1
|
Eatson J, Bauernfeind S, Midtvedt B, Ciarlo A, Menath J, Pesce G, Schofield AB, Volpe G, Clegg PS, Vogel N, Buzza DMA, Rey M. Self-assembly of defined core-shell ellipsoidal particles at liquid interfaces. J Colloid Interface Sci 2025; 683:435-446. [PMID: 39740560 DOI: 10.1016/j.jcis.2024.12.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
HYPOTHESIS Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly due to quadrupolar capillary interactions, favouring either tip-to-tip or side-to-side configurations. However, predicting and controlling which structure forms remains challenging. We hypothesize that introducing a polymer-based soft shell around the particles will modulate these capillary interactions, providing a means to tune the preferred self-assembly configuration based on particle geometry and shell properties. EXPERIMENTS We fabricate core-shell ellipsoidal particles with defined aspect ratios and shell thickness through thermo-mechanical stretching. Using interfacial self-assembly experiments, we systematically explore how aspect ratio and shell thickness affect the self-assembly configurations. Monte Carlo simulations and theoretical calculations complement the experiments by mapping the phase diagram of thermodynamically preferred structures as a function of core-shell properties. FINDINGS Pure ellipsoidal particles without a shell consistently form side-to-side "chain-like" assemblies, regardless of aspect ratio. In contrast, core-shell ellipsoidal particles exhibit a transition from tip-to-tip "flower-like" arrangements to side-to-side structures as aspect ratio increases. The critical aspect ratio for this transition shifts with increasing shell thickness. Our results highlight how we can engineer the self-assembly of anisotropic particles at liquid interfaces by tuning their physicochemical properties such as aspect ratio and shell thickness, allowing the deterministic realization of distinct structural configurations.
Collapse
Affiliation(s)
- Jack Eatson
- Department of Physics and Astrophysics, G. W. Gray Centre for Advanced Materials, University of Hull, Hull HU6 7RX, United Kingdom
| | - Susann Bauernfeind
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany
| | - Benjamin Midtvedt
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Antonio Ciarlo
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Johannes Menath
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany
| | - Giuseppe Pesce
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; Dipartimento di Fisica "Ettore Pancini", Università degli Studi di Napoli Federico II, Naples, Italy
| | - Andrew B Schofield
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Paul S Clegg
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany
| | - D Martin A Buzza
- Department of Physics and Astrophysics, G. W. Gray Centre for Advanced Materials, University of Hull, Hull HU6 7RX, United Kingdom
| | - Marcel Rey
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany.
| |
Collapse
|
2
|
Zhan Y, Huang X, Liu M, Lin R, Yu H, Kou Y, Xing E, Elzatahry AA, Mady MF, Zhao D, Zhao T, Li X. Liquid-nano-liquid interface-oriented anisotropic encapsulation. Proc Natl Acad Sci U S A 2025; 122:e2417292121. [PMID: 39793061 PMCID: PMC11725832 DOI: 10.1073/pnas.2417292121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids. Specifically, functional nanoparticles such as magnetic nanoparticles, lanthanide fluorescent nanoparticles, and Au nanorods were anisotropically encapsulated by mesoporous polydopamine (mPDA). In this emulsion system, the wetting behavior of functional nanoparticles at the water/oil interface could be manipulated by the stabilizer of the emulsion (surfactant), leading to the anisotropic assembly of mPDA shell and resulting in various nanostructures, including core-shell, yolk-shell with small opening, ball-in-bowl, and multipetal structures. Due to their structural asymmetry, inherent magnetic properties, and photothermal properties, the ball-in-bowl structured Fe3O4@SiO2&mPDA nanohybrids, serving as proof of concept for nanomotors, demonstrated effective penetration of bacterial biofilm and promotion of infected wound healing. Overall, our approach offers a different perspective for designing morphologically controllable asymmetric structures based on liquid-nano-liquid interface in microemulsion systems that hold great potential for establishing innovative functional nanomaterials.
Collapse
Affiliation(s)
- Yating Zhan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Xirui Huang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Minchao Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Runfeng Lin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Hongyue Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Yufang Kou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Enyun Xing
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Ahmed A. Elzatahry
- William A. Brookshire Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Houston, TX77204
| | - Mohamed F. Mady
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha2713, Qatar
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Tiancong Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| |
Collapse
|
3
|
Hagemans F, Hazra N, Lovasz VD, Awad AJ, Frenken M, Babenyshev A, Laukkanen O, Braunmiller D, Richtering W, Crassous JJ. Soft and Deformable Thermoresponsive Hollow Rod-Shaped Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401376. [PMID: 39252647 PMCID: PMC11707578 DOI: 10.1002/smll.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Depending on their aspect ratio, rod-shaped particles exhibit a much richer 2D and 3D phase behavior than their spherical counterparts, with additional nematic and smectic phases accompanied by defined orientational ordering. While the phase diagram of colloidal hard rods is extensively explored, little is known about the influence of softness in such systems, partly due to the absence of appropriate model systems. Additionally, investigating higher volume fractions for long rods is usually complicated because non-equilibrium dynamical arrest is likely to precede the formation of more defined states. This has motivated us to develop micrometric rod-like microgels with limited sedimentation that can respond to temperature and reversibly reorganize into defined phases via annealing and seeding procedures. A detailed procedure is presented for synthesizing rod-shaped hollow poly(N-isopropylacrylamide) microgels using micrometric silica rods as sacrificial templates. Their morphological characterization is conducted through a combination of microscopy and light scattering techniques, evidencing the unconstrained swelling of rod-shaped hollow microgels compared to core-shell microgel rods. Different aspects of their assembly in dispersion and at interfaces are further tested to illustrate the opportunities and challenges offered by such systems that combine softness, anisotropy, and thermoresponsivity.
Collapse
Affiliation(s)
- Fabian Hagemans
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
| | - Nabanita Hazra
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
| | - Viktoria D. Lovasz
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
| | - Alexander J. Awad
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
| | - Martin Frenken
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
| | - Andrey Babenyshev
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
| | - Olli‐Ville Laukkanen
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
- VTT Technical Research Centre of Finland LtdKoivurannantie 1Jyväskylä40400Finland
| | - Dominik Braunmiller
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
| | - Walter Richtering
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
| | - Jérôme J. Crassous
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2DE‐52074AachenGermany
| |
Collapse
|
4
|
Yu S, Peng G, Jiao J, Liu P, Li H, Xi J, Wu D. Chitin nanocrystals-stabilized emulsion as template for fabricating injectable suspension containing polylactide hollow microspheres. Carbohydr Polym 2024; 337:122176. [PMID: 38710562 DOI: 10.1016/j.carbpol.2024.122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
One of the promising applications of rod-like chitin nanocrystals (ChNCs) is the use as particle emulsifier to develop Pickering emulsions. We reported a ChNC-stabilized oil-in-water emulsion system, and developed a Pickering emulsion-templated method to prepare polylactide (PLA) hollow microspheres here. The results showed that both non-modified ChNCs and acetylated ChNCs could well emulsify the dichloromethane (DCM) solution of PLA-in-aqueous mannitol solution systems, forming very stable emulsions. At the same oil-to-water ratios and ChNC loadings, the emulsion stability was improved with increasing acetylation levels of ChNCs, accompanied by reduced size of droplets. Through the solvent evaporation, the PLA hollow microspheres were templated successfully, and the surface structure was also strongly dependent on the acetylation level of ChNCs. At a low level of acetylation, the single-hole or multi-hole surface structure formed, which was attributed to the out-diffusion of DCM caused by the solvent extraction and evaporation. These surface defects decreased with increased acetylation levels of ChNCs. Moreover, the aqueous suspension with as-obtained PLA microspheres revealed shear-thinning property and good biocompatibility, thereby had promising application as injectable fillers. This work can provide useful information around tuning surface structures of the Pickering emulsion-templated polymer hollow microspheres by regulating acetylation level of ChNCs.
