1
|
Yan S, Liu Q, Liang B, Zhang M, Chen W, Zhang D, Wang C, Xing D. Airborne microbes: sampling, detection, and inactivation. Crit Rev Biotechnol 2025; 45:556-590. [PMID: 39128871 DOI: 10.1080/07388551.2024.2377191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 08/13/2024]
Abstract
The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wujun Chen
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Daijun Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Singh A, Singh G, Kaur N, Singh N. Fabrication of FRET based nano sensor from biomass-derived fluorescent carbon quantum dots and naphthalimide for ratiometric detection of nitric oxide: To examine nitrite levels in meat samples. Anal Chim Acta 2023; 1270:341444. [PMID: 37311616 DOI: 10.1016/j.aca.2023.341444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is a ubiquitous, gaseous, free radical signaling molecule which plays a key role in physiological and pathological processes. Literature reports revealed that the conventional methods such as colorimetry, electron paramagnetic resonance (EPR), electrochemical etc. to detect NO are costly, time consuming and lack resolution, particularly in aqueous or biological system. Thus, in this context, herein we have developed covalently linked biomass derived carbon quantum dots (CQDs) and naphthalimide based nano sensor system for FRET based ratiometric detection of nitric oxide (NO) in pure aqueous media. The CQDs derived from orange peels were characterized using UV-visible absorption, fluorescence spectroscopy, PXRD, TEM, FT-IR and zeta potential studies. Further, the obtained CQDs were functionalized with amine functionality, and subsequently linked with naphthalimide derivative (5) using terephthaldehyde through covalent bond formation. The conjugation of naphthalimide (5) and functionalized CQDs was studied using DLS, zeta potential, FT-IR and time resolved fluorescence spectroscopy. The excitation of developed nano sensor system at λex 360 nm results in fluorescence emission at λem 530 nm which establishes the FRET pair between the CQDs and naphthalimide unit. However, in the presence of NO, the observed FRET pair abolishes due to the cleavage of NO susceptible imine bond. The developed sensor demonstrates high selectivity towards NO with limit of detection (LOD) and limit of quantification (LOQ) of 15 nM and 50 nM respectively. Further, the developed sensor system was also utilized for indirect detection of nitrite (NO2-) in food samples for food safety and monitoring.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab, 140001, India.
| |
Collapse
|
3
|
Pramanik S, Chithra S, Rai S, Agrawal S, Shil D, Mukherjee S. Fluorescence Resonance Energy Transfer in a Supramolecular Assembly of Luminescent Silver Nanoclusters and a Cucurbit[8]uril-Based Host-Guest System. J Phys Chem B 2023. [PMID: 37470765 DOI: 10.1021/acs.jpcb.3c01914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The understanding of interactions between organic chromophores and biocompatible luminescent noble metal nanoclusters (NCs) leading to an energy transfer process that has applications in light-harvesting materials is still in its nascent stage. This work describes a photoluminescent supramolecular assembly, made in two stages, employing an energy transfer process between silver (Ag) NCs as the donor and a host-guest system as the acceptor that can find potential applications in diverse fields. Initially, we explored the host-guest chemistry between a cationic guest ethidium bromide and cucurbit[8]uril host to modulate the fluorescence property of the acceptor. The host-guest interactions were characterized by using UV-vis absorption, steady-state and time-resolved spectroscopy, molecular docking, proton 1H nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and isothermal calorimetry studies. Next, we prepared a series of blue-emitting AgNCs using different templates such as proteins and peptides. We have found that these AgNCs can be employed as a donor in the energy transfer process upon mixing with the above acceptor for emission color tuning. Our in-depth studies also revealed that surface ligands could play a key role in modulating the energy transfer efficiency. Overall, by employing a noncovalent strategy, we have tried to develop Förster resonance energy transfer (FRET) pairs using blue-emitting NCs and a host-guest complex that could find potential applications in constructing advanced sustainable light-harvesting, white light-emitting, and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Sree Chithra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saurabh Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Sameeksha Agrawal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Debanggana Shil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
4
|
Heng H, Ma D, Gu Q, Li J, Jin H, Shen P, Wei J, Wang Z. A core-shell structure ratiometric fluorescent probe based on carbon dots and Tb 3+ for the detection of anthrax biomarker. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122793. [PMID: 37187145 DOI: 10.1016/j.saa.2023.122793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
A novel core-shell structure ratiometric fluorescent probe was developed, which can selectively and sensitively detect 2,6-dipicolinic acid (DPA) as an anthrax biomarker. Carbon dots (CDs) was embedded into SiO2 nanoparticles, which was acted as an internal reference signal. Tb3+ with green emission was connected to the carboxyl functionalized SiO2, which was acted as a responsive signal. With the addition of DPA, the emission of CDs at 340 nm was unchanged, while the fluorescence of Tb3+ at 544 nm was enhanced by the antenna effect. In the concentration range of 0.1-2 μM, the fluorescence intensity ratio of I544/I340 showed a good linear relationship with the concentration of DPA, and the limit of detection (LOD) was 10.2 nM. In addition, the dual-emission probe showed an obvious fluorescence color change from colourless to green with increasing DPA under UV light, which enabled visual detection.
