained using periodate.
Collapse
|
23
|
Li CG, Yang Q, Chen D, Zhu H, Chen J, Liu R, Dang Q, Wang X. Polyethyleneimine-assisted co-deposition of polydopamine coating with enhanced stability and efficient secondary modification. RSC Adv 2022; 12:34837-34849. [DOI: 10.1039/d2ra05130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
The stability and grafting efficiency are important for polydopamine (pDA) coatings used as platforms for secondary grafting.
Collapse
Affiliation(s)
- Chun-gong Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Qinqin Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Dong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Hongliang Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jiachen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Runjin Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Qi Dang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
24
|
Basso CR, Malossi CD, Haisi A, de Albuquerque Pedrosa V, Barbosa AN, Grotto RT, Araujo Junior JP. Fast and reliable detection of SARS-CoV-2 antibodies based on surface plasmon resonance. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3297-3306. [PMID: 34231576 DOI: 10.1039/d1ay00737h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Researchers worldwide have been studying alternatives to detect SARS-CoV-2 (COVID-19), and accurate and timely diagnosis is crucial for controlling the outbreaks of the disease. Surface plasmon resonance (SPR) is an effective strategy based on antibodies, and it can be used for simple and fast detection of antibodies due to COVID-19 infection. Accordingly, this paper reports on the highly sensitive and specific detection of antibody responses to SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in COVID-19 patients. In this methodology, spike (S) and nucleocapsid (N) proteins belonging to the coronavirus genome were immobilized on the surface of a gold sensor using self-assembled monolayers. Previously, serum from COVID-19 patients was screened by immunochromatography-based COVID-19 IgG rapid test and/or ELISA in house to determine the presence of IgG titers. Serum from COVID-19-positive patients presenting with IgG were added on the surface and, at the time they bound to proteins, they caused refractive changes in the SPR angle. The antibody detection limit was determined through successive injections into the SPR apparatus - these injections ranged from pure (without dilution) to 1 : 200 μL. The system has shown good reproducibility between runs after coated surface regeneration with 0.1 M glycine-HCl solution (pH 3.0); all experiments were tested in triplicate. The antibodies targeted both S and N fragments and gave a high assay sensitivity by identifying 19 out of 20 COVID-19-positive patients. Most importantly, the assay time took less than 10 min. The results of this study indicate that the proposed simple strategy demonstrates high sensitivity and time-saving in the detection of SARS-CoV-2 response antibodies.
Collapse
Affiliation(s)
| | | | - Amanda Haisi
- Institute of Biotechnology, UNESP-Botucatu, SP 18607-440, Brazil.
| | | | - Alexandre Naime Barbosa
- Department of Infectious Diseases, Dermatology, Diagnostic Imaging and Radiotherapy, Faculty of Medicine of Botucatu, UNESP-Botucatu, SP 18618-687, Brazil
| | - Rejane Tommasini Grotto
- Department of Medical Clinic, Faculty of Medicine of Botucatu, UNESP-Botucatu, SP 18618-687, Brazil
| | | |
Collapse
|
25
|
Flexible and hierarchical metal-organic framework composite as solid-phase media for facile affinity-tip fabrication to selectively enrich glycopeptides and phosphopeptides. Talanta 2021; 233:122576. [PMID: 34215068 DOI: 10.1016/j.talanta.2021.122576] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
Micro-tip-based solid-phase microextraction is considered as one of the green and powerful analytical sample preparation techniques, but its efficiency is severely hampered by some basic issues such as tedious fabrication, instability of sorbent bed, and blocking of the tip, especially for biological samples due to low permeability. These issues are tackled by introducing a flexible and hierarchical substrate in the microtip, having good mechanical strength and specific functionality to capture the desired biomolecules. Considering the well-ordered and flexible structure of melamine foam, it was used as a substrate and for hydrophilic interaction chromatography (HILIC). Metal-organic framework, due to its excellent characteristics, was grafted on its surface anchored by self-assembling polydopamine. The resulting material was characterized and packed in the tip by just pressing the material in the conical structure of the tip. This affinity tip established good and tunable permeability and was used to selectively enrich glycopeptides as well as phosphopeptides. The affinity tip demonstrated excellent performance to enrich glycopeptides and phosphopeptides with a low limit of detection up to 0.5 fmol μL-1 from tryptic digests of horseradish peroxidase and β-Casein, respectively, and was stable up to 5 rounds of enrichment. Moreover, this affinity-tip also exhibited high selectivity up to up to 1:1000 (HRP digest to BSA digest) for glycopeptides and 1:200 (β-Casein digest to BSA digest) for phosphopeptides and demonstrated several other fascinating characteristics such as; excellent size exclusion effect for the omission of large-sized proteins, modest backpressure, reproducibility, reusability, smooth enrichment, and successfully applied to a human saliva sample.
