1
|
Bose D, Bera M, Norman CA, Timofeeva Y, Volynski KE, Krishnakumar SS. Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release. Nat Commun 2024; 15:10741. [PMID: 39738049 PMCID: PMC11685451 DOI: 10.1038/s41467-024-54960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon calcium activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of calcium-triggered fusion clamp reversal, govern the overall kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal calcium concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the calcium-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.
Collapse
Affiliation(s)
- Dipayan Bose
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Christopher A Norman
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Kirill E Volynski
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
2
|
Bose D, Bera M, Norman CA, Timofeeva Y, Volynski KE, Krishnakumar SS. A minimal presynaptic protein machinery mediating synchronous and asynchronous exocytosis and short-term plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589559. [PMID: 38659918 PMCID: PMC11042279 DOI: 10.1101/2024.04.15.589559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic Ca2+ influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically-relevant conditions to delineate the minimal protein machinery sufficient to account for different modes of Ca2+-triggered vesicle fusion and short-term facilitation. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin, synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon Ca2+ activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of Ca2+-triggered fusion clamp reversal, govern the kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal Ca2+ concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the Ca2+-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.
Collapse
Affiliation(s)
- Dipayan Bose
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Manindra Bera
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Cell Biology, Yale University School of Medicine, New Haven, USA
| | - Chris A Norman
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Kirill E Volynski
- Cell Biology, Yale University School of Medicine, New Haven, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| | - Shyam S Krishnakumar
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Department of Neurology, Yale University School of Medicine, New Haven, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
3
|
Bera M, Radhakrishnan A, Coleman J, K. Sundaram RV, Ramakrishnan S, Pincet F, Rothman JE. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proc Natl Acad Sci U S A 2023; 120:e2311484120. [PMID: 37903271 PMCID: PMC10636311 DOI: 10.1073/pnas.2311484120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023] Open
Abstract
The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.
Collapse
Affiliation(s)
- Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Abhijith Radhakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - R. Venkat K. Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Pathology, Yale University School of Medicine, New Haven, CT06520
| | - Frederic Pincet
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, CNRS, Sorbonne Université, Université de Paris Cité, 75005Paris, France
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
4
|
Rothman JE, Grushin K, Bera M, Pincet F. Turbocharging synaptic transmission. FEBS Lett 2023; 597:2233-2249. [PMID: 37643878 DOI: 10.1002/1873-3468.14718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
Evidence from biochemistry, genetics, and electron microscopy strongly supports the idea that a ring of Synaptotagmin is central to the clamping and release of synaptic vesicles (SVs) for synchronous neurotransmission. Recent direct measurements in cell-free systems suggest there are 12 SNAREpins in each ready-release vesicle, consisting of six peripheral and six central SNAREpins. The six central SNAREpins are directly bound to the Synaptotagmin ring, are directly released by Ca++ , and they initially open the fusion pore. The six peripheral SNAREpins are indirectly bound to the ring, each linked to a central SNAREpin by a bridging molecule of Complexin. We suggest that the primary role of peripheral SNAREpins is to provide additional force to 'turbocharge' neurotransmitter release, explaining how it can occur much faster than other forms of membrane fusion. The SV protein Synaptophysin forms hexamers that bear two copies of the v-SNARE VAMP at each vertex, one likely assembling into a peripheral SNAREpin and the other into a central SNAREpin.
Collapse
Affiliation(s)
- James E Rothman
- Nanobiology Institute and Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Kirill Grushin
- Nanobiology Institute and Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Manindra Bera
- Nanobiology Institute and Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Frederic Pincet
- Nanobiology Institute and Department of Cell Biology, Yale University, New Haven, CT, USA
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Bera M, Grushin K, Sundaram RVK, Shahanoor Z, Chatterjee A, Radhakrishnan A, Lee S, Padmanarayana M, Coleman J, Pincet F, Rothman JE, Dittman JS. Two successive oligomeric Munc13 assemblies scaffold vesicle docking and SNARE assembly to support neurotransmitter release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549017. [PMID: 37503179 PMCID: PMC10369971 DOI: 10.1101/2023.07.14.549017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The critical presynaptic protein Munc13 serves numerous roles in the process of docking and priming synaptic vesicles. Here we investigate the functional significance of two distinct oligomers of the Munc13 core domain (Munc13C) comprising C1-C2B-MUN-C2C. Oligomer interface point mutations that specifically destabilized either the trimer or lateral hexamer assemblies of Munc13C disrupted vesicle docking, trans-SNARE formation, and Ca 2+ -triggered vesicle fusion in vitro and impaired neurotransmitter secretion and motor nervous system function in vivo. We suggest that a progression of oligomeric Munc13 complexes couples vesicle docking and assembly of a precise number of SNARE molecules to support rapid and high-fidelity vesicle priming.