Collapse
Affiliation(s)
- Sumin Yu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Guangni Peng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Jiali Jiao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Peng Liu
- Shanghai Isiris Medical Co. Ltd., Shanghai 201400, PR China
| | - Huajun Li
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Juqun Xi
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
5
|
Gohil RS, Karishma S, Kumar H, Basavaraj MG, Mani E. Demulsification of Pickering Emulsions by Chemical Dissolution of Stabilizers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11988-11997. [PMID: 38787896 DOI: 10.1021/acs.langmuir.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Demulsification of particle-stabilized oil-in-water emulsions is crucial in diverse fields such as treatment of produce water, recovery of valuable products of Pickering emulsion catalysis, and so on. In this work, we investigated a facile method for destabilizing emulsions by dissolving stabilizer particles by the introduction of acid or base. Nanoellipsoidal hematite-stabilized decane-in-water emulsions are destabilized by dissolving hematite with oxalic or hydrochloric acid in situ. Time required for complete demulsification decreased as the acid concentration is increased. The demulsification time is typically on the order of a few hours for the chosen protocol. Similarly, the silica-stabilized decane-water emulsion is demulsified by the addition of aqueous sodium hydroxide. Demulsification kinetics is presented as the temporal change of the emulsion volume with time. Emulsion volume decreases in two stages: an initial slow decrease followed by an exponential decrease. Scanning electron microscopy analysis shows that the stabilizing particles are completely dissolved and recrystallized as salts of respective kinds. An estimate of the desorption free energy suggests that particle size should be reduced to a few nanometers for inducing destabilization. This work describes a facile method to destabilize oil-in-water emulsion, and it can be generalized to any other particle-stabilized emulsions by choosing appropriate chemical reagent for dissolution.
Collapse
Affiliation(s)
- Renuka S Gohil
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - S Karishma
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Hemant Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Madivala G Basavaraj
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ethayaraja Mani
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
6
|
Thampi SP, Stratford K, Henrich O. Simulating dynamics of ellipsoidal particles using lattice Boltzmann method. Phys Rev E 2024; 109:065302. [PMID: 39020973 DOI: 10.1103/physreve.109.065302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
Anisotropic particles are often encountered in different fields of soft matter and complex fluids. In this work, we present an implementation of the coupled hydrodynamics of solid ellipsoidal particles and the surrounding fluid using the lattice Boltzmann method. A standard link-based mechanism is used to implement the solid-fluid boundary conditions. We develop an implicit method to update the position and orientation of the ellipsoid. This exploits the relations between the quaternion which describes the ellipsoid's orientation and the ellipsoid's angular velocity to obtain a stable and robust dynamic update. The proposed algorithm is validated by looking at four scenarios: (i) the steady translational velocity of a spheroid subject to an external force in different orientations, (ii) the drift of an inclined spheroid subject to an imposed force, (iii) three-dimensional rotational motions in a simple shear flow (Jeffrey's orbits), and (iv) developed fluid flows and self-propulsion exhibited by a spheroidal microswimmer. In all cases the comparison of numerical results shows good agreement with known analytical solutions, irrespective of the choice of the fluid properties, geometrical parameters, and lattice Boltzmann model, thus demonstrating the robustness of the proposed algorithm.
Collapse
|
7
|
Chang SY, Vora SR, Young CD, Shetty A, Ma AWK. Viscoelasticity of a carbon nanotube-laden air-water interface. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:18. [PMID: 38457022 DOI: 10.1140/epje/s10189-024-00411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
The viscoelasticity of a carbon nanotube (CNT)-laden air-water interface was characterized using two different experimental methods. The first experimental method used a Langmuir-Pockels (LP) trough coupled with a pair of oscillating barriers. The second method is termed the Bicone-Trough (BT) method, where a LP trough was custom-built and fit onto a rheometer equipped with a bicone fixture to standardize the preparation and conditioning of a particle-laden interface especially at high particle coverages. The performance of both methods was evaluated by performing Fast Fourier Transform (FFT) analysis to calculate the signal-to-noise ratios (SNR). Overall, the rheometer-based BT method offered better strain control and considerably higher SNRs compared to the Oscillatory Barriers (OB) method that oscillated barriers with relatively limited positional and speed control. For a CNT surface coverage of 165 mg/m2 and a frequency of 100 mHz, the interfacial shear modulus obtained from the OB method increased from 39 to 57 mN/m as the normal strain amplitude increased from 1 to 3%. No linear viscoelastic regime was experimentally observed for a normal strain as small as 0.5%. In the BT method, a linear regime was observed below a shear strain of 0.1%. The interfacial shear modulus decreased significantly from 96 to 2 mN/m as the shear strain amplitude increased from 0.025 to 10%.
Collapse
Affiliation(s)
- Shing-Yun Chang
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Sahil R Vora
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Charles D Young
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Abhishek Shetty
- Rheology Division, Anton Paar USA, 10215 Timber Ridge Dr, Ashland, VA, 23005, USA
| | - Anson W K Ma
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
8
|
Long Y, Wu Q, Jiang C, Zhang G, Liang F. Anisotropic Multitentacle Janus Particles Synthesized by Selective Asymmetric Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307203. [PMID: 37939294 DOI: 10.1002/smll.202307203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Indexed: 11/10/2023]
Abstract
Anisotropic colloidal particles with asymmetric morphology possess functionally rich heterogeneous structures, thus offering potential for intricate superstructures or nanodevices. However, it is a challenge to achieve controlled asymmetric surface partitioned growth. In this work, an innovative strategy is developed based on the selective adsorption and growth of emulsion droplets onto different regions of object which is controlled by wettability. It is found that the emulsion droplets can selectively adsorb on the hydrophilic surface but not the hydrophobic one, and further form asymmetric tentacle by the interfacial sol-gel process along its trajectory. Janus particles with an anisotropic shape and multitentacle structure are achieved via integration of emulsion droplet (soft) and seed (hard) templates. The size and number of tentacles exhibit tunability mediated by soft and hard templates, respectively. This general strategy can be expanded to a variety of planar substrates or curved particles, further confirming the correlation between tentacle growth and Brownian motion. Most interestingly, it can be employed to selectively modify one region of surface partitioned particles to achieve an ABC three-component Janus structure.
Collapse
Affiliation(s)
- Yingchun Long
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiuhua Wu
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Chao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Guolin Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Yu S, Peng G, Wu D. Effect of surface acetylation of chitin nanocrystals on the preparation and viscoelasticity of sunflower seed oil-in-water Pickering emulsions. Int J Biol Macromol 2024; 254:127883. [PMID: 37931865 DOI: 10.1016/j.ijbiomac.2023.127883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Acetylated chitin nanocrystals (ChNCs) were used as stabilizer in this work to prepare sunflower seed oil-in-water emulsions for the morphological and rheological studies. The results revealed that the acetylation with moderate degree of substitution (0.38) reduced hydrophilicity and increased surface charge level of rod-like ChNCs, and as a result, significantly improved the emulsifying ability of ChNCs. At the same oil/water ratio and particle loading, the emulsions stabilized with the acetylated ChNCs had far smaller droplet size (∼3 μm) as compared to the emulsions stabilized with the pristine ChNCs (5-7 μm). The increased droplets numbers and improved surface coating level resulted in the enhanced viscous resistance and yield stress level, which improved the physical stability of the acetylated ChNC-stabilized emulsions as a result. In addition, the droplet clusters easily formed in this system, contributing to weak strain overshoot and decreased large-deformation sensitivity during dynamic shear flow. Therefore, the acetylated ChNC-stabilized system showed enhanced transient stress overshoot during startup flow and weakened thixotropy during cyclic ramp shear flow as compared to the pristine ChNC-stabilized system. The relationships between surface acetylation of ChNCs and flow behavior of emulsions were then established, which provide valuable information on the modulation of the ChNC-stabilized Pickering emulsions.