Collapse
|
26
|
Lamaoui A, Palacios-Santander JM, Amine A, Cubillana-Aguilera L. Molecularly imprinted polymers based on polydopamine: Assessment of non-specific adsorption. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Huang ZH, Peng SW, Hsieh SL, Kirankumar R, Huang PF, Chang TM, Dwivedi AK, Chen NF, Wu HM, Hsieh S. Polydopamine Ultrathin Film Growth on Mica via In-Situ Polymerization of Dopamine with Applications for Silver-Based Antimicrobial Coatings. MATERIALS 2021; 14:ma14030671. [PMID: 33535625 PMCID: PMC7867202 DOI: 10.3390/ma14030671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/06/2023]
Abstract
The development of polydopamine (PDA) coatings with a nanometer-scale thickness on surfaces is highly desirable for exploiting the novel features arising from the specific structure on the molecular level. Exploring the mechanisms of thin-film growth is helpful for attaining desirable control over the useful properties of materials. We present a systematic study demonstrating the growth of a PDA thin film on the surface of mica in consecutive short deposition time intervals. Film growth at each deposition time was monitored through instrumental techniques such as atomic force microscopy (AFM), water contact angle (WCA) analysis, and X-ray photoelectron spectroscopy (XPS). Film growth was initiated by adsorption of the PDA molecules on mica, with subsequent island-like aggregation, and finally, a complete molecular level PDA film was formed on the surface due to further molecular adsorption. A duration of 60−300 s was sufficient for complete formation of the PDA layer within the thickness range of 0.5−1.1 nm. An outstanding feature of PDA ultrathin films is their ability to act as a molecular adhesive, providing a foundation for constructing functional surfaces. We also explored antimicrobial applications by incorporating Ag nanoparticles into a PDA film. The Ag NPs/PDA film was formed on a surgical blade and then characterized and confirmed by SEM-EDS and XPS. The modified film inhibited bacterial growth by up to 42% on the blade after cutting through a pork meat sample.
Collapse
Affiliation(s)
- Zheng-Hao Huang
- Department of Rheumatology Immunology, Kaohsiung Armed Forced General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung 80284, Taiwan; (Z.-H.H.); (P.-F.H.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Shi-Wei Peng
- Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (S.-W.P.); (R.K.); (A.K.D.)
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Kaohsiung 81157, Taiwan;
| | - Rajendranath Kirankumar
- Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (S.-W.P.); (R.K.); (A.K.D.)
| | - Po-Feng Huang
- Department of Rheumatology Immunology, Kaohsiung Armed Forced General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung 80284, Taiwan; (Z.-H.H.); (P.-F.H.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Tsao-Ming Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung 80284, Taiwan;
| | - Atul Kumar Dwivedi
- Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (S.-W.P.); (R.K.); (A.K.D.)
| | - Nan-Fu Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung 80284, Taiwan;
| | - Hao-Ming Wu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung 80284, Taiwan;
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan; (S.-W.P.); (R.K.); (A.K.D.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan
- Correspondence:
| |
Collapse
|
28
|
Mhatre O, Reddy BPK, Patnaik C, Chakrabarty S, Ingle A, De A, Srivastava R. pH-responsive delivery of anti-metastatic niclosamide using mussel inspired polydopamine nanoparticles. Int J Pharm 2021; 597:120278. [PMID: 33540007 DOI: 10.1016/j.ijpharm.2021.120278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Niclosamide (Nic), an FDA approved antihelminthic drug, is being repurposed as a potent anti-cancer and anti-inflammatory agent. Niclosamide exhibits anti-cancer activity in multiple cancer types, including breast, colon, and prostate cancers. Niclosamide, a BCS II drug, is practically insoluble in water and sparingly soluble in organic solvents (ethanol, dimethyl sulfoxide), leading to limited therapeutic applications, and necessitates the need for a drug carrier. Herein, we report the preparation of polydopamine nanoparticles loaded with niclosamide (Nic-PDA NPs). The designed formulation had a very high loading efficiency (~30%) and entrapment efficiency close to 90%. The average hydrodynamic diameter of Nic-PDA NPs was 146.3 nm, with a narrow size distribution (PDI = 0.039). The formulation exhibited a pH-dependent drug release profile, with ~35% drug released at pH 7.4 after 120 h, compared to > 50% at pH 5.5 in simulated physiological conditions. The NPs exhibited time-dependent cellular uptake and were primarily localized in the cytoplasm. The formulation exhibited comparable cytotoxicity in MDA-MB-231 cells (IC50 = 2.73 μM, 36 h), and inhibited the migration of cancer cells significantly compared to the free drug and unloaded PDA NPs. Furthermore, the unloaded NPs exhibited excellent in vivo compatibility. The study establishes a rigorously optimized protocol for the synthesis of Nic loaded PDA NPs. The biocompatibility, anti-migratory efficacy, and the in vivo non-toxic nature of PDA has been well demonstrated.