Collapse
|
6
|
Bera M, Radhakrishnan A, Coleman J, Sundaram RVK, Ramakrishnan S, Pincet F, Rothman JE. Synaptophysin Chaperones the Assembly of 12 SNAREpins under each Ready-Release Vesicle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547834. [PMID: 37461465 PMCID: PMC10349951 DOI: 10.1101/2023.07.05.547834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The synaptic vesicle protein Synaptophysin has long been known to form a complex with the v-SNARE VAMP, but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully-defined reconstitution and single-molecule measurements, we now report that Synaptophysin functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Synaptophysin directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Synaptophysin is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.
Collapse
Affiliation(s)
- Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abhijith Radhakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Frederic Pincet
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Thoduvayil S, Weerakkody JS, Sundaram RVK, Topper M, Bera M, Coleman J, Li X, Mariappan M, Ramakrishnan S. Rapid Quantification of First and Second Phase Insulin Secretion Dynamics using an In vitro Platform for Improving Insulin Therapy. Cell Calcium 2023; 113:102766. [PMID: 37295201 PMCID: PMC10450995 DOI: 10.1016/j.ceca.2023.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
High-throughput quantification of the first- and second-phase insulin secretion dynamics is intractable with current methods. The fact that independent secretion phases play distinct roles in metabolism necessitates partitioning them separately and performing high-throughput compound screening to target them individually. We developed an insulin-nanoluc luciferase reporter system to dissect the molecular and cellular pathways involved in the separate phases of insulin secretion. We validated this method through genetic studies, including knockdown and overexpression, as well as small-molecule screening and their effects on insulin secretion. Furthermore, we demonstrated that the results of this method are well correlated with those of single-vesicle exocytosis experiments conducted on live cells, providing a quantitative reference for the approach. Thus, we have developed a robust methodology for screening small molecules and cellular pathways that target specific phases of insulin secretion, resulting in a better understanding of insulin secretion, which in turn will result in a more effective insulin therapy through the stimulation of endogenous glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Sikha Thoduvayil
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Jonathan S Weerakkody
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Mackenzie Topper
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Xia Li
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Malaiyalam Mariappan
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520 USA.
| |
Collapse
|
8
|
Sundaram RVK, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst AM, Gupta K, Rothman JE, Krishnakumar SS. Novel Roles for Diacylglycerol in Synaptic Vesicle Priming and Release Revealed by Complete Reconstitution of Core Protein Machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543781. [PMID: 37333317 PMCID: PMC10274626 DOI: 10.1101/2023.06.05.543781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Here we introduce the full functional reconstitution of genetically-validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca 2+ . Using this novel setup, we discover new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca 2+- triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca 2+ -dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of ready-release vesicles. Dynamic single-molecule imaging of Complexin binding to ready-release vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by Munc13 and Munc18 chaperones. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 'template' complex is a functional intermediate in the production of primed, ready-release vesicles, which requires the coordinated action of Munc13 and Munc18. SIGNIFICANCE STATEMENT Munc13 and Munc18 are SNARE-associated chaperones that act as "priming" factors, facilitating the formation of a pool of docked, release-ready vesicles and regulating Ca 2+ -evoked neurotransmitter release. Although important insights into Munc18/Munc13 function have been gained, how they assemble and operate together remains enigmatic. To address this, we developed a novel biochemically-defined fusion assay which enabled us to investigate the cooperative action of Munc13 and Munc18 in molecular terms. We find that Munc18 nucleates the SNARE complex, while Munc13 promotes and accelerates the SNARE assembly in a DAG-dependent manner. The concerted action of Munc13 and Munc18 stages the SNARE assembly process to ensure efficient 'clamping' and formation of stably docked vesicles, which can be triggered to fuse rapidly (∼10 msec) upon Ca 2+ influx.