Collapse
Affiliation(s)
- Sumin Yu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Guangni Peng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Provincial Key Laboratories of Environmental Engineering & Materials, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
10
|
Trevenen S, Rahman MA, Hamilton HS, Ribbe AE, Bradley LC, Beltramo PJ. Nanoscale Porosity in Microellipsoids Cloaks Interparticle Capillary Attraction at Fluid Interfaces. ACS NANO 2023; 17:11892-11904. [PMID: 37272708 PMCID: PMC10312195 DOI: 10.1021/acsnano.3c03301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Anisotropic particles pinned at fluid interfaces tend toward disordered multiparticle configurations due to large, orientationally dependent, capillary forces, which is a significant barrier to exploiting these particles to create functional self-assembled materials. Therefore, current interfacial assembly methods typically focus on isotropic spheres, which have minimal capillary attraction and no dependence on orientation in the plane of the interface. In order to create long-range ordered structures with complex configurations via interfacially trapped anisotropic particles, control over the interparticle interaction energy via external fields and/or particle engineering is necessary. Here, we synthesize colloidal ellipsoids with nanoscale porosity and show that their interparticle capillary attraction at a water-air interface is reduced by an order of magnitude compared to their smooth counterparts. This is accomplished by comparing the behavior of smooth, rough, and porous ellipsoids at a water-air interface. By monitoring the dynamics of two particles approaching one another, we show that the porous particles exhibit a much shorter-range capillary interaction potential, with scaling intriguingly different than theory describing the behavior of smooth ellipsoids. Further, interferometry measurements of the fluid deformation surrounding a single particle shows that the interface around porous ellipsoids does not possess the characteristic quadrupolar symmetry of smooth ellipsoids, and quantitatively confirms the decrease in capillary interaction energy. By engineering nanostructured surface features in this fashion, the interfacial capillary interactions between particles may be controlled, informing an approach for the self-assembly of complex two-dimensional microstructures composed of anisotropic particles.
Collapse
Affiliation(s)
- Samuel Trevenen
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Md Anisur Rahman
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Heather S.C. Hamilton
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alexander E. Ribbe
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Laura C. Bradley
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peter J. Beltramo
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Zuo M, Song Q, Hajiyeva N, Lerch H, Bolten J, Plachetka U, Lemme MC, Schönherr H. Effect of Particle Size on the Orientation and Order of Assemblies of Functionalized Microscale Cubes Formed at the Water/Air Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37310799 DOI: 10.1021/acs.langmuir.3c00518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The impact of the particle size and wettability on the orientation and order of assemblies obtained by self-organization of functionalized microscale polystyrene cubes at the water/air interface is reported. An increase in the hydrophobicity of 10- and 5-μm-sized self-assembled monolayer-functionalized polystyrene cubes, as assessed by independent water contact angle measurements, led to a change of the preferred orientation of the assembled cubes at the water/air interface from face-up to edge-up and further to vertex-up, irrespective of microcube size. This tendency is consistent with our previous studies with 30-μm-sized cubes. However, the transitions among these orientations and the capillary force-induced structures, which change from flat plate to tilted linear and further to close-packed hexagonal arrangements, were observed to shift to larger contact angles for smaller cube size. Likewise, the order of the formed aggregates decreased significantly with decreasing cube size, which is tentatively attributed to the small ratio of inertial force to capillary force for smaller cubes in disordered aggregates, which results in more difficulties to reorient in the stirring process. Experiments with small fractions of larger cubes added to the water/air interface increased the order of smaller homo-aggregates to values similar to neat 30 μm cube assemblies. Hence, collisions of larger cubes or aggregates are shown to play a decisive role in breaking metastable structures to approach a global energy minimum assembly.
Collapse
Affiliation(s)
- Mengdi Zuo
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Qimeng Song
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Nigar Hajiyeva
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Holger Lerch
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
| | - Jens Bolten
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
| | - Ulrich Plachetka
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
| | - Max C Lemme
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Straße 2, 52074 Aachen, Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
12
|
Song Q, Ogiemwonyi CE, Zuo M, Schönherr H. Investigation of the Orientation and Assembly of Functionalized Microcubes at the Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7388-7395. [PMID: 37192464 DOI: 10.1021/acs.langmuir.3c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The dependence of the preferred orientation of polystyrene microcubes on surface hydrophobicity at the water/hexadecane interface is reported. Similar to the water/air interfaces, the microcubes were shown to reside at the water/hexadecane interface with three distinct orientations: face-up, edge-up, and vertex-up. Concomitantly, ordered aggregates with flat plate, tilted linear, and close-packed hexagonal structures were formed, driven by capillary force. With increasing the hydrophobicity of five sides of the cubes, the preferential microcube orientation at the water/hexadecane interface changed sequentially from face-up to edge-up, to vertex-up, then back to edge-up, and to face-up. This dependence of the preferential microcube orientation on surface hydrophobicity at the water/hexadecane interface differs from that observed at the water/air interface, where the preferential orientation changed only from face-up to edge-up, then to vertex-up, as surface hydrophobicity increased. In addition, preformed microcube assemblies at the water/air interface could be dynamically reconfigured by replacing the air phase with hexadecane under stirring.
Collapse
Affiliation(s)
- Qimeng Song
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen 57076, Germany
| | - Christian Edorodion Ogiemwonyi
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen 57076, Germany
| | - Mengdi Zuo
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen 57076, Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen 57076, Germany
| |
Collapse
|
13
|
Kato AN, Jiang Y, Chen W, Seto R, Li T. How surface roughness affects the interparticle interactions at a liquid interface. J Colloid Interface Sci 2023; 641:492-498. [PMID: 36948104 DOI: 10.1016/j.jcis.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023]
Abstract
HYPOTHESIS Colloidal particles can be trapped at a liquid interface, which reduces the energetically costly interfacial area. Once at an interface, colloids undergo various self-assemblies and structural transitions due to shape-dependent interparticle interactions. Particles with rough surfaces receive increasing attention and have been applied in material design, such as Pickering emulsions and shear-thickening materials. However, the roughness effects on the interactions at a liquid interface remain less understood. EXPERIMENTS Experimentally, particles with four surface roughnesses were designed and compared via isotherm measurements upon a uniaxial compression. At each stage of the compression, micrographic observations were conducted via the Blodgett method. Numerically, the compression of monolayer was simulated by using Langevin dynamics. Rough colloids were modelled as particles with capillary attraction and tangential constraints. FINDINGS Sufficiently rough systems exhibit a non-trivial intermediate state between a gas-like state and a close-packed jamming state. This state is understood as a gel state due to roughness-induced capillary attraction. Roughness-induced friction lowers the jamming point. Furthermore, the tangential contact force owing to surface asperities can cause a gradual off-plane collapse of the compressed monolayer.