Collapse
Affiliation(s)
- Omkar Mhatre
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - B Pradeep K Reddy
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Chetna Patnaik
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Sabyasachi Chakrabarty
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Aravind Ingle
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
29
|
Kilb MF, Engemann VI, Siddique A, Stark RW, Schmitz K. Immobilisation of CXCL8 gradients in microfluidic devices for migration experiments. Colloids Surf B Biointerfaces 2020; 198:111498. [PMID: 33302150 DOI: 10.1016/j.colsurfb.2020.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022]
Abstract
The release of inflammatory chemokines leads to the formation of chemokine gradients that result in the directed migration of immune cells to the site of injury. In this process, cells respond to soluble gradients (chemotaxis) as well as to immobilised gradients (haptotaxis). Surface-bound chemokine gradients are mostly presented by endothelial cells and supported by glycosaminoglycans (GAGs), such as heparan sulfate, involving the GAG binding site of chemokines. Microfluidic devices have been used to analyse cell migration along soluble chemokine gradients, as these devices allow the generation of stable gradients with resolutions in the range of microns. To immobilise well-controlled soluble gradients of interleukin-8 (CXCL8), an inflammatory chemokine, we developed a simple procedure using a heparin-coated PDMS-microfluidic device. We used these immobilised gradients for migration experiments with CXCL8-responsive THP-1 cells and confirmed directed cell migration. This setup might be useful for the examination of factors that may alter chemotaxis and haptotaxis as well as synergistic and antagonistic effects of other soluble and immobilised chemokines.
Collapse
Affiliation(s)
- Michelle F Kilb
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Victoria I Engemann
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Asma Siddique
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Straße 16, 64287. Darmstadt, Germany
| | - Robert W Stark
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Straße 16, 64287. Darmstadt, Germany
| | - Katja Schmitz
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
30
|
Park HK, Park JH, Lee H, Hong S. Material-Selective Polydopamine Coating in Dimethyl Sulfoxide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49146-49154. [PMID: 32985875 DOI: 10.1021/acsami.0c11440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polydopamine coating is known to be performed in a material-independent manner and has become a popular tool when designing a surface-functionalization strategy of a given material. Studies to improve polydopamine coatings have been reported, aiming to reduce the coating time (by transition metals, oxidants, applied voltages, or microwave irradiation), control surface roughness using catechol derivatives, and vary the ad-layer molecules formed on an underlying polydopamine layer. However, none of the techniques have changed the most important intrinsic property of polydopamine, the surface-independent coating. Currently, no method has been reported to modify this property to create a material-selective 'smart' polydopamine coating. Herein, we report a method with polydopamine to differentiate the chemistry of surfaces. We found that the polydopamine coating was largely inhibited on silicon-containing surfaces such as Si wafers and quartz crystals in a dimethyl sulfoxide (DMSO)/phosphate-buffered saline (PBS) cosolvent, while the coating properties on other materials remained mostly unchanged. Among the various interface bonding mechanisms of coordination, namely, cation-π, π-π stacking, and hydrogen-bonding interactions, the DMSO/PBS cosolvent effectively inhibits hydrogen-bond formation between catechol and SiO2, resulting in surface-selective 'smart' polydopamine coatings. The new polydopamine coating is useful for functionalizing patterned surfaces such as Au patterns on SiO2 substrates. Considering that Si wafer is the most widely used substrate, the surface-selective polydopamine coating technique described herein opens up a new direction in surface functionalization and interface chemistry.
Collapse
Affiliation(s)
- Hong K Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seonki Hong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
31
|
Nazi N, Humblot V, Debiemme-Chouvy C. A New Antibacterial N-Halamine Coating Based on Polydopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11005-11014. [PMID: 32830496 DOI: 10.1021/acs.langmuir.0c01856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To prevent the formation of biofilms on material surfaces, the latter must have antibacterial properties. The aim of this study is to investigate the synthesis and the antibacterial effect of a new N-halamine coating based on polydopamine (PDA). The benefits of this coating are multiple, notably the green process used to prepare it and the wide variety of organic or inorganic materials that can be functionalized. First, the formation of the PDA coating by oxidative polymerization of dopamine in weak alkaline aqueous solution was studied and characterized. Then, these PDA films were exposed to a NaOCl solution in order to form chloramine functions into the coating, i.e., to immobilize oxidative chlorine on and into the coating. The PDA film chlorination was notably followed in situ by a quartz crystal microbalance (QCM). The influence of the NaOCl solution pH and concentration on chlorination kinetics and on PDA film degradation was evidenced. Finally, the antibacterial properties of the modified PDA coatings were highlighted by testing their antiadhesion and bactericidal properties toward the Escherichia coli bacterial strain.