Collapse
Affiliation(s)
- R Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Atrouli Chatterjee
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kirill Grushin
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aniruddha Panda
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Feng Li
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Seong Lee
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andreas M. Ernst
- School of Biological Sciences, University of California San Diego, La Jolla CA 92093, USA
| | - Kallol Gupta
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shyam S. Krishnakumar
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Kalyana Sundaram RV, Bera M, Coleman J, Weerakkody JS, Krishnakumar SS, Ramakrishnan S. Native Planar Asymmetric Suspended Membrane for Single-Molecule Investigations: Plasma Membrane on a Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205567. [PMID: 36328714 DOI: 10.1002/smll.202205567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Cellular plasma membranes, in their role as gatekeepers to the external environment, host numerous protein assemblies and lipid domains that manage the movement of molecules into and out of cells, regulate electric potential, and direct cell signaling. The ability to investigate these roles on the bilayer at a single-molecule level in a controlled, in vitro environment while preserving lipid and protein architectures will provide deeper insights into how the plasma membrane works. A tunable silicon microarray platform that supports stable, planar, and asymmetric suspended lipid membranes (SLIM) using synthetic and native plasma membrane vesicles for single-molecule fluorescence investigations is developed. Essentially, a "plasma membrane-on-a-chip" system that preserves lipid asymmetry and protein orientation is created. By harnessing the combined potential of this platform with total internal reflection fluorescence (TIRF) microscopy, the authors are able to visualize protein complexes with single-molecule precision. This technology has widespread applications in biological processes that happen at the cellular membranes and will further the knowledge of lipid and protein assemblies.
Collapse
Affiliation(s)
- Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan S Weerakkody
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
10
|
Sannigrahi A, Rai VH, Chalil MV, Chakraborty D, Meher SK, Roy R. A Versatile Suspended Lipid Membrane System for Probing Membrane Remodeling and Disruption. MEMBRANES 2022; 12:1190. [PMID: 36557095 PMCID: PMC9784602 DOI: 10.3390/membranes12121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Artificial membrane systems can serve as models to investigate molecular mechanisms of different cellular processes, including transport, pore formation, and viral fusion. However, the current, such as SUVs, GUVs, and the supported lipid bilayers suffer from issues, namely high curvature, heterogeneity, and surface artefacts, respectively. Freestanding membranes provide a facile solution to these issues, but current systems developed by various groups use silicon or aluminum oxide wafers for fabrication that involves access to a dedicated nanolithography facility and high cost while conferring poor membrane stability. Here, we report the development, characterization and applications of an easy-to-fabricate suspended lipid bilayer (SULB) membrane platform leveraging commercial track-etched porous filters (PCTE) with defined microwell size. Our SULB system offers a platform to study the lipid composition-dependent structural and functional properties of membranes with exceptional stability. With dye entrapped in PCTE microwells by SULB, we show that sphingomyelin significantly augments the activity of pore-forming toxin, Cytolysin A (ClyA) and the pore formation induces lipid exchange between the bilayer leaflets. Further, we demonstrate high efficiency and rapid kinetics of membrane fusion by dengue virus in our SULB platform. Our suspended bilayer membrane mimetic offers a novel platform to investigate a large class of biomembrane interactions and processes.
Collapse
|
11
|
Mion D, Bunel L, Heo P, Pincet F. The beginning and the end of SNARE-induced membrane fusion. FEBS Open Bio 2022; 12:1958-1979. [PMID: 35622519 PMCID: PMC9623537 DOI: 10.1002/2211-5463.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane fusion is not a spontaneous process. Physiologically, the formation of coiled-coil protein complexes, the SNAREpins, bridges the membrane of a vesicle and a target membrane, brings them in close contact, and provides the energy necessary for their fusion. In this review, we utilize results from in vitro experiments and simple physics and chemistry models to dissect the kinetics and energetics of the fusion process from the encounter of the two membranes to the full expansion of a fusion pore. We find three main energy barriers that oppose the fusion process: SNAREpin initiation, fusion pore opening, and expansion. SNAREpin initiation is inherent to the proteins and makes in vitro fusion kinetic experiments rather slow. The kinetics are physiologically accelerated by effectors. The energy barriers that precede pore opening and pore expansion can be overcome by several SNAREpins acting in concert.