Collapse
Affiliation(s)
- Hui Heng
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Deming Ma
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Qingyang Gu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China.
| | - Jinyan Li
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Haibo Jin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Ping Shen
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Jiaxin Wei
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Ziwei Wang
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| |
Collapse
|
5
|
Bi N, Zhang YH, Hu MH, Xu J, Song W, Gou J, Li YX, Jia L. Highly selective and multicolor ultrasensitive assay of dipicolinic acid: The integration of terbium(III) and gold nanocluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121777. [PMID: 36058171 DOI: 10.1016/j.saa.2022.121777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
A novel multicolor fluorescent nano-probe based on the hybridization of Tb3+ ion with gold nanoclusters (Au NCs) was synthesized to monitor and on-site visual assay of 2,6-pyridinedicarboxylic acid (DPA), a biomarker of bacterial spores. DPA can replace the water molecule in the center of Tb3+ and strongly coordinate with Tb3+ based on the analyte-triggered antenna effect. Simultaneously, the red fluorescence of Au NCs is not influenced after addition of DPA and can be used as steady inside fluorescence reference channel to measure background noise. On this basis, the multicolor fluorescence nano-probe based on Tb3+-doped Au NCs for fast analysis of DPA was fabricated. The linear range of this method is 0 to 12.5 μM and the limit of detection is 3.4 nM, which is well below the quantity of DPA concentration of 60 μM released by the spore transmission dose of anthrax infection. The proposed multicolor fluorescence nano-probe was successfully detecting DPA in actual sample with good sensitivity and specificity. In addition, the visual paper-based nano-probe is designed to detect DPA by using the color scanning application of smart phone. This developed platform possesses abroad application prospects with advantages of effective, convenient carrying, simple operation, good selectivity and repeatability.
Collapse
Affiliation(s)
- Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yin-Hong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Mei-Hua Hu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei Song
- Chongqing Jianfeng Chemical Co., Ltd., Chongqing 400000, PR China
| | - Jian Gou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yong-Xin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| |
Collapse
|
6
|
Kaur H, Verma M, Kaur S, Rana B, Singh N, Jena KC. Elucidating the Molecular Structure of Hydrophobically Modified Polyethylenimine Nanoparticles and Its Potential Implications for DNA Binding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13456-13468. [PMID: 36279506 DOI: 10.1021/acs.langmuir.2c01912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The structural properties of the polyethylenimine (PEI) polymer are generally tuned and selectively modified to reinforce its potential in a broad spectrum of applied domains of medicine, healthcare, material design, sensing, and electronic optimization. The selective modification of the polymer brings about changes in its interfacial characteristics and behavior. The current work involves the synthesis of naphthalimide conjugated polyethylenimine organic nanoparticles (NPEI-ONPs). The interfacial molecular structure of NPEI-ONPs is explored in an aqueous medium at pH 7.4 using surface tensiometry and sum-frequency generation vibrational spectroscopy (SFG-VS). The hydrophobic functionalization rendered a concentration-dependent surface coverage of NPEI-ONPs, where the SFG-VS analysis exhibited the molecular rearrangement of its hydrophobic groups at the interface. The interaction of NPEI-ONPs with double-stranded DNA (dsDNA) is carried out to observe the relevance of the synthesized nanocomposites in the biomedical domain. The bulk-specific studies (i.e., thermal denaturation, viscometry, zeta (ζ) potential, and ATR-FTIR) reveal the condensation of dsDNA in the presence of NPEI-ONPs, making its structure more compact. The interface-sensitive SFG-VS showcased the impact of the dsDNA and NPEI-ONP interaction on the interfacial molecular behavior of NPEI-ONPs at the air-aqueous interface. Our results exhibit the potential of such hydrophobically functionalized ONPs as promising candidates for developing biomedical sealants, substrate coatings, and other biomedical domains.