Collapse
Affiliation(s)
- Nadia Nazi
- Sorbonne Université, Laboratoire de Réactivité de Surface, UMR CNRS 7197, 4 place Jussieu, Paris 75005, France
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, UMR CNRS 8235, 4 place Jussieu, Paris 75005, France
| | - Vincent Humblot
- Sorbonne Université, Laboratoire de Réactivité de Surface, UMR CNRS 7197, 4 place Jussieu, Paris 75005, France
- FEMTO-ST Institute, UMR CNRS 6174, Université Bourgogne Franche-Comté, 15B avenue des Montboucons, Besançon Cedex 25030, France
| | - Catherine Debiemme-Chouvy
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, UMR CNRS 8235, 4 place Jussieu, Paris 75005, France
| |
Collapse
|
32
|
Wang T, Lei QL, Wang M, Deng G, Yang L, Liu X, Li C, Wang Q, Liu Z, Wang J, Cui Z, Utama KG, Ni R, Chen X. Mechanical Tolerance of Cascade Bioreactions via Adaptive Curvature Engineering for Epidermal Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000991. [PMID: 32323403 DOI: 10.1002/adma.202000991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Epidermal bioelectronics that can monitor human health status non-invasively and in real time are core to wearable healthcare equipment. Achieving mechanically tolerant surface bioreactions that convert biochemical information to detectable signals is crucial for obtaining high sensing fidelity. In this work, by combining simulations and experiments, a typical epidermal biosensor system is investigated based on a redox enzyme cascade reaction (RECR) comprising glucose oxidase/lactate oxidase enzymes and Prussian blue nanoparticles. Simulations reveal that strain-induced change in surface reactant flux is the key to the performance drop in traditional flat bioelectrodes. In contrast, wavy bioelectrodes capable of curvature adaptation maintain the reactant flux under strain, which preserves sensing fidelity. This rationale is experimentally proven by bioelectrodes with flat/wavy geometry under both static strain and dynamic stretching. When exposed to 50% strain, the signal fluctuations for wavy bioelectrodes are only 7.0% (4.9%) in detecting glucose (lactate), which are significantly lower than the 40.3% (51.8%) in flat bioelectrodes. Based on this wavy bioelectrode, a stable human epidermal metabolite biosensor insensitive to human gestures is further demonstrated. This mechanically tolerant biosensor based on adaptive curvature engineering provides a reliable bio/chemical-information monitoring platform for soft healthcare bioelectronics.
Collapse
Affiliation(s)
- Ting Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qun-Li Lei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guoying Deng
- Trauma & Emergency Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, P. R. China
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xijian Liu
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunlin Li
- Trauma & Emergency Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, P. R. China
| | - Qi Wang
- Trauma & Emergency Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, P. R. China
| | - Zhihua Liu
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwu Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zequn Cui
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kevin Goldio Utama
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
33
|
Li Y, Li K, Wang X, Cui M, Ge P, Zhang J, Qiu F, Zhong C. Conformable self-assembling amyloid protein coatings with genetically programmable functionality. SCIENCE ADVANCES 2020; 6:eaba1425. [PMID: 32490204 PMCID: PMC7239643 DOI: 10.1126/sciadv.aba1425] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/05/2020] [Indexed: 06/02/2023]
Abstract
Functional coating materials have found broad technological applications in diverse fields. Despite recent advances, few coating materials simultaneously achieve robustness and substrate independence while still retaining the capacity for genetically encodable functionalities. Here, we report Escherichia coli biofilm-inspired protein nanofiber coatings that simultaneously exhibit substrate independence, resistance to organic solvents, and programmable functionalities. The intrinsic surface adherence of CsgA amyloid proteins, along with a benign solution-based fabrication approach, facilitates forming nanofiber coatings on virtually any surface with varied compositions, sizes, shapes, and structures. In addition, the typical amyloid structures endow the nanofiber coatings with outstanding robustness. On the basis of their genetically engineerable functionality, our nanofiber coatings can also seamlessly participate in functionalization processes, including gold enhancement, diverse protein conjugations, and DNA binding, thus enabling a variety of proof-of-concept applications, including electronic devices, enzyme immobilization, and microfluidic bacterial sensors. We envision that our coatings can drive advances in electronics, biocatalysis, particle engineering, and biomedicine.
Collapse
Affiliation(s)
- Yingfeng Li
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Li
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyu Wang
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengkui Cui
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng Ge
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Feng Qiu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao Zhong
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Materials Synthetic Biology Center, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
34
|
Song P, Lu Q. Porous clusters of metal-organic framework coated stainless steel mesh for highly efficient oil/water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Khetani S, Yong KW, Ozhukil Kollath V, Eastick E, Azarmanesh M, Karan K, Sen A, Sanati-Nezhad A. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6910-6923. [PMID: 31971367 DOI: 10.1021/acsami.9b20826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The conceptualization of body-on-a-chip in 2004 resulted in a new approach for studying human physiology in three-dimensional culture. Despite pioneering works and the progress made in replicating human physiology on-a-chip, the stability, reliability, and preservation of cell-culture-treated microfluidic chips remain a challenge. The development of a reliable surface treatment technique to more efficiently and reproducibly modify microfluidic channels would significantly simplify the process of creating and implementing organ-on-a-chip (OOC) systems. In this work, a new flow-based coating technique using bioinspired polymers was implemented to create reliable, reproducible, ready-to-use microfluidic cell culture chips for OOC studies. Single-channel polydimethylsiloxane microfluidic chips were coated with the bioinspired catecholamine polymers, polydopamine (PDA) and polynorepinephrine (PNE), using a flow-based coating technique. The functionality of the resulting microfluidic chips was evaluated by extensive surface characterizations, at 130 °C, in the presence of various cleaning and culture media in static and flow conditions regularly used in OOCs and tested for shelf life by storing the coated microfluidic chips for 4 months at room temperature. Microfluidic chips coated with polycatecholamine were then seeded with the mouse cancer cell line Cath.a.differentiated (CAD) and with the normal human cerebral microvascular endothelial cell line human cerebral microvascular endothelial cells (hCMEC)/D3. Cell viability, cell phenotype, and cell functionality were assessed to evaluate the performance of both the coatings and the surface treatment technique. Both PDA- and PNE-coated microfluidic chips maintained high viability, phenotype, and functionality of CAD cells and hCMEC/D3 cells. In addition, CAD cells retained high viability when they were cultured in both the polymer-coated chips, which were stored at room temperature for up to 120 days. These results suggest that flow-based techniques to coat surfaces with polycatecholamines can be used to generate ready-to-use microfluidic OOC chips that offer long-term stability and reliability for the culture of cell types with application in pathophysiological studies and drug screening.