Collapse
Affiliation(s)
- Delphine Mion
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Louis Bunel
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Paul Heo
- Institute of Psychiatry and Neuroscience of Paris (IPNP)INSERM U1266ParisFrance
| | - Frédéric Pincet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| |
Collapse
|
12
|
Bera M, Ramakrishnan S, Coleman J, Krishnakumar SS, Rothman JE. Molecular determinants of complexin clamping and activation function. eLife 2022; 11:e71938. [PMID: 35442188 PMCID: PMC9020821 DOI: 10.7554/elife.71938] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Previously we reported that Synaptotagmin-1 and Complexin synergistically clamp the SNARE assembly process to generate and maintain a pool of docked vesicles that fuse rapidly and synchronously upon Ca2+ influx (Ramakrishnan et al., 2020). Here, using the same in vitro single-vesicle fusion assay, we determine the molecular details of the Complexin-mediated fusion clamp and its role in Ca2+-activation. We find that a delay in fusion kinetics, likely imparted by Synaptotagmin-1, is needed for Complexin to block fusion. Systematic truncation/mutational analyses reveal that continuous alpha-helical accessory-central domains of Complexin are essential for its inhibitory function and specific interaction of the accessory helix with the SNAREpins enhances this functionality. The C-terminal domain promotes clamping by locally elevating Complexin concentration through interactions with the membrane. Independent of their clamping functions, the accessory-central helical domains of Complexin also contribute to rapid Ca2+-synchronized vesicle release by increasing the probability of fusion from the clamped state.
Collapse
Affiliation(s)
- Manindra Bera
- Yale Nanobiology InstituteNew HavenUnited States
- Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| | - Sathish Ramakrishnan
- Yale Nanobiology InstituteNew HavenUnited States
- Department of Pathology, Yale University School of MedicineNew HavenUnited States
| | - Jeff Coleman
- Yale Nanobiology InstituteNew HavenUnited States
- Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| | - Shyam S Krishnakumar
- Yale Nanobiology InstituteNew HavenUnited States
- Departments of Neurology, Yale University School of MedicineNew HavenUnited States
| | - James E Rothman
- Yale Nanobiology InstituteNew HavenUnited States
- Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
13
|
Munc13 structural transitions and oligomers that may choreograph successive stages in vesicle priming for neurotransmitter release. Proc Natl Acad Sci U S A 2022; 119:2121259119. [PMID: 35135883 PMCID: PMC8851502 DOI: 10.1073/pnas.2121259119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The speed of neural information processing in the human central nervous system is ultimately determined by the speed of chemical transmission at synapses, because action potentials have relatively short distances to traverse. The release of synaptic vesicles containing neurotransmitters must therefore be remarkably fast as compared to other forms of membrane fusion. Six separate SNARE complexes cooperate to achieve this. But how can exactly six copies be assembled under every vesicle? Here we report that six copies of the key molecular chaperone that assembles the SNAREs can arrange themselves into a closed hexagon, providing the likely answer. How can exactly six SNARE complexes be assembled under each synaptic vesicle? Here we report cryo-EM crystal structures of the core domain of Munc13, the key chaperone that initiates SNAREpin assembly. The functional core of Munc13, consisting of C1–C2B–MUN–C2C (Munc13C) spontaneously crystallizes between phosphatidylserine-rich bilayers in two distinct conformations, each in a radically different oligomeric state. In the open conformation (state 1), Munc13C forms upright trimers that link the two bilayers, separating them by ∼21 nm. In the closed conformation, six copies of Munc13C interact to form a lateral hexamer elevated ∼14 nm above the bilayer. Open and closed conformations differ only by a rigid body rotation around a flexible hinge, which when performed cooperatively assembles Munc13 into a lateral hexamer (state 2) in which the key SNARE assembly-activating site of Munc13 is autoinhibited by its neighbor. We propose that each Munc13 in the lateral hexamer ultimately assembles a single SNAREpin, explaining how only and exactly six SNARE complexes are templated. We suggest that state 1 and state 2 may represent two successive states in the synaptic vesicle supply chain leading to “primed” ready-release vesicles in which SNAREpins are clamped and ready to release (state 3).
