1
|
Kyser AJ, Mahmoud MY, Fotouh B, Patel R, Armstrong C, Aagard M, Rush I, Lewis W, Lewis A, Frieboes HB. Sustained dual delivery of metronidazole and viable Lactobacillus crispatus from 3D-printed silicone shells. BIOMATERIALS ADVANCES 2024; 165:214005. [PMID: 39208497 PMCID: PMC11443601 DOI: 10.1016/j.bioadv.2024.214005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bacterial vaginosis (BV) is an imbalance of the vaginal microbiome in which there are limited lactobacilli and an overgrowth of anaerobic and fastidious bacteria such as Gardnerella. The propensity for BV recurrence is high, and therapies involving multiple treatment modalities are emerging to meet this need. However, current treatments requiring frequent therapeutic administration are challenging for patients and impact user compliance. Three-dimensional (3D)-printing offers a novel alternative to customize platforms to facilitate sustained therapeutic delivery to the vaginal tract. This study designed a novel vehicle intended for dual sustained delivery of both antibiotic and probiotic. 3D-printed compartmental scaffolds consisting of an antibiotic-containing silicone shell and a core containing probiotic Lactobacillus were developed with multiple formulations including biomaterials sodium alginate (SA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyethylene oxide (PEO), and kappa-carrageenan (KC). The vehicles were loaded with 50 μg of metronidazole/mg polymer and 5 × 107 CFU of L. crispatus/mg scaffold. Metronidazole-containing shells exhibited cumulative drug release of 324.2 ± 31.2 μg/mL after 14 days. Multiple polymeric formulations for the probiotic core demonstrated cumulative L. crispatus recovery of >5 × 107 CFU/mg scaffold during this timeframe. L. crispatus-loaded polymeric formulations exhibited ≥2 log CFU/mL reduction in free Gardnerella in the presence of VK2/E6E7 vaginal epithelial cells. As a first step towards the goal of facilitating patient compliance, this study demonstrates in vitro effect of a novel 3D-printed dual antibiotic and probiotic delivery platform to target BV.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Rudra Patel
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Christy Armstrong
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marnie Aagard
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Isaiah Rush
- Department of Chemical Engineering, University of Dayton, Dayton, OH, USA
| | - Warren Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville, KY, USA.
| |
Collapse
|
2
|
Kyser AJ, Mahmoud MY, Herold SE, Lewis WG, Lewis AL, Steinbach-Rankins JM, Frieboes HB. Formulation and characterization of pressure-assisted microsyringe 3D-printed scaffolds for controlled intravaginal antibiotic release. Int J Pharm 2023; 641:123054. [PMID: 37207856 PMCID: PMC10330500 DOI: 10.1016/j.ijpharm.2023.123054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Bacterial vaginosis (BV) is a highly recurrent vaginal condition linked with many health complications. Topical antibiotic treatments for BV are challenged with drug solubility in vaginal fluid, lack of convenience and user adherence to daily treatment protocols, among other factors. 3D-printed scaffolds can provide sustained antibiotic delivery to the female reproductive tract (FRT). Silicone vehicles have been shown to provide structural stability, flexibility, and biocompatibility, with favorable drug release kinetics. This study formulates and characterizes novel metronidazole-containing 3D-printed silicone scaffolds for eventual application to the FRT. Scaffolds were evaluated for degradation, swelling, compression, and metronidazole release in simulated vaginal fluid (SVF). Scaffolds retained high structural integrity and sustained release. Minimal mass loss (<6%) and swelling (<2%) were observed after 14 days in SVF, relative to initial post-cure measurements. Scaffolds cured for 24 hr (50 °C) demonstrated elastic behavior under 20% compression and 4.0 N load. Scaffolds cured for 4 hr (50 °C), followed by 72 hr (4 °C), demonstrated the highest, sustained, metronidazole release (4.0 and 27.0 µg/mg) after 24 hr and 14 days, respectively. Based upon daily release profiles, it was observed that the 24 hr timepoint had the greatest metronidazole release of 4.08 μg/mg for scaffolds cured at 4 hr at 50 °C followed by 72 hr at 4 °C. For all curing conditions, release of metronidazole after 1 and 7 days showed > 4.0-log reduction in Gardnerella concentration. Negligible cytotoxicity was observed in treated keratinocytes comparable to untreated cells, This study shows that pressure-assisted microsyringe 3D-printed silicone scaffolds may provide a versatile vehicle for sustained metronidazole delivery to the FRT.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Sydney E Herold
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Akbar MU, Akbar A, Saddozai UAK, Khan MIU, Zaheer M, Badar M. A multivariate metal–organic framework based pH-responsive dual-drug delivery system for chemotherapy and chemodynamic therapy. MATERIALS ADVANCES 2023; 4:5653-5667. [DOI: 10.1039/d3ma00389b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
By combining two different ligands and metals, MOFs can be fine-tuned for effective encapsulation and delivery of two anticancer drugs.