Collapse
Affiliation(s)
- Sultan Khetani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Biomedical Engineering Graduate Program , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Kar Wey Yong
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Vinayaraj Ozhukil Kollath
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Erin Eastick
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Milad Azarmanesh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Arindom Sen
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Biomedical Engineering Graduate Program , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Biomedical Engineering Graduate Program , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| |
Collapse
|
36
|
Patel K, Kushwaha P, Kumar S, Kumar R. Lysine and α-Aminoisobutyric Acid Conjugated Bioinspired Polydopamine Surfaces for the Enhanced Antibacterial Performance of the Foley Catheter. ACS APPLIED BIO MATERIALS 2019; 2:5799-5809. [PMID: 35021573 DOI: 10.1021/acsabm.9b00794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial adhesion onto implanted devices was reduced by the immobilization of amino acid lysine and α-aminoisobutyric acid to polydopamine functionalized PET films and Foley catheters. The polydopamine functionalized film was prepared by a dip coating method followed by incorporation of biocompatible amino acids to prepared films. The purpose of development of the modified pDA film is to improve the anti-biofouling and antibacterial activity of the film which can be successfully applied for medical devices. The characterization of modification was done using different techniques such as contact angle measurement, ATR-FTIR, FE-SEM, AFM, and XPS analysis. ATR-FTIR spectroscopy and XPS confirmed the successful amino modification of film. The anti-biofouling and antimicrobial behavior of the prepared surfaces were evaluated using the bacterial attachment and death assay. The resulting coatings repelled bacterial cell attachment and killed clinically applicable Gram-negative and Gram-positive strains. The developed coatings were applied to the Foley catheters to study the antibacterial activity by the log reduction method. The results demonstrate that tested amino acid-modified film increases the antibacterial activity of the catheters and can significantly help in reduction of nosocomial infections.
Collapse
Affiliation(s)
- Khushbu Patel
- Department of Applied Chemistry, S.V. National Institute of Technology, Surat-395007, Gujarat, India
| | - Prem Kushwaha
- Centre for Biochemistry and Microbial Science, School of Basic and Applied Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Shashank Kumar
- Centre for Biochemistry and Microbial Science, School of Basic and Applied Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Rajender Kumar
- Department of Applied Chemistry, S.V. National Institute of Technology, Surat-395007, Gujarat, India
| |
Collapse
|
37
|
Zhong Q, Richardson JJ, Li S, Zhang W, Ju Y, Li J, Pan S, Chen J, Caruso F. Expanding the Toolbox of Metal–Phenolic Networks via Enzyme‐Mediated Assembly. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi‐Zhi Zhong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Wenjie Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jianhua Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jingqu Chen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
38
|
Zhong Q, Richardson JJ, Li S, Zhang W, Ju Y, Li J, Pan S, Chen J, Caruso F. Expanding the Toolbox of Metal–Phenolic Networks via Enzyme‐Mediated Assembly. Angew Chem Int Ed Engl 2019; 59:1711-1717. [DOI: 10.1002/anie.201913509] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Qi‐Zhi Zhong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Wenjie Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jianhua Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jingqu Chen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
39
|
Le ML, Zhou Y, Byun J, Kolozsvari K, Xu S, Chen W. Using A Spin-Coater to Capture Adhesive Species during Polydopamine Thin-Film Fabrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12722-12730. [PMID: 31536357 DOI: 10.1021/acs.langmuir.9b02525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spin-coating was evaluated as a technique to study events that occur during polydopamine (PDA) thin-film formation. The reaction variants studied included type of oxidant, dopamine (DA) concentration, pH, adhesion time prior to spin, substrate chemistry, and notably, DA solution aging time. A strong oxidant, sodium periodate (SP), and a weak oxidant, atmospheric oxygen were chosen. It was found that reactions in solution were much faster and produced much thicker PDA films with SP than with oxygen. PDA thickness correlated positively with DA concentration, SP solution pH, and adhesion time. DA oxidation and aggregation is a dynamic process, which is reflected in the DA aging-time parameter. PDA film thickness reached a maximum value as DA solution aged. Color photography, UV-vis spectroscopy, and dynamic light scattering indicated that the optimal DA aging time for PDA adhesion is the result of the evolution of PDA particle size and chemistry over time. The capture of the optimal aging-time window was identified as the critical parameter for preparing PDA films with continuity and appreciable thickness. When these conditions were applied in a modified dip-coating method, comparable PDA films were fabricated as those obtained from spin-coating. Native silicon wafers (SiO2) as well as wafers that were modified with polydimethylsiloxane (PDMS) and amine-containing polydimethylsiloxane (PADMS) were chosen to represent a wide range of substrates with different substrate-PDA interactions. The main effect of substrate structural difference was on PDA film morphology. "Island" morphologies were obtained on PDMS where only hydrophobic interactions are responsible for PDA adhesion, while "speck" morphologies were observed on SiO2 and PADMS. The stabilities of the fabricated PDA films were tested in 0.1 M HCl and DMSO. The SP-derived PDA films exhibited very little mass loss compared to those fabricated using either the conventional dip-coating method or oxygen as an oxidant. Choosing a strong oxidant, understanding the DA reaction dynamics, and taking advantage of the optimal DA aging time are important in the fabrication of stable PDA films on a variety of substrates.