Collapse
Affiliation(s)
- Airi N Kato
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325001, Zhejiang, China
| | - Yujie Jiang
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325001, Zhejiang, China
| | - Wei Chen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Department of Physics, The City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ryohei Seto
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325001, Zhejiang, China; Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Hyogo, Japan.
| | - Tao Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325001, Zhejiang, China.
| |
Collapse
|
14
|
Choi J, Kim H, Lee H, Yi S, Hyun Lee J, Woong Kim J. Hydrophobically modified silica nanolaces-armored water-in-oil pickering emulsions with enhanced interfacial attachment energy. J Colloid Interface Sci 2023; 641:376-385. [PMID: 36940594 DOI: 10.1016/j.jcis.2023.03.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
HYPOTHESIS Anisotropic particles with a high aspect ratio led to favorable interfacial adhesion, thus enabling Pickering emulsion stabilization. Herein, we hypothesized that pearl necklace-shaped colloid particles would play a key role in stabilizing water-in-silicone oil (W/S) emulsions by taking advantage of their enhanced interfacial attachment energy. EXPERIMENTS We fabricated hydrophobically modified silica nanolaces (SiNLs) by depositing silica onto bacterial cellulose nanofibril templates and subsequently grafting alkyl chains with tuned amounts and chain lengths onto the nanograins comprising the SiNLs. FINDINGS The SiNLs, of which nanograin has the same dimension and surface chemistry as the silica nanospheres (SiNSs), showed more favorable wettability than SiNSs at the W/S interface, which was supported by the approximately 50 times higher attachment energy theoretically calculated using the hit-and-miss Monte Carlo method. The SiNLs with longer alkyl chains from C6 to C18 more effectively assembled at the W/S interface to produce a fibrillary interfacial membrane with a 10 times higher interfacial modulus, preventing water droplets from coalescing and improving the sedimentation stability and bulk viscoelasticity. These results demonstrate that the SiNLs acted as a promising colloidal surfactant for W/S Pickering emulsion stabilization, thereby allowing the exploration of diverse pharmaceutical and cosmetic formulations.
Collapse
Affiliation(s)
- Jihyun Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hajeong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunsuk Lee
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Republic of Korea
| | - SeungHwan Yi
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Republic of Korea
| | - Jin Hyun Lee
- School of Bio-Convergence Science, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea.
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
15
|
Madhavan N, Deshpande AP, Mani E, Basavaraj MG. Electrostatic Heteroaggregation: Fundamentals and Applications in Interfacial Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2112-2134. [PMID: 36727572 DOI: 10.1021/acs.langmuir.2c02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aggregation of oppositely charged soft materials (particles, surfactants, polyelectrolytes, etc.) that differ in one or more physical or chemical attributes, broadly referred to as electrostatic heteroaggregation, has been an active area of research for several decades now. While electrostatic heteroaggregation (EHA) is relevant to diverse fields such as environmental engineering, food technology, and pharmaceutical formulations, more recently there has been a resurgence to explore various aspects of this phenomenon in the context of interface stabilization and the development of functional materials. In this Feature Article, we provide an overview of the recent contributions of our group to this exciting field with particular emphasis on fundamental studies of electrostatic heteroaggregation between oppositely charged systems in the bulk, at interfaces, and across the bulk/interface. The influence of the size and shape of particles and the surface charge of heteroaggregates on the formation of Pickering emulsions and their utilization in the development of porous ceramics is discussed.
Collapse
Affiliation(s)
- Nithin Madhavan
- Polymer Engineering and Colloid Sciences Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, IIT P.O., Chennai600036, India
| | - Abhijit P Deshpande
- Polymer Engineering and Colloid Sciences Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, IIT P.O., Chennai600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Sciences Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, IIT P.O., Chennai600036, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Sciences Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, IIT P.O., Chennai600036, India
| |
Collapse
|
16
|
Gnidovec A, Božič A, Čopar S. Dense packings of geodesic hard ellipses on a sphere. SOFT MATTER 2022; 18:7670-7678. [PMID: 36172841 DOI: 10.1039/d2sm00624c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Packing problems are abundant in nature and have been researched thoroughly both experimentally and in numerical models. In particular, packings of anisotropic, elliptical particles often emerge in models of liquid crystals, colloids, and granular and jammed matter. While most theoretical studies on anisotropic particles have thus far dealt with packings in Euclidean geometry, there are many experimental systems where anisotropically-shaped particles are confined to a curved surface, such as Pickering emulsions stabilized by ellipsoidal particles or protein adsorbates on lipid vesicles. Here, we study random close packing configurations in a two-dimensional model of spherical geodesic ellipses. We focus on the interplay between finite-size effects and curvature that is most prominent at smaller system sizes. We demonstrate that on a spherical surface, monodisperse ellipse packings are inherently disordered, with a non-monotonic dependence of both their packing fraction and the mean contact number on the ellipse aspect ratio, as has also been observed in packings of ellipsoids in both 2D and 3D flat space. We also point out some fundamental differences with previous Euclidean studies and discuss the effects of curvature on our results. Importantly, we show that the underlying spherical surface introduces frustration and results in disordered packing configurations even in systems of monodispersed particles, in contrast to the 2D Euclidean case of ellipse packing. This demonstrates that closed curved surfaces can be effective at introducing disorder in a system and could facilitate the study of monodispersed random packings.
Collapse
Affiliation(s)
- Andraž Gnidovec
- University of Ljubljana, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia.
| | - Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Simon Čopar
- University of Ljubljana, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Kumar C, Srivastava S. Structural and Dynamical Studies of a Lipid-Nanoclay Composite Layer at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10400-10411. [PMID: 35973133 DOI: 10.1021/acs.langmuir.2c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We modulate the adsorption affinities of nanoclay particles for the air-water interface by changing the cationic surface charge composition of the lipid monolayer and thereby tune the attractive electrostatic interaction between the positively charged lipid layer and the zwitterionic nanoclay particles in the water subphase. Our findings emphasize the significance of electrostatic interaction between lipids and the nanoclay, as well as its impact on the structural and viscoelastic features of the composite layer. We use surface pressure (Π)-mean molecular area (A) isotherms, atomic force microscope (AFM), Brewster angle microscopy (BAM), and energy dispersive X-ray spectrsocopy (EDXS) measurements to analyze the structure phases of lipid and lipid-nanoclay composite interfacial layer. The Π-A isotherm curve shows that the lipid-nanoclay composite layer has a larger lift-off area than the neat lipid layer, indicating that nanoparticles adsorb at the lipid layer via electrostatic interaction between lipid and nanoclay molecules. The surface density of the adsorbed nanoclay particles increases with an increase in the composition of the cationic lipid molecules. The stress relaxation response of the composite layer, measured using step compression measurements, exhibits exponential decay and ubiquitous dependence on the cationic dimyristoy-trimethylammonium propane (DMTAP) composition in the lipid layer with crossover to faster relaxation dynamics at DMTAP > 0.75. The power-law study of the frequency-dependent dynamic viscoelastic responses of the interfacial layer, measured using the barrier oscillation method, reveals a transition from glass-like response from neat lipid layer to gel-like dynamic response for the lipid-nanoclay composite layer. A solid-like behavior is evident for all the interface layers with dilation elastic modulus (E') > dilational viscous modulus (E″); however, the dynamic response of the neat layer is largely frequency-independent, whereas lipid-nanoclay composite layers with DMTAP > 0.75 reveal a frequency-dependent dynamic responses. The frequency-dependent power-law exponent of E', E″ increases on increasing the fractional composition of cationic DMTAP from 0.1 to 1.0, which forms a saturated interface of laponite particles and behaves as a viscoelastic gel in 2D.