Collapse
Affiliation(s)
- Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Arslan Akbar
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Pakistan
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
| |
Collapse
|
4
|
Yu L, Madsen FB, Eriksen SH, Andersen AJC, Skov AL. A reliable quantitative method for determining CBD content and release from transdermal patches in Franz cells. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1257-1265. [PMID: 36372393 PMCID: PMC10100468 DOI: 10.1002/pca.3188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION There are several cannabidiol (CBD) transdermal patches available on the market. However, none are FDA-approved. Furthermore, not much evidence has been published about CBD release and skin permeation from such patches, so the effectiveness and reliability remain unclear. OBJECTIVES We aimed to develop a method to determine the in vitro release and skin permeation of CBD from transdermal patches using Franz cell diffusion in combination with quantitative 1 H-NMR (qNMR). MATERIALS AND METHODS The study was conducted on CBD patches with known CBD content and six different commercially available or market-ready CBD patches using a Franz cell with a Strat-M™ membrane and with samples taken directly from the transdermal patch for qNMR analysis. RESULTS The use of qNMR yielded an average recovery of 100% ± 7% when samples with known CBD content were tested. Results from the testing of six commercially available patches indicated that five out of six patches did not contain the CBD amount stated by the manufacturer according to a ± 10% variance margin, of which four patches were under-labeled and one was over-labeled. The release rate of patches was determined, and significant differences between the patches were shown. Maximum release of CBD was calculated to occur after 39 to 70 h. CONCLUSION The established method was proven to be a reliable means of determining the quantity and release of CBD from transdermal patches and can be used to verify CBD content and release rate in transdermal patches.
Collapse
Affiliation(s)
- Liyun Yu
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
| | - Frederikke Bahrt Madsen
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
- GlysiousHolteDenmark
| | - Sofie Helvig Eriksen
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
| | - Aaron J. C. Andersen
- Department of Biotechnology and Biomedicine, Building 221Technical University of DenmarkKgs. LyngbyDenmark
| | - Anne Ladegaard Skov
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
- GlysiousHolteDenmark
| |
Collapse
|
5
|
Mazurek P, Yuusuf NA, Silau H, Mordhorst H, Pamp SJ, Brook MA, Skov AL. Simultaneous delivery of several antimicrobial drugs from multi‐compartment glycerol‐silicone membranes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Piotr Mazurek
- Danish Polymer Centre, Department of Chemical Engineering Technical University of Denmark Kongens Lyngby Denmark
| | - Nuura A. Yuusuf
- Research Group for Genomic Epidemiology National Food Institute, Technical University of Denmark Kongens Lyngby Denmark
| | - Harald Silau
- Danish Polymer Centre, Department of Chemical Engineering Technical University of Denmark Kongens Lyngby Denmark
| | - Hanne Mordhorst
- Research Group for Genomic Epidemiology National Food Institute, Technical University of Denmark Kongens Lyngby Denmark
| | - Sünje J. Pamp
- Research Group for Genomic Epidemiology National Food Institute, Technical University of Denmark Kongens Lyngby Denmark
| | - Michael A. Brook
- Department of Chemistry and Chemical Biology McMaster University Hamilton Ontario Canada
| | - Anne L. Skov
- Danish Polymer Centre, Department of Chemical Engineering Technical University of Denmark Kongens Lyngby Denmark
- Glysious, R&D Kongens Lyngby Denmark
| |
Collapse
|
6
|
Mazurek P, Ekbrant B, Madsen F, Yu L, Skov A. Glycerol-silicone foams – Tunable 3-phase elastomeric porous materials. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Mazurek P, Vudayagiri S, Skov AL. How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review. Chem Soc Rev 2019; 48:1448-1464. [DOI: 10.1039/c8cs00963e] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tutorial aims to equip the beginners in silicone research with the knowledge to formulate recipes and process elastomer networks, targeting specific properties related to soft applications such as stretchable electronics without compromising the mechanical integrity of the elastomer.
Collapse
Affiliation(s)
- Piotr Mazurek
- Department of Chemical Engineering
- Technical University of Denmark
- Denmark
| | - Sindhu Vudayagiri
- Department of Chemical Engineering
- Technical University of Denmark
- Denmark
| | | |
Collapse
|
8
|
Du P, Wang J, Zhao H, Liu G, Wang L. Graphene oxide encapsulated by mesoporous silica for intelligent anticorrosive coating: studies on release models and self-healing ability. Dalton Trans 2019; 48:13064-13073. [DOI: 10.1039/c9dt02454a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The efficient release of benzotriazole from an insulating graphene/mesoporous silica nanoreservoir inspired us to fabricate a bi-layered anticorrosive coating with self-healing ability at the functional level.
Collapse
Affiliation(s)
- Peng Du
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Juan Wang
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Haichao Zhao
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Guangzhou Liu
- Institute of Marine Science and Technology
- Shandong University
- Qingdao 266200
- China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|