Collapse
|
7
|
Sivakumar R, Lee NY. Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Anal Chim Acta 2022; 1234:340297. [PMID: 36328717 PMCID: PMC9395976 DOI: 10.1016/j.aca.2022.340297] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
The world is currently facing an adverse condition due to the pandemic of airborne pathogen SARS-CoV-2. Prevention is better than cure; thus, the rapid detection of airborne pathogens is necessary because it can reduce outbreaks and save many lives. Considering the immense role of diverse detection techniques for airborne pathogens, proper summarization of these techniques would be beneficial for humans. Hence, this review explores and summarizes emerging techniques, such as optical and electrochemical biosensors used for detecting airborne bacteria (Bacillus anthracis, Mycobacterium tuberculosis, Staphylococcus aureus, and Streptococcus pneumoniae) and viruses (Influenza A, Avian influenza, Norovirus, and SARS-CoV-2). Significantly, the first section briefly focuses on various diagnostic modalities applied toward airborne pathogen detection. Next, the fabricated optical biosensors using various transducer materials involved in colorimetric and fluorescence strategies for infectious pathogen detection are extensively discussed. The third section is well documented based on electrochemical biosensors for airborne pathogen detection by differential pulse voltammetry, cyclic voltammetry, square-wave voltammetry, amperometry, and impedance spectroscopy. The unique pros and cons of these modalities and their future perspectives are addressed in the fourth and fifth sections. Overall, this review inspected 171 research articles published in the last decade and persuaded the importance of optical and electrochemical biosensors for airborne pathogen detection.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
8
|
Li J, Gu Q, Heng H, Wang Z, Jin H, He J. Rare-Earth hydroxide nanosheets based ratio fluorescence nanoprobe for dipicolinic acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120969. [PMID: 35158139 DOI: 10.1016/j.saa.2022.120969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
We demonstrate a novel ratio fluorescence nanoprobe for dipicolinic acid (DPA) as an anthrax biomarker based on layered rare-earth hydroxide (LRH). 3-Amino-benzenesulfonic acid (AS) was intercalated into layered terbium hydroxide to form composite and then delaminated into nanosheets in formamide. The monolayer nanosheets were beneficial to expose the Ln3+ luminescence centers to the environment more completely, contributing a high sensitive detection to the environment. With the increase of DPA concentration, the emission intensity of AS kept constant which worked as a stable internal reference, while the fluorescence of Tb3+ was enhanced obviously due to the antenna effect. In the 0.05-5.0 μM concentration range, the I544/I360 fluorescence ratio changed with the DPA concentration, which exhibited a good linear relationship (R2 = 0.999) and an ultralow detection limit of 3.8 nM. In addition, the probe showed high selectivity and sensitivity to the DPA detection as an anthrax biomarker, which can be applied in real tap water with good performances. This work could extend the applications of LRH nanosheets in detection and offer an extremely effective and easy technique for detecting DPA.
Collapse
Affiliation(s)
- Jinyan Li
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Qingyang Gu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China.