Collapse
|
14
|
Bera M, Ramakrishnan S, Coleman J, Krishnakumar SS, Rothman JE. Molecular Determinants of Complexin Clamping in Reconstituted Single-Vesicle Fusion.. [DOI: 10.1101/2021.07.05.451112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ABSTRACTPreviously we reported that Synaptotagmin-1 and Complexin synergistically clamp the SNARE assembly process to generate and maintain a pool of docked vesicles that fuse rapidly and synchronously upon Ca2+ influx (Ramakrishnan et al. 2020). Here using the same in vitro single-vesicle fusion assay, we establish the molecular details of the Complexin clamp and its physiological relevance. We find that a delay in fusion kinetics, likely imparted by Synaptotagmin-1, is needed for Complexin to block fusion. Systematic truncation/mutational analyses reveal that continuous alpha-helical accessory-central domains of Complexin are essential for its inhibitory function and specific interaction of the accessory helix with the SNAREpins, analogous to the trans clamping model, enhances this functionality. The c-terminal domain promotes clamping by locally elevating Complexin concentration through interactions with the membrane. Further, we find that Complexin likely contributes to rapid Ca2+-synchronized vesicular release by preventing un-initiated fusion rather than by directly facilitating vesicle fusion.
Collapse
|
15
|
Mühlenbrock P, Sari M, Steinem C. In vitro single vesicle fusion assays based on pore-spanning membranes: merits and drawbacks. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:239-252. [PMID: 33320298 PMCID: PMC8071798 DOI: 10.1007/s00249-020-01479-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
Neuronal fusion mediated by soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) is a fundamental cellular process by which two initially distinct membranes merge resulting in one interconnected structure to release neurotransmitters into the presynaptic cleft. To get access to the different stages of the fusion process, several in vitro assays have been developed. In this review, we provide a short overview of the current in vitro single vesicle fusion assays. Among those assays, we developed a single vesicle assay based on pore-spanning membranes (PSMs) on micrometre-sized pores in silicon, which might overcome some of the drawbacks associated with the other membrane architectures used for investigating fusion processes. Prepared by spreading of giant unilamellar vesicles with reconstituted t-SNAREs, PSMs provide an alternative tool to supported lipid bilayers to measure single vesicle fusion events by means of fluorescence microscopy. Here, we discuss the diffusive behaviour of the reconstituted membrane components as well as that of the fusing synthetic vesicles with reconstituted synaptobrevin 2 (v-SNARE). We compare our results with those obtained if the synthetic vesicles are replaced by natural chromaffin granules under otherwise identical conditions. The fusion efficiency as well as the different fusion states observable in this assay by means of both lipid mixing and content release are illuminated.
Collapse
Affiliation(s)
- Peter Mühlenbrock
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Merve Sari
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany.
- Max-Planck-Institute for Dynamics and Self Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
16
|
Radhakrishnan A, Li X, Grushin K, Krishnakumar SS, Liu J, Rothman JE. Symmetrical arrangement of proteins under release-ready vesicles in presynaptic terminals. Proc Natl Acad Sci U S A 2021; 118:e2024029118. [PMID: 33468631 PMCID: PMC7865176 DOI: 10.1073/pnas.2024029118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Controlled release of neurotransmitters stored in synaptic vesicles (SVs) is a fundamental process that is central to all information processing in the brain. This relies on tight coupling of the SV fusion to action potential-evoked presynaptic Ca2+ influx. This Ca2+-evoked release occurs from a readily releasable pool (RRP) of SVs docked to the plasma membrane (PM). The protein components involved in initial SV docking/tethering and the subsequent priming reactions which make the SV release ready are known. Yet, the supramolecular architecture and sequence of molecular events underlying SV release are unclear. Here, we use cryoelectron tomography analysis in cultured hippocampal neurons to delineate the arrangement of the exocytosis machinery under docked SVs. Under native conditions, we find that vesicles are initially "tethered" to the PM by a variable number of protein densities (∼10 to 20 nm long) with no discernible organization. In contrast, we observe exactly six protein masses, each likely consisting of a single SNAREpin with its bound Synaptotagmins and Complexin, arranged symmetrically connecting the "primed" vesicles to the PM. Our data indicate that the fusion machinery is likely organized into a highly cooperative framework during the priming process which enables rapid SV fusion and neurotransmitter release following Ca2+ influx.