Collapse
Affiliation(s)
- Chandan Kumar
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sunita Srivastava
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
18
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022; 61:e202115885. [PMID: 35524649 DOI: 10.1002/anie.202115885] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Pickering emulsions are particle-stabilized surfactant-free dispersions composed of two immiscible liquid phases, and emerge as attractive catalysis platform to surpass traditional technique barrier in some cases. In this review, we have comprehensively summarized the development and the catalysis applications of Pickering emulsions since the pioneering work in 2010. The explicit mechanism for Pickering emulsions will be initially discussed and clarified. Then, summarization is given to the design strategy of amphiphilic emulsion catalysts in two categories of intrinsic and extrinsic amphiphilicity. The progress of the unconventional catalytic reactions in Pickering emulsion is further described, especially for the polarity/solubility difference-driven phase segregation, "smart" emulsion reaction system, continuous flow catalysis, and Pickering interfacial biocatalysis. Challenges and future trends for the development of Pickering emulsion catalysis are finally outlined.
Collapse
Affiliation(s)
- Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Dongming Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.,State Key Lab of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
19
|
Sabapathy M, Md KZ, Kumar H, Ramamirtham S, Mani E, Basavaraj MG. Exploiting Heteroaggregation to Quantify the Contact Angle of Charged Colloids at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7433-7441. [PMID: 35678741 DOI: 10.1021/acs.langmuir.2c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We exploit the aggregation between oppositely charged particles to visualize and quantify the equilibrium position of charged colloidal particles at the fluid-water interface. A dispersion of commercially available charge-stabilized nanoparticles was used as the aqueous phase to create oil-water and air-water interfaces. The colloidal particles whose charge was opposite that of the nanoparticles in the aqueous phase were deposited at the chosen fluid-water interface. Heteroaggregation, i.e., aggregation between oppositely charged particles, leads to the deposition of nanoparticles onto the larger particle located at the interface; however, this only occurs on the surface of the particle in contact with the aqueous phase. This selective deposition of nanoparticles on the surfaces of the particles exposed to water enables the distinct visualization of the circular three-phase contact line around the particles positioned at the fluid-water interface. Since the electrostatic association between the nanoparticles and the colloids at interfaces is strong, the nanoparticle assembly on the larger particles is preserved even after being transferred to solid substrates via dip-coating. This facilitates the easy visualization of the contact line by electron microscopy and the determination of the equilibrium contact angle of colloidal particles (θ) at the fluid-water interface. The suitability of the method is demonstrated by the measurement of the three-phase contact angle of positively and negatively charged polystyrene particles located at fluid-water interfaces by considering particles with sizes varying from 220 nm to 8.71 μm. The study highlights the effect of the size ratio between the nanoparticles in the aqueous phase and the colloidal particles on the accuracy of the measurement of θ.
Collapse
Affiliation(s)
- Manigandan Sabapathy
- Advanced Colloid and Interfacial Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Khalid Zubair Md
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Hemant Kumar
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sashikumar Ramamirtham
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
20
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Ni
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Chang Yu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Qianbing Wei
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Dongming Liu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Jieshan Qiu
- Dalian University of Technology School of Chemical Engineering High Technology Zone, No. 2 Ling Gong Road 116024 Dalian CHINA
| |
Collapse
|
21
|
Nickel AC, Kratzenberg T, Bochenek S, Schmidt MM, Rudov AA, Falkenstein A, Potemkin II, Crassous JJ, Richtering W. Anisotropic Microgels Show Their Soft Side. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5063-5080. [PMID: 34586813 DOI: 10.1021/acs.langmuir.1c01748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anisotropic, submicrometer-sized particles are versatile systems providing interesting features in creating ordering in two-dimensional systems. Combining hard ellipsoids with a soft shell further enhances the opportunities to trigger and control order and alignment. In this work, we report rich 2D phase behavior and show how softness affects the ordering of anisotropic particles at fluid oil-water interfaces. Three different core-shell systems were synthesized such that they have the same elliptical hematite-silica core but differ with respect to thickness and stiffness of the soft microgel shell. Compression isotherms, the shape of individual core-shell microgels, and their 2D order at a decane-water interface are investigated by means of the Langmuir-Blodgett technique combined with ex-situ atomic force microscopy (AFM) imaging as well as dissipative particle dynamics (DPD) simulations. We show how the softness, size, and anisotropy of the microgel shell affect the side-to-side vs tip-to-tip ordering of anisotropic hybrid microgels as well as the alignment with respect to the direction of compression in the Langmuir trough. A large, soft microgel shell leads to an ordered structure with tip-to-tip alignment directed perpendicular to the direction of compression. In contrast, a thin and harder microgel shell leads to side-to-side ordering orientated parallel to the compression direction. In addition, the thin and harder microgel shell induces clustering of the microgels in the dilute state, indicating the presence of strong capillary interactions. Our findings highlight the relevance of softness for the complex ordering of anisotropic hybrid microgels at interfaces.
Collapse
Affiliation(s)
- Anne C Nickel
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Timon Kratzenberg
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Maximilian M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
- DWI Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany, European Union
| | - Andreas Falkenstein
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
- DWI Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany, European Union
- National Research South Ural State University, Chelyabinsk 454080, Russia
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| |
Collapse
|
22
|
Nickel AC, Rudov AA, Potemkin II, Crassous JJ, Richtering W. Interfacial Assembly of Anisotropic Core-Shell and Hollow Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4351-4363. [PMID: 35349289 DOI: 10.1021/acs.langmuir.2c00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microgels, cross-linked polymers with submicrometer size, are ideal soft model systems. While spherical microgels have been studied extensively, anisotropic microgels have hardly been investigated. In this study, we compare the interfacial deformation and assembly of anisotropic core-shell and hollow microgels. The core-shell microgel consists of an elliptical core of hematite covered with a thin silica layer and a thin shell made of poly(N-isopropylacrylamide). The hollow microgels were obtained after a two-step etching procedure of the inorganic core. The behavior of these microgels at the oil-water interface was investigated in a Langmuir-Blodgett trough combined with ex situ atomic force microscopy. First, the influence of the architecture of anisotropic microgels on their spreading at the interface was investigated experimentally and by dissipative particle dynamic simulations. Hereby, the importance of the local shell thickness on the lateral and longitudinal interfacial deformation was highlighted as well as the differences between the core-shell and hollow architectures. The shape of the compression isotherms as well as the dimensions, ordering, and orientation of the microgels at the different compressions were analyzed. Due to their anisotropic shape and stiffness, both anisotropic microgels were found to exhibit significant capillary interactions with a preferential side-to-side assembly leading to stable microgel clusters at low interfacial coverage. Such capillary interactions were found to decrease in the case of the more deformable hollow anisotropic microgels. Consequently, anisotropic hollow microgels were found to distribute more evenly at high surface pressure compared to stiffer core-shell microgels. Our findings emphasize the complex interplay between the colloid design, anisotropy, and softness on the interfacial assembly and the opportunities it therefore offers to create more complex ordered interfaces.