Collapse
Affiliation(s)
- My Linh Le
- Chemistry Department, Carr Laboratory , Mount Holyoke College , 50 College Street , South Hadley , Massachusetts 01075 , United States
| | - Yunshi Zhou
- Chemistry Department, Carr Laboratory , Mount Holyoke College , 50 College Street , South Hadley , Massachusetts 01075 , United States
| | - Jiuk Byun
- Chemistry Department, Carr Laboratory , Mount Holyoke College , 50 College Street , South Hadley , Massachusetts 01075 , United States
| | - Katherine Kolozsvari
- Chemistry Department, Carr Laboratory , Mount Holyoke College , 50 College Street , South Hadley , Massachusetts 01075 , United States
| | - Shuying Xu
- Chemistry Department, Carr Laboratory , Mount Holyoke College , 50 College Street , South Hadley , Massachusetts 01075 , United States
| | - Wei Chen
- Chemistry Department, Carr Laboratory , Mount Holyoke College , 50 College Street , South Hadley , Massachusetts 01075 , United States
| |
Collapse
|
40
|
Nie L, Li Y, Chen S, Li K, Huang Y, Zhu Y, Sun Z, Zhang J, He Y, Cui M, Wei S, Qiu F, Zhong C, Liu W. Biofilm Nanofiber-Coated Separators for Dendrite-Free Lithium Metal Anode and Ultrahigh-Rate Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32373-32380. [PMID: 31407877 DOI: 10.1021/acsami.9b08656] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rechargeable batteries that combine high energy density with high power density are highly demanded. However, the wide utilization of lithium metal anode is limited by the uncontrollable dendrite growth, and the conventional lithium-ion batteries (LIBs) commonly suffer from low rate capability. Here, we for the first time develop a biofilm-coated separator for high-energy and high-power batteries. It reveals that the coating of Escherichia coli protein nanofibers can improve electrolyte wettability and lithium transference number and enhance adhesion between separators and electrodes. Thus, lithium dendrite growth is impeded because of the uniform distribution of the Li-ion flux. The modified separator also enables the stable cycling of high-voltage Li|Li1.2Mn0.6Ni0.2O2 (LNMO) cells at an extremely high rate of 20 C, delivering a high specific capacity of 83.1 mA h g-1, which exceeds the conventional counterpart. In addition, the modified separator in the Li4Ti5O12|LNMO full cell also exhibits a larger capacity of 68.2 mA h g-1 at 10 C than the uncoated separator of 37.4 mA h g-1. Such remarkable performances of the modified separators arise from the conformal, adhesive, and endurable coating of biofilm nanofibers. Our work opens up a new opportunity for protein-based biomaterials in practical application of high-energy and high-power batteries.