| | - Hui Heng
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Ziwei Wang
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Haibo Jin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Jain N, Kaur N. A comprehensive compendium of literature of 1,8-Naphthalimide based chemosensors from 2017 to 2021. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Abstract
Bacillus anthracis, present in two forms of vegetative cells and spores, is a pathogen that infects humans through contact with infected animals or contaminated animal products and is also maliciously used in terrorist acts. Therefore, a rapid and sensitive test for B. anthracis is necessary but challenging. The challenge comes from the following aspects: an accurate distinction of B. anthracis from other Bacillus species due to their high genomic similarity and the horizontal gene transfer between Bacillus members; direct detection of the B. anthracis spores without damaging them for component extraction to avoid the risk of spore atomization; and the rapid detections of B. anthracis in complex samples, such as soil and suspicious powders, without sample pretreatments and expensive large-scale equipment. Although culturing B. anthracis from samples is the conventional method for the detection of B. anthracis, it is time-consuming and the detection results would not be easy to interpret because many Bacillus species share similar phenotypic features such as a lack of motility and hemolysis, resistance to gamma phages, and so on. Intensive and extensive effort has been expended to develop reliable detection technologies, among which biosensors exhibit comprehensive advantages in terms of sensitivity, specificity, and portability. Here, we briefly review the research progress, providing highlights of the latest achievements and our own practice and experience. The contents can be summarized in three aspects: the discovery of detection targets, including genes, toxins, and other components; the creation of molecular recognition elements, such as monoclonal antibodies, single-chain antibody fragments, specific peptides, and aptamers; and the design and construction of biosensing systems by the integration of appropriate molecular recognition elements and transducer devices. These sensor devices have their own characteristics and different principles. For example, the surface plasmon resonance biosensor and quartz crystal microbalance biosensor are very sensitive, while the multiplex PCR-on-a-chip can detect multitargets. Biosensors for direct spore detection are highly recommended because they are not only fast but also avoid contamination from aerosol-containing spores. The introduction of nanotechnology has significantly improved the performance of biosensors. Superparamagnetic nanoparticles and phage-displayed gold nanoparticle ligand peptides have made the results of spore detection visible to the naked eye. Because of space constraints, many advanced biosensors for B. anthracis are not described in detail but are cited as references. Although biosensors provide a variety of options for various application scenarios, the challenges have not been fully addressed, which leaves room for the development of more advanced and practical B. anthracis detection means.
Collapse
Affiliation(s)
- Dian-Bing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
11
|
Rout Y, Montanari C, Pasciucco E, Misra R, Carlotti B. Tuning the Fluorescence and the Intramolecular Charge Transfer of Phenothiazine Dipolar and Quadrupolar Derivatives by Oxygen Functionalization. J Am Chem Soc 2021; 143:9933-9943. [PMID: 34161725 PMCID: PMC8297855 DOI: 10.1021/jacs.1c04173] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of new naphthalimide and phenothiazine-based push-pull systems (NPI-PTZ1-5), in which we structurally modulate the oxidation state of the sulfur atom in the thiazine ring, i.e., S(II), S(IV), and S(VI), was designed and synthesized by the Pd-catalyzed Sonogashira cross-coupling reaction. The effect of the sulfur oxidation state on the spectral, photophysical, and electrochemical properties was investigated. The steady-state absorption and emission results show that oxygen functionalization greatly improves the optical (absorption coefficient and fluorescence efficiency) and nonlinear optical (hyperpolarizability) features. The cyclic voltammetry experiments and the quantum mechanical calculations suggest that phenothiazine is a stronger electron donor unit relative to phenothiazine-5-oxide and phenothiazine-5,5-dioxide, while the naphthalimide is a strong electron acceptor in all cases. The advanced ultrafast spectroscopic measurements, transient absorption, and broadband fluorescence up conversion give insight into the mechanism of photoinduced intramolecular charge transfer. A planar intramolecular charge transfer (PICT) and highly fluorescent excited state are populated for the oxygen-functionalized molecules NPI-PTZ2,3 and NPI-PTZ5; on the other hand, a twisted intramolecular charge transfer (TICT) state is produced upon photoexcitation of the oxygen-free derivatives NPI-PTZ1 and NPI-PTZ4, with the fluorescence being thus significantly quenched. These results prove oxygen functionalization as a new effective synthetic strategy to tailor the photophysics of phenothiazine-based organic materials for different optoelectronic applications. While oxygen-functionalized compounds are highly fluorescent and promising active materials for current-to-light conversion in organic light-emitting diode devices, oxygen-free systems show very efficient photoinduced ICT and may be employed for light-to-current conversion in organic photovoltaics.