Collapse
Affiliation(s)
- Anne C Nickel
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Andrey A Rudov
- DWI-Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany, European Union
| | - Igor I Potemkin
- DWI-Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany, European Union
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| |
Collapse
|
23
|
Qiao Y, Ma X, Liu Z, Manno MA, Keim NC, Cheng X. Tuning the rheology and microstructure of particle-laden fluid interfaces with Janus particles. J Colloid Interface Sci 2022; 618:241-247. [PMID: 35339960 DOI: 10.1016/j.jcis.2022.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS Particle-laden fluid interfaces are the central component of many natural and engineering systems. Understanding the mechanical properties and improving the stability of such interfaces are of great practical importance. Janus particles, a special class of heterogeneous colloids, might be used as an effective surface-active agent to control the assembly and interfacial rheology of particle-laden fluid interfaces. EXPERIMENTS Using a custom-built interfacial stress rheometer, we explore the effect of Janus particle additives on the interfacial rheology and microscopic structure of particle-laden fluid interfaces. FINDINGS We find that the addition of a small amount of platinum-polystyrene (Pt-PS) Janus particles within a monolayer of PS colloids (1:40 number ratio) can lead to more than an order-of-magnitude increase in surface moduli with enhanced elasticity, which improves the stability of the interface. This drastic change in interfacial rheology is associated with the formation of local particle clusters surrounding each Janus particle. We further explain the origin of local particle clusters by considering the interparticle interactions at the interface. Our experiments reveal the effect of local particle structures on the macroscopic rheological behaviors of particle monolayers and demonstrate a new way to tune the microstructure and mechanical properties of particle-laden fluid interfaces.
Collapse
Affiliation(s)
- Yiming Qiao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaolei Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhengyang Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Manno
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathan C Keim
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Nakato T, Sirinakorn T, Ishitobi W, Mouri E, Ogawa M. Cooperative Electric Alignment of Colloidal Graphene Oxide Particles with Liquid Crystalline Niobate Nanosheets. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Teruyuki Nakato
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
- Strategic Research Unit for Innovative Multiscale Materials, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550
| | - Thipwipa Sirinakorn
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Tumbol Payupnai, Amphoe Wangchan, Rayong 21210, Thailand
| | - Wataru Ishitobi
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Emiko Mouri
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
- Strategic Research Unit for Innovative Multiscale Materials, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Tumbol Payupnai, Amphoe Wangchan, Rayong 21210, Thailand
| |
Collapse
|
25
|
Li C, Peng H, Cai J, Li L, Zhang J, Mai Y. Emulsion-Guided Controllable Construction of Anisotropic Particles: Droplet Size Determines Particle Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102930. [PMID: 34170570 DOI: 10.1002/adma.202102930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/20/2021] [Indexed: 05/27/2023]
Abstract
Anisotropic particles have attracted significant attention due to their alluring features that distinguish them from isotropic particles. One of the most appealing strategies for the synthesis of anisotropic particles is the emulsion-guided method. However, morphological control and the understanding of formation mechanisms have remained a major challenge. Based on a novel mechanism, here, a facile one-pot emulsion-templating method for the tunable construction of anisotropic polymeric particles (APPs) with different defined structures is reported. Three types of monocomponent APPs with new morphologies and sizes in the range of 240-650 nm, including Janus mushroom-like mesoporous poly(m-phenylenediamine) (PmPD) particles, wheel-shaped particles, and acorn-like PmPD particles, are obtained by controlling the average size of the oil droplets in the emulsion. Furthermore, the APPs demonstrate the ability for conversion to nitrogen-doped anisotropic carbon particles (ACPs) by pyrolysis at 800 °C under a N2 atmosphere, thereby inheriting their structures. These novel ACPs show appreciable potential as metal-free electrocatalysts for use in oxygen reduction reactions. Compared to their isotropic counterpart, these ACPs exhibit remarkable advantages such as enhanced specific surface area and pore volume, reduced stacking density, and easy fabrication of continuous and uniform membrane electrodes.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haijun Peng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Jiandong Cai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Le Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
26
|
Korkmaz N, Akar KB, İmamoğlu R, Kısa D, Karadağ A. Synthesis of silver nanowires in a two‐phase system for biological applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nesrin Korkmaz
- Department of Basic Sciences and Health, Hemp Research Institute Yozgat Bozok University Yozgat Turkey
| | - Kıymet Berkil Akar
- Department of Bioengineering, Faculty of Engineering and Architecture Tokat Gaziosmanpasa University Tokat Turkey
| | - Rizvan İmamoğlu
- Department of Biotechnology, Faculty of Science Bartın University Bartın Turkey
| | - Dursun Kısa
- Department of Molecular Biology and Genetic, Faculty of Science Bartın University Bartın Turkey
| | - Ahmet Karadağ
- Department of Chemistry, Faculty of Arts and Sciences Yozgat Bozok University Yozgat Turkey
| |
Collapse
|
27
|
Sickinger A, Mecking S. Origin of the Anisotropy and Structure of Ellipsoidal Poly(fluorene) Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Annika Sickinger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| |
Collapse
|
28
|
Lee D, Park D, Shin K, Seo HM, Lee H, Choi Y, Kim JW. ZnO nanoparticles-laden cellulose nanofibers-armored Pickering emulsions with improved UV protection and water resistance. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Mayarani M, Basavaraj MG, Satapathy DK. Colloidal monolayers with cell-like tessellations via interface assisted evaporative assembly. J Colloid Interface Sci 2021; 583:683-691. [PMID: 33039865 DOI: 10.1016/j.jcis.2020.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Evaporating sessile drops containing surface active colloids is a promising route to self-assemble two-dimensional nanostructures. The standard protocol is to first self-assemble surface active nanoscale particles at the water-vapour interface and subsequently transfer it on to a solid surface. Colloidal monolayers with very few morphologies have been fabricated, exploiting this bottom-up self-assembly technique. However, the evaporation kinetics under controlled humidity conditions may dramatically alter the microstructure of self-assembled colloidal monolayers at the liquid-vapor interface and that on the solid surfaces, an aspect that has not been fully addressed in the prior studies. EXPERIMENTS To this end, we present an experimental study of evaporation driven self-assembly of soft poly(N-isopropylacrylamide) (pNIPAM) microgel particles loaded in a sessile drop. The surface-active microgel particles spontaneously populate the water-vapour interface facilitating the suppression of the coffee-ring effect and the formation of monolayer stains. The role of evaporation kinetics under controlled humidity conditions on the colloid's microstructure adsorbed to the solvent-air interface and on the morphology of the colloidal monolayer transferred onto the solid surface are studied in detail. FINDINGS The formation of particle-free and particle-rich regions at the water-vapor interface is observed for sessile drops evaporated under saturated humidity conditions. We show that the evaporation induced shrinkage of the interface area and the enhancement of the areal density of microgel particles adsorbed onto the interface leads to a restructuring of the particle-laden interface. The rearrangement of microgel particles along the water-vapor interface resembling the de-wetting assisted patterns is transferred to the solid substrate upon complete evaporation of the solvent. The microgel particles in the deposit assemble into domains with enhanced crystalline order. The evolution of Voronoi entropy across the monolayer deposit patterns obtained by the standard and slow evaporation routes are presented.