Collapse
Affiliation(s)
| | - Yingfeng Li
- Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Farokhi M, Mottaghitalab F, Saeb MR, Thomas S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release 2019; 309:203-219. [PMID: 31362077 DOI: 10.1016/j.jconrel.2019.07.036] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023]
Abstract
Nanocarriers sensitive to near infrared light (NIR) are useful templates for chemo-photothermal therapy (PTT) and imaging of tumors due to the ability to change the absorbed NIR energy to heat. The conventional photo-absorbing reagents lack the efficient loading and release of drug before reaching the target site leading to insufficient therapeutic outcomes. To overcome these limitations, the surface of nanocarriers can be modified with different polymers with wide functionalities to provide systems with diagnostic, therapeutic, and theranostic capabilities. Among various polymers, polydopamine (PDA) has been more interested due to complex structure with various chemical moieties, and the capacity to be used through different coating mechanism. In this review, we describe the complex structure, chemical properties, and coating mechanisms of PDA. Moreover, the advantage and surface modification of some relevant nanosystems based on carbon materials, gold, iron oxide, manganese, and upconverting nanomaterials by using PDA will be discussed, in detail.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Sabu Thomas
- School of Chemical Sciences, M G University, Kottayam 686560, Kerala, India
| |
Collapse
|
42
|
Crocker L, Fruk L. Flavin Conjugated Polydopamine Nanoparticles Displaying Light-Driven Monooxygenase Activity. Front Chem 2019; 7:278. [PMID: 31080793 PMCID: PMC6497766 DOI: 10.3389/fchem.2019.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
A hybrid of flavin and polydopamine (PDA) has been explored as a photocatalyst, drawing inspiration from natural flavoenzymes. Light-driven monoxygenase activity has been demonstrated through the oxidation of indole under blue light irradiation in ambient conditions, to afford indigo and indirubin dyes. Compared to riboflavin, a flavin-polydopamine hybrid is shown to be more resistant to photobleaching and more selective toward dye production. In addition, it has been demonstrated that it can be recycled from the solution and used for up to four cycles without a marked loss of activity, which is a significant improvement compared to other heterogenous flavin catalysts. The mechanism of action has been explored, indicating that the PDA shell plays an important role in the stabilization of the intermediate flavin-peroxy species, an active component of the catalytic system rather than acting only as a passive nanocarrier of active centers.
Collapse
Affiliation(s)
- Leander Crocker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Wang L, Zhu F, Chen M, Xiong Y, Zhu Y, Xie S, Liu Q, Yang H, Chen X. Development of a "Dual Gates" Locked, Target-Triggered Nanodevice for Point-of-Care Testing with a Glucometer Readout. ACS Sens 2019; 4:968-976. [PMID: 30900441 DOI: 10.1021/acssensors.9b00072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Developing a facile and sensitive sensing platform is of importance for point-of-care testing (POCT). Herein, a sensitive and portable POCT platform based on "dual gates" aminated magnetic mesoporous silica nanocomposites (AMMS) bearing polydopamine (PDA)-aptamer (Apt) two-tier shells, as a novel nanodevice, is designed for target detection through a target-triggered glucose (GO) release from AMMS with personal glucometer (PGM) readout. In the absence of target, GO can be firmly captured in pores by the designed "dual gates", which would decrease the high background signal of this system and ensure the accuracy of the detection results. Upon the introduction of the target molecules under acidic conditions (pH 5.5), the subsequent PDA self-degradation and the specific Apt-target reaction can cause the departure of "dual gates" and the opening of pores to release the loaded GO molecules, which could be quantitatively monitored by a portable PGM. It has been demonstrated that such POCT platform shows high sensitivity and excellent selectivity for aflatoxin B1 (AFB1) detection, accompanied by the well-presented reproducibility and stability. Importantly, this sensing platform was further validated by assaying contaminated samples, where the obtained results were well matched with that by HPLC. Regarding the features of portability, high sensitivity, and high throughput detection, the developed platform might find wide applications in POCT.
Collapse
Affiliation(s)
- Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Miao Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Siqi Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
44
|
Fan YJ, Pham MT, Huang CJ. Development of Antimicrobial and Antifouling Universal Coating via Rapid Deposition of Polydopamine and Zwitterionization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1642-1651. [PMID: 30114915 DOI: 10.1021/acs.langmuir.8b01730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomaterials-associated infections (BAIs) are related to bacterial colonization on medical devices, which lead to a serious medical burden, such as increased healthcare cost, prolonged hospital stays, and high mortality and morbidity. To reduce the risk of infections, in this work, a new approach which makes use of a bioinspired coating with dual antimicrobial and antifouling functions was developed through rapid deposition of functional polydopamine (pDA) and antimicrobial copper ions, and subsequent conjugation of zwitterionic antifouling sulfobetaine (SB) moieties by the aza-Michael addition reaction. pDA permits surface-independent versatile functionalization on a variety of substrates, such as TiO2, SiO2, gold, plastics, and Nitinol alloy. The characterizations for chemical elemental compositions and hydrophilicity by X-ray photoelectron spectroscopy and contact angle goniometer, respectively, indicating the successful grafting of SB moieties and the presence of copper ions in the pDA adlayers. Ellipsometric thicknesses of the thin films were followed to monitor the formation of pDA films and the changes after the post conjugation. UV-vis spectroscopy and inductively coupled plasma-mass spectrometry revealed the coordination structure of catechol-Cu, and release profile of Cu2+ from the constructed functional coatings. The superhydrophilic and charge-balanced SB interface allowed effective resistance of bacterial adsorption. Intriguingly, we scrutinized that the release of bactericidal copper ions enables killing the residual amount of adsorbed bacteria. Moreover, viability tests for fibroblast cells indicate the excellent biocompatibility of the developed medical coatings. For real-world implementation, the antifouling and antimicrobial coatings were applied on commercially available silicone-based urinary catheters, and the existence of bacteria was evaluated by using the plate-counting assay. The results showed an undetectable level of living bacteria. Consequently, the dual functional medical coating offers a promising approach to eliminate BAIs for practical applications.