Collapse
Affiliation(s)
- Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Chiara Montanari
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via elce di sotto 8, 06123 Perugia, Italy
| | - Erika Pasciucco
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via elce di sotto 8, 06123 Perugia, Italy
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via elce di sotto 8, 06123 Perugia, Italy
| |
Collapse
|
12
|
Verma M, Chaudhary M, Singh A, Kaur N, Singh N. Naphthalimide-gold-based nanocomposite for the ratiometric detection of okadaic acid in shellfish. J Mater Chem B 2021; 8:8405-8413. [PMID: 32966537 DOI: 10.1039/d0tb01195a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Okadaic acid (OA) is one of the known marine biotoxins produced by various dinoflagellates and exists in seafood such as shellfish. The consumption of contaminated shellfish with OA leads to diarrheic shellfish poisoning (DSP), which results in the inhibition of protein phosphatase enzymes in humans. This poisoning can cause immunotoxicity and tumor promotion due to the accumulation of okadaic acid in more than the allowed limit in bivalve molluscs. The reported methods for the detection of okadaic acid include mouse bioassays, immunoassays, chromatography coupled with spectroscopic techniques, electrochemical sensors and immunosensors. We have developed a naphthalimide-gold-based nanocomposite for the detection of okadaic acid. Individually, the organic nanoparticles (ONPs) of synthesized naphthalimide-based receptors and gold-coated ONPs are less sensitive for detection. However, fabrication of the composite of Au@ONPs and ONPs enhance the sensing properties and selectivity. The composite shows a ratiometric response in the UV-Vis absorption spectrum and quenching in the fluorescence profile with a detection limit of 20 nM for OA in aqueous medium. In cyclic voltammetry, a shift was observed in the cathodic peak (-0.532 V to -0.618 V) as well as in the anodic peak (-0.815 V to -0.847 V) with the addition of okadaic acid. To study the quick binding of the composite with OA, a time response experiment was performed. Also, the developed sensor retains its sensing ability in the pH range of 5-9 and in high salt conditions. Our developed composite can be used for the detection of OA in real applications.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of UCRD, Chandigarh University, Ghraun, Mohali, 140413, India
| | - Monika Chaudhary
- Centre for Biomedical Engineering, Indian Institute of Technology Ropar, Roopnagar, Punjab-140001, India
| | - Amanpreet Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Roopnagar, Punjab-140001, India.
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh - 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Roopnagar, Punjab-140001, India.
| |
Collapse
|
13
|
Du H, Wang X, Yang Q, Wu W. Quantum dot: Lightning invisible foodborne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Mikrochim Acta 2021; 188:26. [DOI: 10.1007/s00604-020-04667-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
|
15
|
Wang J, Li D, Qiu Y, Liu X, Huang L, Wen H, Hu J. An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta 2020; 220:121377. [DOI: 10.1016/j.talanta.2020.121377] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
|
16
|
Mayank, Rani R, Singh A, Garg N, Kaur N, Singh N. Mitochondria- and nucleolus-targeted copper(i) complexes with pyrazole-linked triphenylphosphine moieties for live cell imaging. Analyst 2020; 145:83-90. [PMID: 31710323 DOI: 10.1039/c9an01513b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The labelling and imaging of mitochondria and nucleolus have attracted great attention because of the involvement of these cellular organelles in critical cellular activities. Therefore, a large number of mitochondria- or nucleolus-labelling probes have been developed throughout the world. However, in the current study, we successfully developed two pyrazole-based, copper-linked triphenylphosphine-coupled emissive metallo-complexes (C1 and C2) for the simultaneous visualization of mitochondria and nucleolus in a single run. These complexes were very inexpensive and could be synthesized by a simple one-pot multicomponent reaction scheme. The complexes were very specific, and only a small concentration of 5 μM was found to be sufficient to probe both the organelles efficiently. Additionally, even under a shorter incubation period (half hour), the fluorescence intensity from the cells was appreciable. Also, both the compounds were found to be photostable when torched with 10% of a 100 mW laser for up to 10 min. All these results indicate that both the complexes may contribute towards the future development of cell imaging tools. To the best of our knowledge, this is the first report on the development of multifunctional live cell imaging tools for simultaneous mitochondria and nucleolus imaging and within the shortest incubation time of about 30 minutes.
Collapse
Affiliation(s)
- Mayank
- Department of Chemistry, Indian Institute of Technology Ropar, India.
| | - Richa Rani
- Department of Chemistry, Indian Institute of Technology Ropar, India.
