1
|
Meng Y, Du X, Zhou S, Li J, Feng R, Zhang H, Xu Q, Zhao W, Liu Z, Zhong H. Investigation of Persistent Photoconductivity of Gallium Nitride Semiconductor and Differentiation of Primary Neural Stem Cells. Molecules 2024; 29:4439. [PMID: 39339434 PMCID: PMC11434078 DOI: 10.3390/molecules29184439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, it was found that the photogenerated free charge carriers of the GaN substrate, as an exogenous stimulus, served to promote neural stem cells (NSCs) to differentiate into neurons. This was observed through the systematic investigation of the effect of the persistent photoconductivity (PPC) of GaN on the differentiation of primary NSCs from the embryonic rat cerebral cortex. NSCs were directly cultured on the GaN surface with and without ultraviolet (UV) irradiation, with a control sample consisting of tissue culture polystyrene (TCPS) in the presence of fetal bovine serum (FBS) medium. Through optical microscopy, the morphology showed a greater number of neurons with the branching structures of axons and dendrites on GaN with UV irradiation. The immunocytochemical results demonstrated that GaN with UV irradiation could promote the NSCs to differentiate into neurons. Western blot analysis showed that GaN with UV irradiation significantly upregulated the expression of two neuron-related markers, βIII-tubulin (Tuj-1) and microtubule-associated protein 2 (MAP-2), suggesting that neurite formation and the proliferation of NSCs during differentiation were enhanced by GaN with UV irradiation. Finally, the results of the Kelvin probe force microscope (KPFM) experiments showed that the NSCs cultured on GaN with UV irradiation displayed about 50 mV higher potential than those cultured on GaN without irradiation. The increase in cell membrane potential may have been due to the larger number of photogenerated free charges on the GaN surface with UV irradiation. These results could benefit topical research and the application of GaN as a biomedical material integrated into neural interface systems or other bioelectronic devices.
Collapse
Affiliation(s)
- Yu Meng
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiaowei Du
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Shang Zhou
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Jiangting Li
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Rongrong Feng
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Huaiwei Zhang
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Qianhui Xu
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Weidong Zhao
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Zheng Liu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Haijian Zhong
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
2
|
Menath J, Mohammadi R, Grauer JC, Deters C, Böhm M, Liebchen B, Janssen LMC, Löwen H, Vogel N. Acoustic Crystallization of 2D Colloidal Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206593. [PMID: 36281801 DOI: 10.1002/adma.202206593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
2D colloidal crystallization provides a simple strategy to produce defined nanostructure arrays over macroscopic areas. Regularity and long-range order of such crystals is essential to ensure functionality, but difficult to achieve in self-assembling systems. Here, a simple loudspeaker setup for the acoustic crystallization of 2D colloidal crystals (ACDC) of polystyrene, microgels, and core-shell particles at liquid interfaces is introduced. This setup anneals an interfacial colloidal monolayer and affords an increase in average grain size by almost two orders of magnitude. The order is characterized via the structural color of the colloidal crystal, the acoustic annealing process is optimized via the frequency and the amplitude of the applied sound wave, and its efficiency is rationalized via the surface coverage-dependent interactions within the interfacial colloidal monolayer. Computer simulations show that multiple rearrangement mechanisms at different length scales, from the local motion around voids to grain boundary movements via consecutive particle rotations around common centers, collude to remove defects. The experimentally simple ACDC process, paired with the demonstrated applicability toward complex particle systems, provides access to highly defined nanostructure arrays for a wide range of research communities.
Collapse
Affiliation(s)
- Johannes Menath
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Reza Mohammadi
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Jens Christian Grauer
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Claudius Deters
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Maike Böhm
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Benno Liebchen
- Institute of Physics: Theory of Soft Matter, Technical University of Darmstadt, Hochschulstraße 12, 64289, Darmstadt, Germany
| | - Liesbeth M C Janssen
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| |
Collapse
|
3
|
The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review. Stem Cells Int 2021; 2021:8124444. [PMID: 34349803 PMCID: PMC8328695 DOI: 10.1155/2021/8124444] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
The surface topographies of artificial implants including surface roughness, surface groove size and orientation, and surface pore size and distribution have a great influence on the adhesion, migration, proliferation, and differentiation of nerve cells in the nerve regeneration process. Optimizing the surface topographies of biomaterials can be a key strategy for achieving excellent cell performance in various applications such as nerve tissue engineering. In this review, we offer a comprehensive summary of the surface topographies of nerve implants and their effects on nerve cell behavior. This review also emphasizes the latest work progress of the layered structure of the natural extracellular matrix that can be imitated by the material surface topology. Finally, the future development of surface topographies on nerve regeneration was prospectively remarked.
Collapse
|
4
|
Qadir M, Li Y, Biesiekierski A, Wen C. Surface Characterization and Biocompatibility of Hydroxyapatite Coating on Anodized TiO 2 Nanotubes via PVD Magnetron Sputtering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4984-4996. [PMID: 33861930 DOI: 10.1021/acs.langmuir.1c00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydroxyapatite (HA) coating has received significant attention in the scientific community for the development of implants, and HA coating on titanium oxide (TiO2) nanotubes has shown potential benefits in the improvement of cell proliferation, adhesion, and differentiation. In this study, a HA coating on a TiO2 nanotubular surface was developed to improve the biocompatibility of the titanium (Ti) surface via magnetron sputtering. Scanning electron microscopy (SEM), surface profilometry, and water contact goniometry revealed that HA-coated TiO2 nanotubes influenced the surface roughness (Ra) and hydrophilicity. The XRD and FTIR peaks indicated the presence of crystalline phases of TiO2 (anatase) and HA-coated TiO2 nanotubes after annealing at 500 °C for 120 min. The HA-coated TiO2 nanotubes showed significantly increased Ra and decreased water contact angle (θ) compared to the as-anodized TiO2 nanotubular and bare CP-Ti surfaces. MTS assay using osteoblast-like cells confirmed that the HA-coated TiO2 nanotubular surface provided an enhanced cell attachment and growth when compared to as-anodized TiO2 nanotubular and pure CP-Ti surfaces.
Collapse
Affiliation(s)
- Muhammad Qadir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Arne Biesiekierski
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
5
|
Cano M, Giner-Casares JJ. Biomineralization at fluid interfaces. Adv Colloid Interface Sci 2020; 286:102313. [PMID: 33181402 DOI: 10.1016/j.cis.2020.102313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Biomineralization is of paramount importance for life on Earth. The delicate balance of physicochemical interactions at the interface between organic and inorganic matter during all stages of biomineralization resembles an extremely high complexity. The coordination of this sophisticated biological machinery and physicochemical scenarios is certainly a wonderful show of nature. Understanding of the biomineralization processes is still far from complete. The recent advances in biomineralization research from the Colloid and Interface Science perspective are reviewed herein. The synergy between this two fields of research is demonstrated. The unique opportunities offered by purposefully designed fluid interfaces, mainly Langmuir monolayers are presented. Biomedical applications of biomineral-based nanostructures are discussed, showing their improved biocompatibility and on-demand delivery features. A brief guide to the array of state-of-the-art experimental techniques for unraveling the mechanisms of biomineralization using fluid interfaces is included. In summary, the fruitful and exciting crossroad between Colloid and Interface Science with Biomineralization is exhibited.
Collapse
|