Collapse
Affiliation(s)
| | - Xia Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
- Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06520
| | - Kirill Grushin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520;
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520;
- Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06520
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520;
| |
Collapse
|
17
|
Li M, Oh TJ, Fan H, Diao J, Zhang K. Syntaxin Clustering and Optogenetic Control for Synaptic Membrane Fusion. J Mol Biol 2020; 432:4773-4782. [PMID: 32682743 DOI: 10.1016/j.jmb.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 01/01/2023]
Abstract
Membrane fusion during synaptic transmission mediates the trafficking of chemical signals and neuronal communication. The fast kinetics of membrane fusion on the order of millisecond is precisely regulated by the assembly of SNAREs and accessory proteins. It is believed that the formation of the SNARE complex is a key step during membrane fusion. Little is known, however, about the molecular machinery that mediates the formation of a large pre-fusion complex, including multiple SNAREs and accessory proteins. Syntaxin, a transmembrane protein on the plasma membrane, has been observed to undergo oligomerization to form clusters. Whether this clustering plays a critical role in membrane fusion is poorly understood in live cells. Optogenetics is an emerging biotechnology armed with the capacity to precisely modulate protein-protein interaction in time and space. Here, we propose an experimental scheme that combines optogenetics with single-vesicle membrane fusion, aiming to gain a better understanding of the molecular mechanism by which the syntaxin cluster regulates membrane fusion. We envision that newly developed optogenetic tools could facilitate the mechanistic understanding of synaptic transmission in live cells and animals.
Collapse
Affiliation(s)
- Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Teak-Jung Oh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
Fusion Pore Formation Observed during SNARE-Mediated Vesicle Fusion with Pore-Spanning Membranes. Biophys J 2020; 119:151-161. [PMID: 32533941 DOI: 10.1016/j.bpj.2020.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Planar pore-spanning membranes (PSMs) have been shown to be a versatile tool to resolve elementary steps of the neuronal fusion process. However, in previous studies, we monitored only lipid mixing between fusing large unilamellar vesicles and PSMs and did not gather information about the formation of fusion pores. To address this important step of the fusion process, we entrapped sulforhodamine B at self-quenching concentrations into large unilamellar vesicles containing the v-SNARE synaptobrevin 2, which were docked and fused with lipid-labeled PSMs containing the t-SNARE acceptor complex ΔN49 prepared on gold-coated porous silicon substrates. By dual-color spinning disk fluorescence microscopy with a time resolution of ∼20 ms, we could unambiguously distinguish between bursting vesicles, which was only rarely observed (<0.01%), and fusion pore formation. From the time-resolved dual-color fluorescence time traces, we were able to identify different fusion pathways, including remaining three-dimensional postfusion structures with released content and transient openings and closings of the fusion pores. Our results on fusion pore formation and lipid diffusion from the PSM into the fusing vesicle let us conclude that the content release, i.e., fusion pore formation after the merger of the two lipid membranes occurs almost simultaneously.
Collapse
|
19
|
Ramakrishnan S, Bera M, Coleman J, Rothman JE, Krishnakumar SS. Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis. eLife 2020; 9:54506. [PMID: 32401194 PMCID: PMC7220375 DOI: 10.7554/elife.54506] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Calcium (Ca2+)-evoked release of neurotransmitters from synaptic vesicles requires mechanisms both to prevent un-initiated fusion of vesicles (clamping) and to trigger fusion following Ca2+-influx. The principal components involved in these processes are the vesicular fusion machinery (SNARE proteins) and the regulatory proteins, Synaptotagmin-1 and Complexin. Here, we use a reconstituted single-vesicle fusion assay under physiologically-relevant conditions to delineate a novel mechanism by which Synaptotagmin-1 and Complexin act synergistically to establish Ca2+-regulated fusion. We find that under each vesicle, Synaptotagmin-1 oligomers bind and clamp a limited number of 'central' SNARE complexes via the primary interface and introduce a kinetic delay in vesicle fusion mediated by the excess of free SNAREpins. This in turn enables Complexin to arrest the remaining free 'peripheral' SNAREpins to produce a stably clamped vesicle. Activation of the central SNAREpins associated with Synaptotagmin-1 by Ca2+ is sufficient to trigger rapid (<100 msec) and synchronous fusion of the docked vesicles.