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, India.
| | - Neha Garg
- School of Basic Sciences, Indian Institute of Technology Mandi, India.
| | - Navneet Kaur
- Department of Chemistry, Punjab University Chandigarh, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, India.
| |
Collapse
|
17
|
Singh MP, Baruah JB. Photophysical properties of Ag, Zn and Cd - N-(4-pyridylmethyl)-1,8-naphthalimide complexes: influences of π-stacking and C–H⋯O interactions. CrystEngComm 2020. [DOI: 10.1039/d0ce00555j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In solution ligand and complexes show similiar fluorescence emission whereas emission in solid samples are distinguishable.
Collapse
Affiliation(s)
- Munendra Pal Singh
- Department of Chemistry
- Indian Institute of Technology
- Guwahati 781039
- India
| | - Jubaraj B. Baruah
- Department of Chemistry
- Indian Institute of Technology
- Guwahati 781039
- India
| |
Collapse
|
18
|
Cetinkaya Y, Yurt MNZ, Avni Oktem H, Yilmaz MD. A Monostyryl Boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe for sequential sensing of copper (II) ions and dipicolinic acid as a biomarker of bacterial endospores. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:299-304. [PMID: 31173979 DOI: 10.1016/j.jhazmat.2019.05.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/18/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
A new catechol-substituted monostyryl boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe was developed for the sequential detection of Cu2+ ions and dipicolinic acid (DPA), a distinctive biomarker of bacterial endospores, with high sensitivity and selectivity. In the presence of Cu2+ ions, the blue solution of the probe changes to cyan and the fluorescence is quenched, however, the cyan color changes to blue immediately and the fluorescence is restored on contact with DPA, resulting from competitive binding of DPA that interact with Cu2+ ions. A practical application by using Geobacillus stearothermophilus spores was further studied and as low as 1.0 x 105 spores were detected.
Collapse
Affiliation(s)
- Yagmur Cetinkaya
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Mediha Nur Zafer Yurt
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey; Institute of Science, Biotechnology Graduate Program, Konya Food and Agriculture University, Konya, 42080, Turkey
| | - Huseyin Avni Oktem
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey; Nanobiz R&D Ltd., Gallium Bld. No.18, METU Science Park, Ankara, Turkey
| | - M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey; Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey; Institute of Science, Biotechnology Graduate Program, Konya Food and Agriculture University, Konya, 42080, Turkey.
| |
Collapse
|
19
|
Zhou Z, Gu J, Chen Y, Zhang X, Wu H, Qiao X. Europium functionalized silicon quantum dots nanomaterials for ratiometric fluorescence detection of Bacillus anthrax biomarker. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:88-93. [PMID: 30616167 DOI: 10.1016/j.saa.2018.12.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Bacillus anthracis spore causes anthrax to seriously threaten human health and even cause death. 2,6-Pyridinedicarboxylic acid (DPA) is a unique biomarker because it is a major component of Bacillus anthracis spore. Herein, we design europium functionalized silicon quantum dots as a ratiometric fluorescent nanoprobe to detect DPA with high sensitivity and selectivity. With the addition of DPA, the red emission peaks were observed at 618 nm. The novel probe enables ratiometric and sensitive DPA detection over nanomolar concentrations (as low as 1.02 μM). This work provided an efficient background-free and self-calibrating method for the recognition of DPA.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| | - Jiapei Gu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Yuze Chen
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Xiaoxia Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Xiaoguang Qiao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
20
|
Sharma H, Sidhu JS, Hassen WM, Singh N, Dubowski JJ. Synthesis of a 3,4-Disubstituted 1,8-Naphthalimide-Based DNA Intercalator for Direct Imaging of Legionella pneumophila. ACS OMEGA 2019; 4:5829-5838. [PMID: 31001603 PMCID: PMC6463538 DOI: 10.1021/acsomega.8b03638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/14/2019] [Indexed: 05/06/2023]
Abstract
The development of organic molecules to target nucleic acid is an active area of research at the interface of chemistry and biochemistry, which involves DNA binding, nuclear imaging, and antitumor studies. These molecules bind with DNA through covalent interactions, electrostatic interactions, or intercalation. However, they are less permeable to membrane, and they have a significant cytotoxicity, which limits their application under in vivo conditions. In the present work, various mono- and disubstituted 1,8-naphthalimides-based derivatives (S-12, S-13, S-15, and S-21) have been synthesized and characterized through various spectroscopic techniques. Among these, 3-amino-4-bromo-1,8-naphthalimide (S-15) was found to have an attractive water solubility and act as a nuclear imaging agent. The spectroscopic absorption and emission data showed that S-15 has a strong affinity for salmon sperm DNA with a binding constant of 6.61 × 104 M-1, and the ratiometric fluorescence intensity (I 489/I 552) of S-15 has a linear relationship in the 0-50 μM range of DNA concentrations. It intercalates with DNA through the hydrophobic planar naphthalimide core as confirmed through cyclic voltammetry, circular dichroism, 1H NMR titration, and thermal denaturation studies. Positively charged amine groups also participate in H-bonding with the bases and backbone of DNA. The S-15 intercalator showed a large Stokes shift and photostability, which made it attractive for direct imaging of Legionella pneumophila, without the need for a prior membrane permeabilization.