Collapse
|
45
|
Bala K, Sharma D, Gupta N. Carbon-Nanotube-Based Materials for Electrochemical Sensing of the Neurotransmitter Dopamine. ChemElectroChem 2018. [DOI: 10.1002/celc.201801319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kanchan Bala
- Department: Chemistry; Institution: Sri Guru Granth Sahib World University Fatehgarh Sahib; 140407 Punjab India
| | - Deepika Sharma
- Department: Chemistry; Institution: Shoolini University, Solan; Post Box No.9, Head Post Office Solan-173229 H.P. India
| | - Neeraj Gupta
- Department: Chemistry; Institution: Shoolini University, Solan; Post Box No.9, Head Post Office Solan-173229 H.P. India
| |
Collapse
|
46
|
Sy KHS, Ho LWC, Lau WCY, Ko H, Choi CHJ. Morphological Diversity, Protein Adsorption, and Cellular Uptake of Polydopamine-Coated Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14033-14045. [PMID: 30360612 DOI: 10.1021/acs.langmuir.8b02572] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polydopamine (PDA)-coated nanoparticles are adhesive bionanomaterials widely utilized in intracellular applications, yet how their adhesiveness affects their colloidal stability and their interactions with serum proteins and mammalian cells remain unclear. In this work, we systematically investigate the combined effects of dopamine (DA) concentration and polymerization time (both reaction parameters spanning 2 orders of magnitude) on the morphological diversity of PDA-coated nanoparticles by coating PDA onto gold nanoparticle cores. Independent of the DA concentration, Au@PDA NPs remain largely aggregated upon several hours of limited polymerization; interestingly, extended polymerization for 2 days or longer yield randomly aggregated NPs, nearly monodisperse NPs, or worm-like NP chains in the ascending order of DA concentration. Upon exposure to serum proteins, the specific type of proteins adsorbed to the Au@PDA NPs strongly depends upon the DA concentration. As DA concentration increases, less albumin and more hemoglobin subunits adhere. Moreover, cellular uptake is a strong function of polymerization time. Serum-stabilized Au@PDA NPs prepared by limited polymerization enter Neuro-2a and HeLa cancer cells more abundantly than those prepared by extended polymerization. Our data underscore the importance of DA concentration and polymerization time for tuning the morphology and degree of intracellular delivery of PDA-coated nanostructures.
Collapse
|
47
|
Shalini Devi KS, Jacob S, Senthil Kumar A. In Situ Structural Elucidation and Selective Pb 2+ Ion Recognition of Polydopamine Film Formed by Controlled Electrochemical Oxidation of Dopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7048-7058. [PMID: 29792028 DOI: 10.1021/acs.langmuir.8b01209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Owing to the versatility and biocompatibility, a self-polymerized DA (in the presence of air at pH 8.5 tris buffer solution) as a polydopamine (pDA) film has been used for a variety of applications. Indeed, instability under electrified condition (serious surface-fouling) and structural ambiguity of the pDA have been found to be unresolved problems. Previously, pDA films (has hygroscopic and insoluble property) prepared by various controlled chemical oxidation methods have been examined for the structural analysis using ex situ solid-state NMR and mass spectroscopic techniques. In this work, a new in situ approach has been introduced using an electrochemical quartz crystal microbalance (EQCM) technique for the improved structural elucidation of pDA that has been formed by a controlled electrochemical oxidation of DA on a carboxylic acid functionalized multiwalled carbon nanotube-Nafion (cationic perfluoro polymer) modified electrode (f-MWCNT-Nf) system in pH 7 phosphate buffer solution. Key intermediates like 5,6-dihydroxy indole (DHI; 150.7 g mol-1), dopamine (154.1 g mol-1), Na+, PO42-, and polymeric product of high molecular weight, 2475 g mol-1, have been trapped on f-MWCNT-Nf surface via π-π (sp2 carbon of MWCNT and aromatic e-s), covalent (amide-II bonding, minimal), hydrogen, and ionic bonding and identified its molecular weights successfully. The new pDA film system showed well-defined peaks at E°' = 0.25 V and -0.350 vs Ag/AgCl corresponding to the surface-confined dopamine/dopamine quinone and DHI/5,6-indolequinone redox transitions without any surface-fouling complication. As an electroanalytical application of pDA, selective recognition of Pb2+ ion via {(pDA)-hydroquinone-Pb0} complexation with detection limit (signal-to-noise ratio = 3) 840 part-per-trillion has been demonstrated.
Collapse
Affiliation(s)
- K S Shalini Devi
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology , Vellore - 632 014 , India
| | - Sharu Jacob
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology , Vellore - 632 014 , India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology , Vellore - 632 014 , India
- Carbon dioxide Research and Green Technology Centre , Vellore Institute of Technology , Vellore - 632 014 , India
- Institute of Biochemical and Biomedical Engineering , National Taipei University of Technology , Taipei 10608 , Taiwan (R.O.C.)
| |
Collapse
|