1
|
McBride SA, Atis S, Pahlavan AA, Varanasi KK. Crystal Patterning from Aqueous Solutions via Solutal Instabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70980-70990. [PMID: 39401787 DOI: 10.1021/acsami.4c12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Fluid instabilities can be harnessed for facile self-assembly of patterned structures on the nano- and microscale. Evaporative self-assembly from drops is one simple technique that enables a range of patterning behaviors due to the multitude of fluid instabilities that arise due to the simultaneous existence of temperature and solutal gradients. However, the method suffers from limited controllability over patterns that can arise and their morphology. Here, we demonstrate that a range of distinct crystalline patterns including hexagonal arrays, branches, and sawtooth structures emerge from evaporation of water drops containing calcium sulfate on hydrophilic and superhydrophilic substrates. Different pattern regimes emerge as a function of contact line dynamics and evaporation rates, which dictate which fluid instabilities are most likely to emerge. The underlying physical mechanisms behind instability for controlled self-assembly involve Marangoni flows and forced wetting/dewetting. We also demonstrate that these patterns composed of water-soluble inorganic crystals can serve as sustainable and easily removable masks for applications in microscale fabrication.
Collapse
Affiliation(s)
- Samantha A McBride
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19103, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Severine Atis
- Institut Pprime, CNRS-Université de Poitiers-ISAE ENSMA, Poitiers 86000, France
| | - Amir A Pahlavan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Kripa K Varanasi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Almohammadi H, Fu Y, Mezzenga R. Evaporation-Driven Liquid-Liquid Crystalline Phase Separation in Droplets of Anisotropic Colloids. ACS NANO 2023; 17:3098-3106. [PMID: 36719319 DOI: 10.1021/acsnano.2c12065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Drying a colloidal droplet involves complex physics that is often accompanied by evaporation-induced concentration gradients inside of the droplet, offering a platform for fundamental and technological opportunities, including self-assembly, thin film deposition, microfabrication, and DNA stretching. Here, we investigate the drying, liquid crystalline structures, and deposit patterns of colloidal liquid crystalline droplets undergoing liquid-liquid crystalline phase separation (LLCPS) during evaporation. We show that evaporation-induced progressive up-concentration inside the drying droplets makes it possible to cross, at different speeds, various thermodynamic stability states in solutions of amyloid fibril rigid filamentous colloids, thus allowing access to both metastable states, where phase separation occurs via nucleation and growth, as well as to unstable states, where phase separation occurs via the more elusive spinodal decomposition, leading to the formation of liquid crystalline microdroplets (or tactoids) of different shapes. We present the tactoids "phase diagram" as a function of the position within the droplet and elucidate their hydrodynamics. Furthermore, we demonstrate that the presence of the amyloid fibrils not only does not enhance the pinning behavior during droplet evaporation but also slightly suppresses it, thus minimizing the coffee-ring effect. We observed that microsize domains with cholesteric structure emerge in the drying droplet close to the droplet's initial edge, yet such domains are not connected to form a uniform cholesteric dried film. Finally, we demonstrate that a fully cholesteric dried layer can be generated from the drying droplets by regulating the kinetics of the evaporation process.
Collapse
Affiliation(s)
- Hamed Almohammadi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Yutong Fu
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Flapping motion as a fluorescent probe for assembly process involving highly viscous liquid-like cluster intermediates during evaporative crystallization. Photochem Photobiol Sci 2023; 22:371-378. [PMID: 36322378 DOI: 10.1007/s43630-022-00321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/09/2022] [Indexed: 02/25/2023]
Abstract
Fluorescence probes are widely used to assess the molecular environment based on their photo-physical properties. Specifically, flexible and aromatic photo-functional system (FLAP) is unique viscosity probe owing to the excited-state planarization of anthracene wings. We have previously applied fluorescence spectroscopy to monitor the evaporative crystallization of solvents. The fluorescence color and spectral changes, which depend on the aggregation form, enable direct fluorescence visualization during evaporative crystallization. The fluorescence visualization of the liquid-like cluster intermediate proposed in the two-step nucleation model for the nucleation process has been achieved. However, the physical properties of these clusters, especially the viscosity, molecular motion, and intermolecular interactions, are still unclear. In this study, FLAPs are used as probes for local-viscosity changes and space limitations of the liquid-like cluster state during evaporative crystallization by observing the fluorescence-spectral changes and using hyperspectral-camera (HSC) imaging. Green emission originates from the monomer in the solution owing to the free-flapping motion. The fluorescence color turns blue with increasing viscosity under crowding conditions. If the survival time of the liquid-like cluster state is sufficient, crystalline phase (R-phase) formation proceeds via a 2-fold π-stacked array of the V-shaped molecules. It is difficult to form the V-shaped stacked columnar structures in the liquid-like cluster state region, resulting in the deposition of head-to-tail dimer structures, such as the yellow-emissive phase (Y-phase). In the case of the FLAP, the stacking intermediate does not form during solvent evaporation in the liquid-like cluster; rather, it is deposited in an amorphous form that exhibits blue emission (B-phase). These findings suggest that it is important to the maintenance of the survival time of the liquid-like cluster states to organize and rearrange the stacking forms. We have achieved the fluorescence probing of viscosity changes at local molecular motion with solvent depletion during solvent evaporation for the first time.