Collapse
Affiliation(s)
- M Mayarani
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Sciences Laboratory, Department of Chemical Engineering, IIT Madras, Chennai, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai, India.
| |
Collapse
|
30
|
Hunter SJ, Armes SP. Pickering Emulsifiers Based on Block Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15463-15484. [PMID: 33325720 PMCID: PMC7884006 DOI: 10.1021/acs.langmuir.0c02595] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/27/2020] [Indexed: 05/28/2023]
Abstract
Block copolymer nanoparticles prepared via polymerization-induced self-assembly (PISA) represent an emerging class of organic Pickering emulsifiers. Such nanoparticles are readily prepared by chain-extending a soluble homopolymer precursor using a carefully selected second monomer that forms an insoluble block in the chosen solvent. As the second block grows, it undergoes phase separation that drives in situ self-assembly to form sterically stabilized nanoparticles. Conducting such PISA syntheses in aqueous solution leads to hydrophilic nanoparticles that enable the formation of oil-in-water emulsions. Alternatively, hydrophobic nanoparticles can be prepared in non-polar media (e.g., n-alkanes), which enables water-in-oil emulsions to be produced. In this review, the specific advantages of using PISA to prepare such bespoke Pickering emulsifiers are highlighted, which include fine control over particle size, copolymer morphology, and surface wettability. This has enabled various fundamental scientific questions regarding Pickering emulsions to be addressed. Moreover, block copolymer nanoparticles can be used to prepare Pickering emulsions over various length scales, with mean droplet diameters ranging from millimeters to less than 200 nm.
Collapse
Affiliation(s)
- Saul J. Hunter
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
31
|
Mirza I, Saha S. Biocompatible Anisotropic Polymeric Particles: Synthesis, Characterization, and Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8241-8270. [DOI: 10.1021/acsabm.0c01075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ifra Mirza
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
32
|
Hu Z, Fang W, Li Q, Feng XQ, Lv JA. Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators. Nat Commun 2020; 11:5780. [PMID: 33188193 PMCID: PMC7666155 DOI: 10.1038/s41467-020-19522-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Realizing programmable assembly and reconfiguration of small objects holds promise for technologically-significant applications in such fields as micromechanical systems, biomedical devices, and metamaterials. Although capillary forces have been successfully explored to assemble objects with specific shapes into ordered structures on the liquid surface, reconfiguring these assembled structures on demand remains a challenge. Here we report a strategy, bioinspired by Anurida maritima, to actively reconfigure assembled structures with well-defined selectivity, directionality, robustness, and restorability. This approach, taking advantage of optocapillarity induced by photodeformation of floating liquid crystal polymer actuators, not only achieves programmable and reconfigurable two-dimensional assembly, but also uniquely enables the formation of three-dimensional structures with tunable architectures and topologies across multiple fluid interfaces. This work demonstrates a versatile approach to tailor capillary interaction by optics, as well as a straightforward bottom-up fabrication platform for a wide range of applications.
Collapse
Affiliation(s)
- Zhiming Hu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Wei Fang
- AML, Department of Engineering Mechanics, and State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Qunyang Li
- AML, Department of Engineering Mechanics, and State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Xi-Qiao Feng
- AML, Department of Engineering Mechanics, and State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China.
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China. .,Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
33
|
Pickering–Ramsden emulsions stabilized with chemically and morphologically anisotropic particles. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Cuetos A, Morillo N, Martı Nez Haya B. Coadsorption of Counterionic Colloids at Fluid Interfaces: A Coarse-Grained Simulation Study of Gibbs Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2877-2885. [PMID: 32118442 DOI: 10.1021/acs.langmuir.9b03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monolayers of oppositely charged colloids form versatile self-organizing substrates, with a recognized potential to tailor functional interfaces. In this study, a coarse-grained Monte Carlo simulation approach is laid out to assess the structural properties of Gibbs monolayers, in which one of the counterionic species is partially soluble. It is shown that the composition of this type of monolayer varies in a nontrivial way with surface coverage, as a result of a subtle competition between steric and attractive forces. In the regime of weak electrostatic interactions, the monolayer is depleted of soluble colloids as the surface coverage is increased. At sufficiently strong interactions, the incorporation of soluble colloids is favored at high surface coverage, leading to a re-entrant-type behavior in the expansion/compression isotherms. Strong electrostatic interactions also favor the clustering of the colloids, leading to a range of aggregated configurations, qualitatively resembling those obtained in previous experimental studies. At sufficiently high surface coverage, the clusters collapse into a gel-like percolated mesoscopic structure and eventually into a square crystal lattice configuration. Such interfacial structures are in good agreement with the ones observed in the few experimental investigations available for these systems, showing that the simple methodology introduced in this study provides a valuable predictive framework to anticipate the landscape of interfacial structures that may be produced with oppositely charged colloids, through the modulation of pair interactions and thermodynamical conditions.
Collapse
Affiliation(s)
- Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Neftali Morillo
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Bruno Martı Nez Haya
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
35
|
Shape anisotropic colloidal particle fabrication using 2-photon polymerization. J Colloid Interface Sci 2019; 564:43-51. [PMID: 31901833 DOI: 10.1016/j.jcis.2019.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS Our ability to dictate the colloid geometry is intimately related to self-assembly. The synthesis of anisotropic colloidal particles is currently dominated by wet chemistry and lithographic techniques. The wet chemical synthesis offers limited particle geometries at bulk quantities. Lithographic techniques, on the other hand, provide precise control over the particle shape, although at lower yields. In this respect, two-photon polymerization (2PP)1 has attracted growing attention due to its ability to automatically fabricate complex micro/nano structures with high resolution. EXPERIMENTS We manufacture precisely designed colloids with sizes ranging from 1 µm to 10 µm with 2PP and optimize the process parameters for each dimension. Moreover, we study the shape dependent Brownian motion of these particles with video microscopy and estimate their diffusion coefficients. FINDINGS We observe that increasing the geometrical anisotropy leads to a pronounced deviation from the analytically predicted diffusion coefficient for disks with a given aspect ratio. The deviation is attributed to stronger hydrodynamic coupling with increasing anisotropy. We demonstrate, for the first time, 2PP manufacturing of colloids with tailored geometry. This study opens synthesis of colloidal building blocks to a broader audience with limited access to cleanrooms or wet-chemistry know-how.
Collapse
|
36
|
Huang H, Su Y, Xu J, Wang X. Asymmetric Morphology Transformation of Azo Molecular Glass Microspheres Induced by Polarized Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15295-15305. [PMID: 31661623 DOI: 10.1021/acs.langmuir.9b02882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, photoinduced asymmetric morphology transformation of a type of azo molecular glass microspheres was thoroughly investigated to understand the effects of controlling factors on the process, related mechanism and unique functions. The monodispersed microspheres with their sizes over ten microns were fabricated from an isosorbide-based azo compound (IAC-4) by microfluidics. Under irradiation with linearly polarized light, the ten-micron-scale microspheres were transformed into three-dimensional (3D) asymmetric particles through directional mass transfer. Microscopic observations and optics simulation were employed to investigate the morphology transformations. The results show that the penetration depth of light at different wavelengths plays an extremely important role to affect the asymmetric deformation behavior of the IAC-4 microspheres, which determines deformation region, deformation degree and final shapes of the particles. The light intensity (50-200 mW/cm2) is a less important factor, while the deformation rate of the light-penetrated part linearly increases with the intensity. When the light intensity varies in this range, the deformation degree and the final asymmetric morphology are determined by exposure energy (light intensity × irradiation time). The IAC-4 microspheres with different sizes show distinct morphology transformation behavior and the deformed particles possess different shapes, caused by the variation of volume fraction of the light-penetrated part in the microspheres. The increase in the ratio of the light-penetrated part to the total volume of the microspheres results in larger scale deformations. Based on the above understanding, asymmetric particles with various morphologies can be fabricated through a precisely controllable way. The asymmetric particles loaded on various surfaces show ability to render remarkable wetting anisotropy of water droplets on the substrates.