Collapse
Affiliation(s)
- Hemant Sharma
- Laboratory
for Quantum Semiconductors and Photon-Based BioNanotechnology, Interdisciplinary
Institute for Technological Innovation (3IT), CNRS UMI-3463, Department
of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Jagpreet S. Sidhu
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar, Punjab 140001, India
| | - Walid M. Hassen
- Laboratory
for Quantum Semiconductors and Photon-Based BioNanotechnology, Interdisciplinary
Institute for Technological Innovation (3IT), CNRS UMI-3463, Department
of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Narinder Singh
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar, Punjab 140001, India
- E-mail: (N.S.)
| | - Jan J. Dubowski
- Laboratory
for Quantum Semiconductors and Photon-Based BioNanotechnology, Interdisciplinary
Institute for Technological Innovation (3IT), CNRS UMI-3463, Department
of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
- E-mail: (J.J.D.)
| |
Collapse
|
21
|
Lei H, Qi CX, Chen XB, Zhang T, Xu L, Liu B. Ratiometric fluorescence determination of the anthrax biomarker 2,6-dipicolinic acid using a Eu3+/Tb3+-doped nickel coordination polymer. NEW J CHEM 2019. [DOI: 10.1039/c9nj04501e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tb3+0.6/Eu3+0.4@Ni-BTC is a quantitative ratiometric fluorescence sensor for DPA detection with high sensitivity, anti-interference, rapid response and durability.
Collapse
Affiliation(s)
- Hang Lei
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Additives for Industry
- Shaanxi University of Science and Technology
- Xi’an 710021
- P. R. China
| | - Cui-Xing Qi
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Additives for Industry
- Shaanxi University of Science and Technology
- Xi’an 710021
- P. R. China
| | - Xuan-Bo Chen
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Additives for Industry
- Shaanxi University of Science and Technology
- Xi’an 710021
- P. R. China
| | - Tian Zhang
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Additives for Industry
- Shaanxi University of Science and Technology
- Xi’an 710021
- P. R. China
| | - Ling Xu
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
- P. R. China
| | - Bing Liu
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Additives for Industry
- Shaanxi University of Science and Technology
- Xi’an 710021
- P. R. China
| |
Collapse
|
22
|
Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores. Mikrochim Acta 2018; 185:435. [PMID: 30167800 DOI: 10.1007/s00604-018-2978-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Hydroxyapatite nanoparticles (HAP-NPs) were rendered fluorescence by doping with Eu(III) ion. The resulting fluorescent NPs are shown to be viable probes for sensitive and selective determination of dipicolinic acid (DPA), a major constituent of bacterial spores as used in bioterrorism. It is found that the addition of DPA to solutions of such HAP-NPs result in an enhancement of fluorescence due to the coordination of DPA with the Eu(III) dopant. The assay allows DPA to be detected in the 0.1 to 40 μM concentration range and with a 77 nM detection limit. The assay was applied to the detection of spores of Bacillus subtilis. The attractive properties of the probe make it a promising candidate for used in rapid detection of pathogenic bacterial spores. Graphical abstract Fluorescent hydroxyapatite nanoparticles (HAP-NPs) are shown to be a viable probe for detection of dipicolinic acid, a major constituent of bacterial spores. The red asterisks represent the fluorescence intensity of the HAP-NPs.
Collapse
|