Collapse
|
4
|
Kumar V, Dash S. Patterns during Evaporative Crystallization of a Saline Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10265-10273. [PMID: 35960956 DOI: 10.1021/acs.langmuir.2c01535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present work, we investigate the influence of substrate wettability and crystal morphology on the evaporative crystallization of saline droplets. On a superhydrophilic substrate, the evaporative crystals formed during the drying of a saline droplet of aqueous potassium nitrate are observed to be long and needle-shaped, oriented along the substrate. The crystal deposits form a flower-shaped pattern when the initial contact angle of the droplet increases to ∼72°. The orientation of the crystals along the triple contact line of the droplet controls the self-amplifying creeping growth of the salt crystals that eventually determines the overall evaporative patterns. The crystals change from being needle-shaped to globular salt deposits as the volume of liquid available for crystallization reduces. We demonstrate that the arrangement of the crystal with respect to the substrate and the droplet-air interface governs the rate of evaporation, growth, and morphology of the crystals.
Collapse
Affiliation(s)
- Virkeshwar Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Susmita Dash
- Department of Mechanical Engineering, Indian Institute of Science Bangalore, Bangalore 560012, India
| |
Collapse
|
5
|
Deka N, Saha S, Dash S. Evaporation-induced convective transport in confined saline droplets. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Katsumi S, Saigusa M, Ito F. Molecular Aggregation Dynamics via a Liquid-like Cluster Intermediate during Heterogeneous Evaporation as Revealed by Hyperspectral Camera Fluorescence Imaging. J Phys Chem B 2022; 126:976-984. [PMID: 35077181 DOI: 10.1021/acs.jpcb.1c09507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A hyperspectral camera (HSC) is a camera with great potential to obtain spectral information at each pixel, together with spatial imaging. HSC fluorescence imaging enables the molecular aggregation dynamics of the evaporative crystallization process to be followed in real-time. The key intermediate liquid-like cluster state for the two-step nucleation mechanism is visualized by the fluorescence color changes of mechanochromic luminescent dibenzoylmethanatoboron difluoride derivatives. Three types of emissive species (Crystal, BG-aggregates, and Amorphous) are generated from monomers in solution (low order and density) via liquid-like cluster (high density and low order) during solvent evaporation. These emissive species have partially different aggregated states based on fluorescence decay and fluorescence excitation spectral measurements. In terms of crystallization dynamics, our results indicate that it is important not only to generate supersaturated states but also to maintain the survival time of the liquid-like cluster. Moreover, we demonstrate that HSC fluorescence imaging can be a powerful tool for visualizing heterogeneous molecular aggregation processes.
Collapse
Affiliation(s)
- Shiho Katsumi
- Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda 386-8567, Japan
| | - Mai Saigusa
- Department of Chemistry, Institute of Education, Shinshu University, 6-ro, Nishinagano, Nagano 380-8544, Japan
| | - Fuyuki Ito
- Department of Chemistry, Institute of Education, Shinshu University, 6-ro, Nishinagano, Nagano 380-8544, Japan
| |
Collapse
|
7
|
Kumar V, Dash S. Evaporation-Based Low-Cost Method for the Detection of Adulterant in Milk. ACS OMEGA 2021; 6:27200-27207. [PMID: 34693139 PMCID: PMC8529649 DOI: 10.1021/acsomega.1c03887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Adulteration of milk poses a severe health hazard, and it is crucial to develop adulterant-detection techniques that are scalable and easy to use. Water and urea are two of the most common adulterants in commercial milk. Detection of these adulterants is both challenging and costly in urban and rural areas. Here we report on an evaporation-based low-cost technique for the detection of added water and urea in milk. The evaporative deposition is shown to be affected by the presence of adulterants in milk. We observe a specific pattern formation of nonvolatile milk solids deposited at the end of the evaporation of a droplet of unadulterated milk. These patterns alter with the addition of water and urea. The evaporative deposits are dependent on the concentrations of water and urea added. The sensitivity of detection of urea in milk improves with the dilution of milk with water. We show that our method can be used to detect a urea concentration as low as 0.4% in milk. Based on the detection level of urea, we present a regime map that shows the concentration of urea that can be detected at different extents of dilution of milk.