Collapse
Affiliation(s)
- Hao Huang
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yechao Su
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Jianhong Xu
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiaogong Wang
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE) , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
37
|
Carrasco-Fadanelli V, Castillo R. Measurement of the force between uncharged colloidal particles trapped at a flat air/water interface. SOFT MATTER 2019; 15:5815-5818. [PMID: 31305848 DOI: 10.1039/c9sm01051c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The radial attraction between microspheres straddling at the air/water interface (Bond number ≪1), whose origin is the irregular shape of the contact line and its concomitant distortion of the water surface, is measured using two light beams of a time-sharing optical tweezer. The colloidal particles used to make the measurements are microspheres made of hydrophobically covered silica to reduce the electrostatic interactions to a minimum. The measured radial force goes as a quadrupolar power law, r-n, with n = 5.02 ± 0.18 and n = 5.04 ± 0.18 for particles of 3 μm and 5 μm, respectively. In both cases, the electrostatic interaction is negligible.
Collapse
|
38
|
Wang J, Yang Z, Xu J, Ahmad M, Zhang H, Zhang A, Zhang Q, Kou X, Zhang B. Surface Microstructure Regulation of Porous Polymer Microspheres by Volume Contraction of Phase Separation Process in Traditional Suspension Polymerization System. Macromol Rapid Commun 2019; 40:e1800768. [DOI: 10.1002/marc.201800768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/23/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Jiqi Wang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Zuoting Yang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Jia Xu
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Mudasir Ahmad
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Hepeng Zhang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary ConditionMinistry of EducationNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Aibo Zhang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary ConditionMinistry of EducationNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qiuyu Zhang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary ConditionMinistry of EducationNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Xiaokang Kou
- Sunresin New Materials Co. Ltd. Xi'an 710072 P. R. China
| | - Baoliang Zhang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
- Sunresin New Materials Co. Ltd. Xi'an 710072 P. R. China
| |
Collapse
|
39
|
Hunter SJ, Thompson KL, Lovett JR, Hatton FL, Derry MJ, Lindsay C, Taylor P, Armes SP. Synthesis, Characterization, and Pickering Emulsifier Performance of Anisotropic Cross-Linked Block Copolymer Worms: Effect of Aspect Ratio on Emulsion Stability in the Presence of Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:254-265. [PMID: 30562037 DOI: 10.1021/acs.langmuir.8b03727] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization is used to prepare epoxy-functional PGMA-P(HPMA- stat-GlyMA) diblock copolymer worms, where GMA, HPMA, and GlyMA denote glycerol monomethacrylate, 2-hydroxypropyl methacrylate, and glycidyl methacrylate, respectively. The epoxy groups on the GlyMA residues were ring-opened using 3-aminopropyltriethoxysilane (APTES) in order to cross-link the worm cores via a series of hydrolysis-condensation reactions. Importantly, the worm aspect ratio can be adjusted depending on the precise conditions selected for covalent stabilization. Relatively long cross-linked worms are obtained by reaction with APTES at 20 °C, whereas much shorter worms with essentially the same copolymer composition are formed by cooling the linear worms from 20 to 4 °C prior to APTES addition. Small-angle X-ray scattering (SAXS) studies confirmed that the mean aspect ratio for the long worms is approximately eight times greater than that for the short worms. Aqueous electrophoresis studies indicated that both types of cross-linked worms acquired weak cationic surface charge at low pH as a result of protonation of APTES-derived secondary amine groups within the nanoparticle cores. These cross-linked worms were evaluated as emulsifiers for the stabilization of n-dodecane-in-water emulsions via high-shear homogenization at 20 °C and pH 8. Increasing the copolymer concentration led to a reduction in mean droplet diameter, indicating that APTES cross-linking was sufficient to allow the nanoparticles to adsorb intact at the oil/water interface and hence produce genuine Pickering emulsions, rather than undergo in situ dissociation to form surface-active diblock copolymer chains. In surfactant challenge studies, the relatively long worms required a thirty-fold higher concentration of a nonionic surfactant (Tween 80) to be displaced from the n-dodecane-water interface compared to the short worms. This suggests that the former nanoparticles are much more strongly adsorbed than the latter, indicating that significantly greater Pickering emulsion stability can be achieved by using highly anisotropic worms. In contrast, colloidosomes prepared by reacting the hydroxyl-functional adsorbed worms with an oil-soluble polymeric diisocyanate remained intact when exposed to high concentrations of Tween 80.
Collapse
Affiliation(s)
- Saul J Hunter
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Kate L Thompson
- The School of Materials, University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Joseph R Lovett
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Fiona L Hatton
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Matthew J Derry
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Christopher Lindsay
- Syngenta, Jealott's Hill International Research Centre , Bracknell , Berkshire RG42 6EY , U.K
| | - Philip Taylor
- Syngenta, Jealott's Hill International Research Centre , Bracknell , Berkshire RG42 6EY , U.K
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| |
Collapse
|
40
|
Newton B, Mohammed R, Davies GB, Botto L, Buzza DMA. Capillary Interaction and Self-Assembly of Tilted Magnetic Ellipsoidal Particles at Liquid Interfaces. ACS OMEGA 2018; 3:14962-14972. [PMID: 31458162 PMCID: PMC6644019 DOI: 10.1021/acsomega.8b01818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/24/2018] [Indexed: 05/04/2023]
Abstract
Magnetic ellipsoidal particles adsorbed at a liquid interface provide exciting opportunities for creating switchable functional materials, where self-assembly can be switched on and off using an external field [Davies et al., Adv. Mater., 2014, 26, 6715]. In order to gain a deeper understanding of this novel system in the presence of an external field, we study the capillary interaction and self-assembly of tilted ellipsoids using analytical theory and finite element simulations. We derive an analytical expression for the dipolar capillary interaction between tilted ellipsoids in elliptical polar coordinates, which exhibits a 1/r 2 power law dependence in the far field (i.e., large particle separations r) and correctly captures the orientational dependence of the capillary interactions in the near field. Using this dipole potential and finite element simulations, we further analyze the energy landscape of particle clusters consisting of up to eight tilted ellipsoids in contact. For clusters of two particles, we find that the side-to-side configuration is stable, whereas the tip-to-tip configuration is unstable. However, for clusters of more than three particles, we find that circular loops of side-to-side particles become globally stable, whereas linear chains of side-to-side particles become metastable. Furthermore, the energy barrier for the linear-to-loop transition decreases with increasing particle number. Our results explain both thermodynamically and kinetically why tilted ellipsoids assemble side-to-side locally but have a strong tendency to form loops on larger length scales.
Collapse
Affiliation(s)
- Bethany
J. Newton
- Nano3
Group, School of Mathematics & Physical Sciences, University of Hull, Hull HU6 7RX, U.K.
| | - Rizwaan Mohammed
- Nano3
Group, School of Mathematics & Physical Sciences, University of Hull, Hull HU6 7RX, U.K.
- Clare
College, Trinity Lane, Cambridge CB2 1TL, U.K.
| | - Gary B. Davies
- Institute
for Computational Physics, Allmandring 3, 70569 Stuttgart, Germany
| | - Lorenzo Botto
- School
of Engineering and Materials Science, Queen
Mary, University of London, London E1 4NS, U.K.
| | - D. Martin A. Buzza
- Nano3
Group, School of Mathematics & Physical Sciences, University of Hull, Hull HU6 7RX, U.K.
- E-mail: (D.M.A.B.)
| |
Collapse
|