Collapse
Affiliation(s)
- Sathish Ramakrishnan
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Manindra Bera
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
20
|
Heo P, Ramakrishnan S, Coleman J, Rothman JE, Fleury JB, Pincet F. Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D-Printed Microfluidic Setup. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900725. [PMID: 30977975 DOI: 10.1002/smll.201900725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Experimental setups to produce and to monitor model membranes have been successfully used for decades and brought invaluable insights into many areas of biology. However, they all have limitations that prevent the full in vitro mimicking and monitoring of most biological processes. Here, a suspended physiological bilayer-forming chip is designed from 3D-printing techniques. This chip can be simultaneously integrated to a confocal microscope and a path-clamp amplifier. It is composed of poly(dimethylsiloxane) and consists of a ≈100 µm hole, where the horizontal planar bilayer is formed, connecting two open crossed-channels, which allows for altering of each lipid monolayer separately. The bilayer, formed by the zipping of two lipid leaflets, is free-standing, horizontal, stable, fluid, solvent-free, and flat with the 14 types of physiologically relevant lipids, and the bilayer formation process is highly reproducible. Because of the two channels, asymmetric bilayers can be formed by making the two lipid leaflets of different composition. Furthermore, proteins, such as transmembrane, peripheral, and pore-forming proteins, can be added to the bilayer in controlled orientation and keep their native mobility and activity. These features allow in vitro recapitulation of membrane process close to physiological conditions.
Collapse
Affiliation(s)
- Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Sorbonne Paris Cité, Paris, 75005, France
| | - Sathish Ramakrishnan
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Sorbonne Paris Cité, Paris, 75005, France
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Jeff Coleman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James E Rothman
- Ecole Normale Supérieure, PSL University, Paris, 75005, France
| | - Jean-Baptiste Fleury
- Department of Experimental Physics and Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Frederic Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Sorbonne Paris Cité, Paris, 75005, France
| |
Collapse
|
21
|
Li X, Radhakrishnan A, Grushin K, Kasula R, Chaudhuri A, Gomathinayagam S, Krishnakumar SS, Liu J, Rothman JE. Symmetrical organization of proteins under docked synaptic vesicles. FEBS Lett 2019; 593:144-153. [PMID: 30561792 PMCID: PMC6353562 DOI: 10.1002/1873-3468.13316] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/11/2022]
Abstract
During calcium‐regulated exocytosis, the constitutive fusion machinery is ‘clamped’ in a partially assembled state until synchronously released by calcium. The protein machinery involved in this process is known, but the supra‐molecular architecture and underlying mechanisms are unclear. Here, we use cryo‐electron tomography analysis in nerve growth factor‐differentiated neuro‐endocrine (PC12) cells to delineate the organization of the release machinery under the docked vesicles. We find that exactly six exocytosis modules, each likely consisting of a single SNAREpin with its bound Synaptotagmins, Complexin, and Munc18 proteins, are symmetrically arranged at the vesicle–PM interface. Mutational analysis suggests that the symmetrical organization is templated by circular oligomers of Synaptotagmin. The observed arrangement, including its precise radial positioning, is in‐line with the recently proposed ‘buttressed ring hypothesis’.
Collapse
Affiliation(s)
- Xia Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Institute of Nautical Medicine, Co-innovation Center of Neuroregeneration, Nantong University, China
| | | | - Kirill Grushin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Ravikiran Kasula
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Arunima Chaudhuri
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
22
|
Ramakrishnan S, Bera M, Coleman J, Krishnakumar SS, Pincet F, Rothman JE. Synaptotagmin oligomers are necessary and can be sufficient to form a Ca 2+ -sensitive fusion clamp. FEBS Lett 2019; 593:154-162. [PMID: 30570144 PMCID: PMC6349546 DOI: 10.1002/1873-3468.13317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
The buttressed‐ring hypothesis, supported by recent cryo‐electron tomography analysis of docked synaptic‐like vesicles in neuroendocrine cells, postulates that prefusion SNAREpins are stabilized and organized by Synaptotagmin (Syt) ring‐like oligomers. Here, we use a reconstituted single‐vesicle fusion analysis to test the prediction that destabilizing the Syt1 oligomers destabilizes the clamp and results in spontaneous fusion in the absence of Ca2+. Vesicles in which Syt oligomerization is compromised by a ring‐destabilizing mutation dock and diffuse freely on the bilayer until they fuse spontaneously, similar to vesicles containing only v‐SNAREs. In contrast, vesicles containing wild‐type Syt are immobile as soon as they attach to the bilayer and remain frozen in place, up to at least 1 h until fusion is triggered by Ca2+.
Collapse
Affiliation(s)
| | - Manindra Bera
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
| | - Jeff Coleman
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
| | - Shyam S. Krishnakumar
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Frederic Pincet
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
- Laboratoire de Physique StatistiqueEcole Normale SupérieureSorbonne Universités UPMC Univ Paris 06, CNRSPSL Research UniversityUniversité Paris Diderot Sorbonne Paris CitéFrance
| | - James E. Rothman
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|