Collapse
|
8
|
Upadhyay G, Bhardwaj R. Colloidal Deposits via Capillary Bridge Evaporation and Particle Sorting Thereof. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12071-12088. [PMID: 34609891 DOI: 10.1021/acs.langmuir.1c01869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Evaporating droplets of colloidal suspensions leave behind particle deposits which could be effectively controlled via manipulating the surrounding conditions and particles and liquid properties. While previous studies extensively focused on sessile and pendant droplets, the present work investigates the evaporation dynamics of capillary bridges of colloidal suspensions formed between two parallel plates. We vary the wettability of the plates and the particle size and composition of the colloidal suspensions, keeping the same spacing between the plates. We employ side visualization, optical microscopy, fluorescence microscopy, and scanning electron microscopy and develop computational and theoretical models to collect the data. A computational model based on diffusion-limited evaporation is used to characterize the timescale of the evaporation of the capillary bridge. The model predictions are in good agreement with the present and prior experimental measurements. We discuss about the deposits of monodispersed particle suspension formed by the interplay of pinning of the contact line and evaporation dynamics. Multiple rings on the plates are observed due to the stick-slip motion of the contact line. The larger particles tend to form asymmetric deposits, with most particles concentrated on the bottom plates due to a considerably stronger gravitational pull than the hydrodynamic drag. This deposition is explained by estimating the competing forces on the particles during the evaporation. A regime map is proposed for classifying deposits on the particle size wettability plane. Lastly, we demonstrate size-based particle sorting of bidispersed colloidal suspensions in this framework. We describe two mechanisms: gravity-assisted and geometry-assisted sorting, which can be designed to sort particles efficiently. A regime map depicting the regions of influence of each mechanism is presented.
Collapse
Affiliation(s)
- Gaurav Upadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
9
|
Shao X, Hou Y, Zhong X. Modulation of evaporation-affected crystal motion in a drying droplet by saline and surfactant concentrations. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Li D, Chen R, Zhu X, Liao Q, Ye D, Yang Y, Li W, Li H, Yang Y. Light-Fueled Beating Coffee-Ring Deposition for Droplet Evaporative Crystallization. Anal Chem 2021; 93:8817-8825. [PMID: 34110126 DOI: 10.1021/acs.analchem.1c00605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Condensed deposition favors biochemical analysis, bioassays, and clinical diagnosis, but the existing strategies may suffer from low resolution, inaccurate control, cross-contamination, or miscellaneous apparatus. Herein, we propose a noncontact light strategy to enable the condensed deposition for droplet evaporative crystallization, in which the photothermal effect of a focused infrared laser is employed to induce intense evaporation. Due to the localized heating effect, not only can the droplet evaporative crystallization on the hydrophobic substrate be promoted, but also the resultant intensified Marangoni flow enables the movement of the early-formed crystals, preventing the pinning of the triple-phase contact line. Synergy of the Marangoni flow and nonuniform evaporation makes the solutes tend to accumulate near the focused light beam region, which facilitates the condensed deposition. More importantly, this light strategy not only enables condensed deposition on the hydrophobic surface with low hysteresis, but also works successfully on the hydrophilic substrate with high hysteresis via adjusting input laser power. It is demonstrated that the light strategy proposed in the present study has great potential for relevant applications.
Collapse
Affiliation(s)
- Dongliang Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Wei Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Haonan Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yijing Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
11
|
McBride SA, Skye R, Varanasi KK. Differences between Colloidal and Crystalline Evaporative Deposits. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11732-11741. [PMID: 32937070 DOI: 10.1021/acs.langmuir.0c01139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Evaporative deposits from drops are widely studied due to their numerous applications in low-effort self-assembly, including for inkjet printing, microscale separations, and sensing/diagnostics. This phenomenon has been broadly explored for drops containing suspended colloidal particles but has been less quantified for drops with dissolved solutes. When a drop of solute/solvent mixture is evaporated on a substrate, nonvolatile solutes become supersaturated as the solvent evaporates, which then leads to crystal nucleation at the substrate-drop contact line. Emerging crystals alter the local wettability and fundamentally alter the dynamics of evaporation, which, in turn, influences the resultant evaporative deposit. Here we investigate the role of interactions between the substrate, crystals, and solution by comparing the evaporative deposition of three different salts as solutes against an evaporating colloidal solution. We show that nucleation effects can cause crystalline deposits to have a temperature relationship that is opposite to that of colloidal deposits and demonstrate how a balance between the contact-line pinning force and nucleation controls the deposit size.
Collapse
Affiliation(s)
- Samantha A McBride
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rachael Skye
- Department of Materials Science Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kripa K Varanasi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|